Coloring of Intuitionistic Fuzzy Directed Hypergraphs

K.K. Myithili
Department of Mathematics
Vellalar College for Women
Erode-12,TN,India.

R. Parvathi
Department of Mathematics
Vellalar College for Women
Erode-12,TN,India.

Abstract

A hypergraph is a set \(V \) of vertices and a set \(E \) of non-empty subsets of \(V \), called hyperedges. Unlike graphs, hypergraphs can perform higher-order interactions in social and communication networks. Directed hypergraphs are much like directed graphs. Colors are used to distinguish the classes. Coloring a hypergraph \(H \) must assign at least two different colors to the vertices of every hyperedge. That is, no edge is monochromatic. In this paper, \(p \)-coloring, \(K \)-coloring, \(p \)-chromatic number, spike and spike reduction of intuitionistic fuzzy directed hypergraph (IFDHG), skeleton of spike reduction are studied. Further, a few properties of coloring of intuitionistic fuzzy directed hypergraph are discussed. Also, it has been proved that in an ordered IFDHG, a primitive coloring is a \(K \)-coloring of the IFDHG. **Keywords:*** Intuitionistic fuzzy directed hypergraph, coloring of IFDHG, properties.

1 Introduction

Fuzzy sets (FSs) introduced by L.A.Zadeh in 1965 [12] are generalization of crisp sets. K.T.Atanassov introduced the concept of intuitionistic fuzzy sets (IFSs) in 1999 [1] as an extension of FSs. These sets include not only the membership of the set but also the non-membership of the set along with degree of uncertainty. In order to expand the application base, the notion of a graph was generalized to that of a hypergraph. In 1976, Berge [2] introduced the concepts of graph and hypergraph. In [3], the concepts of fuzzy graph and fuzzy hypergraph were introduced.

In this way, the authors got motivated to expand the concepts such as \(p \)-coloring, \(K \)-coloring, \(p \)-chromatic number, spike and spike reduction of intuitionistic fuzzy directed hypergraph, skeleton of spike reduction were studied.

The paper has been organized as follows: Section 2 deals with the definitions of fuzzy hypergraph, intuitionistic fuzzy hypergraph and intuitionistic fuzzy directed hypergraph and the notations used. In section 3, the concepts of \(p \)-coloring, \(K \)-coloring, \(p \)-chromatic number, spike and spike reduction of IFDHG, skeleton of spike reduction are studied. Section 4 concludes the paper.

2 Preliminaries

In this section, definitions of intuitionistic fuzzy set, intuitionistic fuzzy hypergraph and IFDHG are dealt with.

Definition 2.1. [1] Let a set \(E \) be fixed. An **intuitionistic fuzzy set (IFS)** \(V \) in \(E \) is an object of the form \(V = \{ (v_i, \mu_i(v_i), \nu_i(v_i)) / v_i \in E \} \), where the function \(\mu_i : E \rightarrow [0, 1] \) and \(\nu_i : E \rightarrow [0, 1] \) determine
the degree of membership and the degree of non-membership of the element \(v_i \in E \), respectively and for every \(v_i \in E \), \(0 \leq \mu(v_i) + \nu(v_i) \leq 1 \).

Definition 2.2. [4] Let \(E \) be the fixed set and \(V = \{(v_i, \mu_i(v_i), \nu_i(v_i)) | v_i \in V \} \) be an IFS. Six types of Cartesian products of \(n \) subsets \(V_1, V_2, \cdots, V_n \) of \(V \) over \(E \) are defined as

\[
V_1 \times V_2 \times V_3 \times \cdots \times V_n = \{(v_1, v_2, \cdots, v_n), \prod_{i=1}^{n} \mu_i, \prod_{i=1}^{n} \nu_i | v_i \in V_1, v_2 \in V_2, \cdots, v_n \in V_n \},
\]

\[
V_1 \times V_2 \times 2 V_3 \times 2 V_4 \times \cdots \times 2 V_n = \{(v_1, v_2, \cdots, v_n), \sum_{i=1}^{n} \mu_i - \sum_{i \neq j} \mu_i \mu_j + \sum_{i \neq j} \mu_i \mu_j \mu_k \cdots \mu_n + \sum_{i \neq j \neq k \cdots \neq n} \mu_i \mu_j \mu_k \cdots \mu_n \}
\]

