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1. INTRODUCTION 
 The demand for medical implants in humans is increasing rapidly each year due to the loss of 

body functions caused by the aging process and accidents. Over the past 20 years, titanium (Ti) and 

its alloys have been used as implant materials owing to their good corrosion resistance and 

biocompatibility based on their chemical and mechanical properties [1]. Titanium alloys are 

attractive metallic materials for biomedical applications because of its excellent mechanical, physical 
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ABSTRACT 

 The field of biomaterials has become a vital area, as these materials can improve the 

quality and longevity of human life. This paper discusses the mechanical, structural, 

chemical and biomechanical characteristics of Titanium(Ti) and Hydroxyapatite Coated 

Titanium materials. This brings out the overall superiority of Ti based alloys, even though it 

is costlier. As it is well known that a good biomaterial should possess the fundamental 

properties such as better mechanical and biological compatibility, enhanced wear and 

corrosion resistance in biological environment. Hence a material with excellent combination 

of high strength and low modulus closer to bone has to be used for implantation to avoid 

loosening of implants and higher service period to avoid revision surgery. This can be 

achieved by Ti and Ti-HA implants to a greater extent. Ti implants possess should possess 

the fundamental properties such as better mechanical and biological compatibility, enhanced 

wear and corrosion resistance in biological environment. Along with HA coating, it acquires 

biocompatibility and bioactivity. Hence it remains an excellent selection of Bio-implant 

material. This paper in overall elucidates the superiority of Ti and HA-Ti implant materials 

by studying the performance factors, coating methodologies, structural characteristics, 

electrochemical analysis and in vitro biological tests. 
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and biological performance. Ti–6Al–4V (ASTM F136) is an alpha–beta alloy, the microstructure, 

mechanical behaviour and chemical stability of which depend upon the type of heat treatment and 

mechanical working. This alloy is good for biomedical applications.  These alloys must have high 

strength and a long fatigue life (i.e.,) high fatigue strength. The Young’s modulus and tensile 

strength, ductility, fatigue life, fretting fatigue life, wear properties, functionalities, etc., should be 

controlled so that their levels are suitable for structural biomaterials used in implants that replace 

hard tissue. For the long-term usage of metallic implants, mechanical biocompatibilities should be 

enhanced. Being bioinert metallic materials, however, they cannot bond directly to living bone after 

implantation into a host body [2]. Therefore, for the successful application of titanium materials in 

implants, a surface treatment process to enhance contact with bone and increase the bioactivity 

within the body must be developed. To accomplish this, various surface treatments, such as coating 

hydroxyapatite (HA) powder onto the titanium surface by plasma-spray, implantation of calcium 

ions into the implant surface using an ion beam and treating with an electrolyte solution containing 

alkaline metal ions, have received considerable attention.  

 

1.1 REQUIREMENTS OF A BIOMATERIAL 

The requirement of the biomaterial is its acceptability by the human body. The implanted 

material should not cause any adverse effects like allergy, inflammation and toxicity either 

immediately after surgery or under post-operative conditions. Next to that, biomaterials should 

possess sufficient mechanical strength to sustain the forces to which they are subjected so that they 

do not undergo fracture and more importantly, a bioimplant should have very high corrosion and 

wear resistance in highly corrosive body environment and varying loading conditions, apart from 

fatigue strength and fracture toughness. This requirement obviously demands a minimum service 

period of from 15 to 20 years in older patients and more than 20 years for younger patients. The 

success of a biomaterial or an implant is highly dependent on three major factors (i) the properties 

(mechanical, chemical and tribological) of the biomaterial in question (ii) biocompatibility of the 

implant and (iii) the health condition of the recipient and the competency of the surgeon. The 

currently used materials that were selected based on above mentioned criteria though function well in 

the human system are still found to generally fail within a period of about 12-15 years, which leads 

to revision surgery in order to regain the functionality of the system.  

 

1.2 TITANIUM AND ITS ALLOYS  

Commercially pure titanium (Ti-CP) and extra low interstitial Ti-6Al-4V are most commonly 

used titanium base implant biomaterials. These materials are classified as biologically inert 

biomaterials. As such, they remain essentially unchanged when implanted into human bodies. 

However, they do not promote any adverse reactions and are tolerated well by the human tissues. 

Titanium is very light with a density of 4.5 g/cm
3
. Pure Ti is an allotropic metal having hexagonal 

phase (HCP) and transforming to a cubic phase (BCC) over that temperature. It’s very good 

biocompatibility is due the formation of an oxide film (TiO2) over its surface. This oxide is a strong 

and stable layer that grows spontaneously in contact with air and prevents the diffusion of the oxygen 

from the environment providing corrosion resistance.Ti6Al4V alloy is widely used to manufacture 

implants and the addition of alloying elements to titanium enables it to have a wide range of 

properties because aluminium tends to stabilize the -phase and vanadium tends to stabilize -phase, 

lowering the temperature of the transformation from  to . The alpha phase promotes good 

weldability, excellent strength characteristics and