\[
V_1 \times \nu_2 \times V_3 \times 3 V_4 \times 3 V_5 \times \cdots \times 3 V_n = \{(v_1, v_2, \cdots, v_n), \prod_{i=1}^{n} \nu_i \nu_j + \sum_{i \neq j} \nu_i v_j \nu_k \cdots \nu_n + \sum_{i \neq j \neq k \cdots \neq n} \nu_i \nu_j \nu_k \cdots \nu_n \}
\]

\[
V_1 \times 4 V_2 \times 4 V_3 \times 4 V_4 \times 4 V_5 \times \cdots \times 4 V_n = \{(v_1, v_2, \cdots, v_n), \min(\mu_1, \mu_2, \cdots, \mu_n), \max(\nu_1, \nu_2, \cdots, \nu_n) | v_i \in V, v_2 \in V_2, \cdots, v_n \in V_n \}
\]

\[
V_1 \times 5 V_2 \times 5 V_3 \times 5 V_4 \times 5 V_5 \times \cdots \times 5 V_n = \{(v_1, v_2, \cdots, v_n), \sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \nu_i | v_i \in V, v_2 \in V_2, \cdots, v_n \in V_n \},
\]

It is used to determine the edge membership \(\mu_{ij} \) and the edge non-membership \(\nu_{ij} \).

Definition 2.3. [5] An intuitionistic fuzzy hypergraph (IFHG) is an ordered pair \(H = (V, E) \) where

(i) \(V = \{v_1, v_2, \cdots, v_n\} \), is a finite set of intuitionistic fuzzy vertices,

(ii) \(E = \{E_1, E_2, \cdots, E_m\} \) is a family of crisp subsets of \(V \), respectively and

(iii) \(E_j = \{(v_i, \mu_j(v_i), \nu_j(v_i)) | v_i \in V, \mu_j(v_i), \nu_j(v_i) \geq 0 \) and \(\mu_j(v_i) + \nu_j(v_i) \leq 1 \}, j = 1, 2, \ldots, m \),

(iv) \(E_j \neq \emptyset, j = 1, 2, \ldots, m \),

(v) \(\bigcup_j \supp(E_j) = V, j = 1, 2, \ldots, m \).

Here, the hyperedges \(E_j \) are crisp sets of intuitionistic fuzzy vertices, \(\mu_j(v_i) \) and \(\nu_j(v_i) \) denote the degrees of membership and non-membership of vertex \(v_i \) to edge the \(E_j \). Thus, the elements of the incidence matrix of IFHG are of the form \((v_{ij}, \mu_j(v_i), \nu_j(v_i)) \). The sets \((V, E) \) are crisp sets.

Notations:

1. Hereafter, \(\langle \mu(v_i), \nu(v_i) \rangle \) or simply \((\mu, \nu) \) denote the degrees of membership and non-membership of the vertex \(v_i \in V \), such that \(0 \leq \mu_i + \nu_i \leq 1 \).

2. \(\langle \mu(v_{ij}), \nu(v_{ij}) \rangle \) or simply \((\mu_{ij}, \nu_{ij}) \) denote the degrees of membership and non-membership of the edge \((v_i, v_j) \in V \times V \), such that \(0 \leq \mu_{ij} + \nu_{ij} \leq 1 \).

Also \(\mu_{ij} \) is the membership value of \(i \)-th vertex in \(j \)-th edge and \(\nu_{ij} \) is the non-membership value of \(i \)-th vertex in \(j \)-th edge.

Note:

The support of an IFS \(V \) in \(E \) is defined as \(\supp(E_j) = \{v_i/ \mu_j(v_i) > 0 \) and \(\nu_j(v_i) > 0 \} \).

Definition 2.4. [6] An intuitionistic fuzzy directed hypergraph (IFDHG) \(H \) is a pair \((V, E) \), where \(V \) is a non empty set of vertices and \(E \) is a set of intuitionistic fuzzy hyperarcs; an intuitionistic fuzzy hyperarc \(E_i \in E \) is defined as a pair \((t(E_i), h(E_i)) \), where \(t(E_i) \in V \), with \(t(E_i) \neq \emptyset \), is its tail, and \(h(E_i) \in V - t(E_i) \) is its head. A vertex \(s \) is said to be a source vertex in \(H \) if \(h(E) \neq s \), for every \(E_i \in E \). A vertex \(d \) is said to be a destination vertex in \(H \) if \(d \neq t(E) \), for every \(E_i \in E \).

Definition 2.5. [11] Let \(H = (V, E) \) be an IFDHG and \(H^{r_i,s_i} = (V^{r_i,s_i}, E^{r_i,s_i}) \) be the \((r_i, s_i) \) - level intuitionistic fuzzy hypergraph of \(H \). The sequence of real numbers \(\{r_1, r_2, \ldots, r_n; s_1, s_2, \ldots, s_n \} \), such that \(0 \leq r_i \leq h_i(H) \) and \(0 \leq s_i \leq h_i(H) \), satisfying the
properties:
(i) If \(r_i < \alpha \leq 1 \) and \(0 \leq \beta < s_i \) then \(E^{\alpha,\beta} = \emptyset \),
(ii) If \(r_{i+1} \leq \alpha \leq r_i \) ; \(s_i \leq \beta < s_{i+1} \) then \(E^{\alpha,\beta} = E^{r_i,s_i} \),
(iii) \(E^{r_i,s_i} \subset E^{r_{i+1},s_{i+1}} \)
is called the fundamental sequence of \(H \), and is denoted by \(F(H) \).
The core set of \(H \) is denoted by \(C(H) \) and is defined by \(C(H) = \{ H^{r_1,s_1}, H^{r_2,s_2}, ..., H^{r_n,s_n} \} \). The corresponding set of \(\{ r_i, s_i \} \) - level hypergraphs \(H^{r_1,s_1} \subset H^{r_2,s_2} \subset ... \subset H^{r_n,s_n} \) is called the \(H \) induced fundamental sequence and is denoted by \(I(H) \). The \(\{ r_n, s_n \} \)- level is called the support level of \(H \) and the \(H^{r_n,s_n} \) is called the support of \(H \).

Definition 2.6. [11] Let \(H = (V,E) \) be an intuitionistic fuzzy directed hypergraph and \(C(H) = \{ H^{r_1,s_1}, H^{r_2,s_2}, ..., H^{r_n,s_n} \} \). \(H \) is said to be ordered if \(C(H) \) is ordered. That is \(H^{r_1,s_1} \subset H^{r_2,s_2} \subset ... \subset H^{r_n,s_n} \). The intuitional fuzzy directed hypergraph is said to be simply ordered if the sequence \(\{ H^{r_i,s_i} \} / i = 1, 2, 3, ..., n \) is simply ordered. That is, if \(H \) is ordered and if whenever \(E \in H^{r_1,s_1} - H^{r_1,s_1} \) then \(E \not\subseteq H^{r_1,s_1} \).

3 Coloring of intuitionistic fuzzy directed hypergraphs
Throughout this section, \(H \) refers to an IFDHG \(H = (V,E) \).

Definition 3.1. Let \(H \) be an IFDHG. A primitive \(p \)-coloring \(A \) of \(H \) is a partition \(\{ A_1, A_2, A_3, ..., A_p \} \) of \(V \) into \(p \)-subsets (colors) such that the support of each intuitional fuzzy hyperedge of \(H \) intersects atleast two colors of \(A \), except spike edges.

Definition 3.2. Let \(H \) be an IFDHG. Let \(C(H) = \{ H^{r_1,s_1}, H^{r_2,s_2}, ..., H^{r_n,s_n} \} \). An \(K \)-coloring \(A \) of \(H \) is a partition \(\{ A_1, A_2, A_3, ..., A_p \} \) of \(V \) into \(p \)-subsets (colors) such that \(A \) induces a coloring for each core hypergraph \(H^{r_i,s_i} \) of \(H \) with \(H^{r_i,s_i} = (V_i,E_i) \) where \(V_i \subset V \) and \(E_i \subset E \). The restriction of \(A \) to \(V_i \), \(\{ A_1 \cap V_i, A_2 \cap V_i, A_3 \cap V_i, ..., A_k \cap V_i \} \), is coloring of \(\{ H^{r_i,s_i} \} \). (Allow color set \(A_1 \) to be empty).

Example 1. Consider an IFDHG, \(H \) with \(V = \{ v_1, v_2, v_3, v_4, v_5 \} \) and \(E = \{ E_1, E_2, E_3, E_4 \} \) whose adjacency matrix as follows:

\[
H = \begin{pmatrix}
E_1 & E_2 & E_3 & E_4 \\
v_1 & (0.8, 0) & (0.8, 0) & (0.1) & (0.1) \\
v_2 & (0.8, 0) & (0.8, 0) & (0.8, 0) & (0.1) \\
v_3 & (0.7, 0.1) & (0.1) & (0.1) & (0.7, 0.1) \\
v_4 & (0.1) & (0.1) & (0.6, 0.3) & (0.6, 0.3) \\
v_5 & (0.3, 0.2) & (0.3, 0.2) & (0.1) & (0.1)
\end{pmatrix}
\]

The IF core hypergraphs of \(H \) are as follows:

\(H^{0.8,0} = \{ \{ v_1, v_2 \}, \{ v_2 \} \} \)

\(H^{0.7,0.1} = \{ \{ v_1, v_2, v_3 \}, \{ v_1, v_2 \}, \{ v_2 \}, \{ v_3 \} \} \)

\(H^{0.6,0.3} = \{ \{ v_1, v_2, v_3 \}, \{ v_1, v_2 \}, \{ v_2, v_4 \}, \{ v_3, v_4 \} \} \)

\(H^{0.3,0.2} = \{ \{ v_1, v_2, v_3, v_4 \}, \{ v_1, v_2, v_5 \}, \{ v_2, v_4 \}, \{ v_3, v_4 \} \} \)

The corresponding graph is shown in Figure 1.

Suppose \(A = \{ \{ v_1, v_2 \}, \{ v_4 \}, \{ v_3, v_5 \} \} \)

Then \(A \) is a coloring of \(H^{0.6,0.3} \) and \(H^{0.3,0.2} \) but not \(H^{0.8,0} \). Hence \(A \) is a \(K \)-coloring of \(H \) with intensity \((0.8, 0) \).

Definition 3.3. The \(p \)-chromatic number of an IFDHG \(H \) is the minimal number \(\chi_p(H) \), of colors needed to produce a primitive coloring of \(H \). The chromatic number of \(H \) is the minimal number, \(\chi(H) \), of colors needed to produce a \(K \)-coloring of \(H \).

Example 2. Consider an IFDHG, \(H \) where \(V = \{ v_1, v_2, v_3, v_4, v_5, v_6 \} \) and \(E = \{ E_1, E_2, E_3, E_4, E_5, E_6, E_7 \} \) with adjacency matrix as below:

The corresponding graph is shown in Figure 2.
Hence A and H of \emptyset where E and E^3, E^2, E^4, E^5, E^6, E^7 are defined by

$$
\begin{pmatrix}
 0.6, 0.3 & 0.6, 0.3 & 0.6, 0.3 & 0.1 & 0.1 & 0.1 & 0.1 \\
 0.6, 0.3 & 0.1 & 0.1 & 0.6, 0.3 & 0.6, 0.3 & 0.6, 0.3 & 0.1 \\
 0.1 & 0.6, 0.3 & 0.6, 0.3 & 0.6, 0.3 & 0.1 & 0.1 & 0.1 \\
 0.5, 0.2 & 0.1 & 0.1 & 0.5, 0.2 & 0.5, 0.2 & 0.5, 0.2 & 0.5, 0.2 \\
 0.1 & 0.1 & 0.2, 0.1 & 0.1 & 0.1 & 0.2, 0.1 & 0.2, 0.1 \\
 0.1 & 0.5, 0.2 & 0.5, 0.2 & 0.1 & 0.1 & 0.1 & 0.1 \\
\end{pmatrix}
$$

Then $C(H) = \{H^{r_1}, s_1 = (V^{r_1}, s_1, E^{r_1})| i = 1, 2, 3, 4\}$. where

$$(r_1, s_1) = (0.6, 0.3); (r_2, s_2) = (0.5, 0.2); (r_3, s_3) = (0.3, 0.1); (r_4, s_4) = (0.2, 0.1)$$

$E_1 = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}\}$

$E_2 = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_4\}\}$

$E_3 = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_5\}, \{v_2, v_4\}, \{v_3, v_7\}, \{v_3, v_4\}, \{v_4, v_5\}\}$

$E_4 = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_6\}, \{v_2, v_4\}, \{v_2, v_5\}, \{v_3, v_7\}, \{v_3, v_4\}, \{v_4, v_5\}\}$

$E_5 = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_6\}, \{v_2, v_4\}, \{v_3, v_7\}, \{v_3, v_4\}, \{v_4, v_5\}\}$

$E_6 = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_6\}, \{v_2, v_4\}, \{v_3, v_7\}, \{v_3, v_4\}, \{v_4, v_5\}\}$

$E_7 = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_6\}, \{v_2, v_4\}, \{v_3, v_7\}, \{v_3, v_4\}, \{v_4, v_5\}\}$

Consider H^{r_1, s_1}. Suppose A_1, A_2 is a coloring of H^{r_1, s_1}. Then $\{v_1, v_2\} \cap A_1 \neq \emptyset, \{v_1, v_3\} \cap A_1 \neq \emptyset, \{v_2, v_3\} \cap A_1 \neq \emptyset \text{ for } i = 1, 2$.

Hence $A_1 \cap A_2 \neq \emptyset$, a contradiction. Thus $\chi(H^{r_1, s_1}) = 3$.

$$\chi(H^{r_1, s_1}) = 3$$

$\{\{v_1, v_2, v_3\}, \{v_4, v_5, v_6, v_7\}\}$ is a coloring of H^{r_2, s_2}, so $\chi(H^{r_2, s_2}) = 2$

For H^{r_3, s_3}, since $E \subseteq V, |E| = 3$. Hence $\chi(H^{r_3, s_3}) = 3$ and $\chi(H^{r_4, s_4}) = 3$.

Definition 3.4. A spike reduction of $E_i \in F_{\mu}(V)$, denoted by E_i, is defined as $E_i(v_i) = \max_i{\{r_i, s_i\}}/|E^{r_i, s_i}| \geq 2, (0 \leq r_i \leq E^{r_i, s_i}, 0 \leq s_i \leq E^{r_i, s_i})$.

Note: i) If $A = \emptyset$, then $E(v_i) = 0$.

(ii) If E_i is a spike, then $E_i = \chi_0$

Theorem 3.5. Let H be an IFDHG and let $\hat{H} = (\tilde{V}, \tilde{E})$, where $\tilde{E} = \{E_i| E_i \in E\}$ and $\tilde{V} = \bigcup_{\hat{E} \in \tilde{E}} \text{supp}(\hat{E})$.

Example 3. Consider example 2, $(E_T)^{0.5, 0.2} = \{v_4\}$.

Hence $E_T(v_1) = E_T(v_2) = E_T(v_3) = 0$ and $E_T(v_4) = \hat{E}_T(v_5) = \hat{E}_T(v_6) = \hat{E}_T(v_7) = (0, 2, 0.1)$. It is clear that $E_T \neq E_T$. Since $E_T \neq \emptyset$, E_T is not a spike.

Note: If each intuitionistic fuzzy hyperedge is a spike, then $\tilde{E} = \emptyset$. Hence \hat{H} is not an IFDHG. Thus this concept cannot be proceeded in real coloring problem. So excluding it from further consideration and always proceed by assuming \tilde{H} exists.

Definition 3.6. Let H be an IFDHG and A is...
a primitive coloring of H, then A is a \mathcal{K}-coloring of H.

Proof. Since H is an ordered IFDHG, from Definition 2.6, $C(H)$ is also an ordered IFDHG. That is, if $C(H) = \{H^{r_1,s_1}, H^{r_2,s_2}, ..., H^{r_n,s_n}\}$, then $H^{r_1,s_1} \subset H^{r_2,s_2} \subset ... \subset H^{r_n,s_n}$.

Since A is a primitive coloring of H, there exists a partition of V into p-subsets $\{A_1, A_2, A_3, ..., A_p\}$ such that A induces a coloring for each core hypergraph, H^{r_i,s_i} of H. Hence A is a \mathcal{K}-coloring of H.

Theorem 3.2. Let H be an IFDHG and suppose $C(H) = \{H^{r_i,s_i} | i = 1, 2, 3...n\}$, where $0 \leq r_i \leq h_p(H)$ and $0 \leq s_i \leq h_i(H)$. If H^{r_i,s_i} is a simple IFDHG and singleton hyperedges do not appear in any core hypergraph of H and if each primitive coloring A of H is a \mathcal{K}-coloring of H, then H is an ordered IFDHG.

Proof. It is known that $H^{r_i,s_i} = (V^{r_i,s_i}, E^{r_i,s_i})$ for $1 \leq i \leq n$. Assume H^{r_n,s_n} is simple and that H is not ordered. Then there exists a primitive coloring of H that is not a \mathcal{K}-coloring of H.

Construction:
Since H is not ordered, there exists some core hypergraph H^{r_i,s_i}, where $i \leq n - 1$, such that some hyperedges $E_i' \in E_i$ is not an edge of $E_j, j > i$.

From definition 2.5, there is an intuitionistic fuzzy hyperedge $E_i \in E$ such that $E_i^{r_i,s_i} = E'_i$.

Let $E_i' = E_i^{r_i+1,s_i+1}$ and $F = E_i^{r_n,s_n}$. Then $E_i' \subset E_i \subset F$.

Since H^{r_n,s_n} is simple and $F \in E_n$, it follows that $E_i' \notin E_n$. Hence $|E_i'| \geq 2$.

Hence, there is a primitive coloring of H that is not a \mathcal{K}-coloring of H.

Theorem 3.3. Let H be an ordered IFDHG and $C(H) = \{H^{r_i,s_i} | i = 1, 2, 3...n\}$, then $\chi(H^{r_i,s_i}) \leq \chi(H^{r_2,s_2}) \leq \cdots \leq \chi(H^{r_n,s_n}) = \chi(H)$, where $\chi(H^{r_i,s_i})$ represents the minimal number of colors required to color the crisp hypergraph H^{r_i,s_i}.

Definition 3.6. Let $H_1 = (V_1, E_1)$ and $H_2 = (V_2, E_2)$ be a pair of IFDHGs such that $V_1 \subseteq V_2$.

Suppose $A' = \{A_1, A_2, A_3, ..., A_p\}$, where $\bigcup_{i=1}^p A_i = V_1$ and $A_i \neq \emptyset$, for $i = 1, 2, ..., p$ is a \mathcal{K}-coloring or $(p$-coloring) of H_1. Then A'' is a stable \mathcal{K}-coloring or $(p$-coloring) extension of A' to H_2 if $A'' = \{A_1', A_2', A_3', ..., A_p'\}$ is a \mathcal{K}-coloring or $(p$-coloring) of H_2 which satisfies

i) $\bigcup_{i=1}^p A_i' = V_2$

ii) $A_i \subseteq A_i'$ for $i = 1, 2, ..., p$.

Figure 2: Intuitionistic fuzzy directed hypergraph with $(a)\chi(H^{r_2,s_2}) = 2$ and $(b)\chi(H^{r_3,s_3}) = 3$.
4 Skeleton of transversals of intuitionistic fuzzy directed hypergraph \((H^s)\).

Let \(H\) be an IFDHG with fundamental sequence \(F(H) = \{r_1, r_2, \ldots, r_n; s_1, s_2, \ldots, s_n\}\) where \(0 \leq r_i \leq h_y(H)\) and \(0 \leq s_i \leq h_y(H)\) and core set \(C(H) = \{H^{r_1,s_1}, H^{r_2,s_2}, \ldots, H^{r_n,s_n}\}\).

Construction 1: The construction of \(\widehat{C(H)}\) from \(C(H)\) is a recursive process:

Step 1: Determine a IF partial hypergraph \(\widehat{H}^{r_1,s_1}\) of \(H^{r_1,s_1}\) by eliminating all the IF hyperedge in \(H^{r_1,s_1}\) that properly contain another edge of \(H^{r_1,s_1}\).

Step 2: Eliminate all IF hyperedges of \(H^{r_2,s_2}\) which are either properly contained another edge of \(H^{r_2,s_2}\) or contains (properly or improperly) an IF hyperedges of \(H^{r_2,s_2}\). Then either all edges of \(H^{r_2,s_2}\) are eliminated or the remaining edges form an IFDHG \(\widehat{H}^{r_2,s_2}\) of \(H^{r_2,s_2}\).

Step i: For \(i = 1, 2, 3, \ldots k\) where \(1 \leq k \leq n-1\) and \(n \geq 2\) this process is repeated.

Step \(k+1\): Eliminate all IF hyperedges of \(H^{r_{k+1},s_{k+1}}\) or contain an IF hyperedge of \(\widehat{H}^{r_1,s_1}\) for \(i = 1, 2, 3, \ldots k\) if \(k\) exists. Then, either all edges of \(H^{r_{k+1},s_{k+1}}\) are eliminated (and \(\widehat{H}^{r_{k+1},s_{k+1}}\) does not exists) or the remaining IF hyperedges form a partial hypergraph \(\widehat{H}^{r_{k+1},s_{k+1}}\) of \(H^{r_{k+1},s_{k+1}}\). Continuing recursively up to \(n\), we obtain \(F(\widehat{H}) = \{r_1^*, r_2^*, \ldots, r_n^*, s_1^*, s_2^*, \ldots, s_n^*\}\) of \(F(H)\). The IF coreset \(C(H) = \{\widehat{H}^{r_1^*,s_1^*}, \widehat{H}^{r_2^*,s_2^*}, \ldots, \widehat{H}^{r_n^*,s_n^*}\}\) of IF partial hypergraph form \(C(H)\).

Note: Each member of \(\widehat{C(H)}\) has non-empty edge set and that for every \(\langle r_i, s_i \rangle \in F(\widehat{H}) \setminus \{r_1^*, r_2^*, \ldots, r_n^*, s_1^*, s_2^*, \ldots, s_n^*\}\) the entire core hypergraph \(H^{r_i,s_i}\) was eliminated in the recursive process.

Definition 4.1. The skeleton of \(\widehat{H}\), denoted by \(\widehat{H}^\square\), is defined as \(H^\square = (\widehat{H})^s\).

Theorem 4.1. Let \(H\) be an IFDHG and suppose for each \(H\) there exists a \(\widehat{H}\), then every \(p\)-coloring of \(H^\square\) is a \(K\)-coloring of \(H^\square\) and conversely.

Proof. Since \(H^\square\) is an ordered IFDHG, the result follows directly from Theorem 3.1.

Theorem 4.2. Let \(H\) be an IFDHG and there exists \(\widehat{H}\), then every \(K\)-coloring of \(H\) is a color stable extension of some \(p\)-coloring of \(H^\square\). Conversely, any extended \(K\)-coloring of \(H^\square\) without adding any color is a color stable extended \(K\)-coloring of \(H\).

Example 4. Consider an IFDHG, \(H\) with \(V = \{v_1, v_2, v_3, v_4\}\) and \(E = \{E_1, E_2, E_3, E_4, E_5\}\) whose adjacency matrix is as given below:

The IF core hypergraphs are as follows:

\[
\begin{align*}
\langle r_1, s_1 \rangle &= (0, 0); \langle r_2, s_2 \rangle = (0.7, 0.2); \langle r_3, s_3 \rangle = (0.4, 0.2); \langle r_4, s_4 \rangle = (0.3, 0.2) \\
H^{0.9,0} &= \{\{v_1\}\} \\
H^{0.7,0.2} &= \{\{v_1, v_2\}, \{v_2\}\} \\
H^{0.4,0.2} &= \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_1, v_3\}\} \\
H^{0.3,0.2} &= \{\{v_1, v_2\}, \{v_1, v_2, v_3\}, \{v_1, v_2, v_4\}, \{v_2, v_3\}, \{v_2, v_3, v_4\}\}
\end{align*}
\]

No edge of \(H^{r_1,s_1}\) properly contains another edge of \(H^{r_2,s_2}\). Hence \(\widehat{H}^{r_1,s_1} = H^{r_1,s_1}\). For \(H^{r_2,s_2}\), \(\{v_1, v_2\} \supseteq \{v_1\}\). Thus, removing \(\{v_1, v_2\}\) from \(E^{r_2,s_2}\) gives \(v_2\). Hence \(\widehat{H}^{r_2,s_2} = \{v_2\}\). For \(H^{r_3,s_3}\), \(\{v_2, v_3\} \supseteq \{v_2\}\). Removing edges which are properly contained in \(\widehat{H}^{r_2,s_2}\) gives \(\widehat{H}^{r_3,s_3} = \{v_1, v_3\}\).

It follows that \(\langle r_1^*, s_1^* \rangle = (r_1, s_1)\); \(\langle r_2^*, s_2^* \rangle = (r_2, s_2)\) and \(\langle r_3^*, s_3^* \rangle = (r_3, s_3)\). Then \(H^s = (V^s, E^s)\) where \(V^s = \{v_1, v_2, v_3, v_4\}\) and \(E^s = \{\{v_1\}, \{v_1, v_2\}, \{v_1, v_3\}\}\)

Example 5. In Example 1, \(\widehat{H} = H\) and so \(H^\square = H^s\). Every \(K\)-coloring of \(H\) is a color stable extension of some \(K\)-coloring of \(H^\square\). But every \(K\)-coloring of \(H^\square\) is a \(K\)-coloring of \(H\). Since \(E_1 = \{\{v_1\}\} = E_1^\square\) \(E_2 = \{\{v_2\}\}\) and \(E_2 = E_2^\square \cup \{v_1, v_2\}\).

Example 6. Let \(H\) be an IFDHG. In Example 4, \(H^s = (V^s, E^s)\) where \(V^s = \{v_1, v_2, v_3, v_4, v_5\}\) and \(E^s = \{\{v_1\}, \{v_2\}, \{v_1, v_3\}\}\). Hence \(\{v_1\}, \{v_2\}, \{v_1, v_3\}\) are \(K\)-coloring of \(H^s\). Clearly chromatic number \(\chi(H^s) = 2\). Note that \(\{v_1, (0, 0)\}\) and \(\{v_2, (0.7, 0.2)\}\) are spikes in \(H^s\).
Consider spike reduction, $\tilde{H} = (\tilde{V}, \tilde{E})$ where
$\tilde{V} = \{v_1, v_2, v_3, v_4\}$ and $\tilde{E} = \{E_1, E_2, E_3, E_4, E_5\}$
which is represented by the adjacency matrix in Example 4:

Thus
$$H^{0.9,0} = \{\{v_1\}\}$$
$$H^{0.7,0.2} = \{\{v_1, v_2\}, \{v_2\}\}$$
$$H^{0.4,0.2} = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_1, v_3\}\}$$
$$H^{0.3,0.2} = \{\{v_1, v_2\}, \{v_1, v_2, v_4\}, \{v_2, v_3\}, \{v_1, v_3, v_4\}\}$$

Then $H^{0} = (V^{0}, E^{0})$ where $V^{0} = \{v_1, v_2, v_3, v_4\}$ and $E^{0} = \{\{v_1\}, \{v_2\}, \{v_1, v_3\}\}$.

Hence $\{\{v_1\}, \{v_2\}, \{v_1, v_3\}\}$ are K-coloring of H^{0}.

Clearly $\chi(H^{0}) = 2$.

5 Conclusion

In this paper, an attempt has been made to study the coloring on IFDHG. Also, some interesting properties of IFDHGs are dealt with p-coloring, K-coloring, p-chromatic number, spike, spike reduction and skeleton of spike reduction. Further, it has been proved that if H is an ordered IFDHG and A is a primitive coloring of H, then A is a K-coloring of H and some other properties have also been analysed.

Acknowledgement

The authors would like to thank University Grants Commission, Hyderabad, India for its financial support to the Minor Research Project F. NO: 4 - 4/2013

References

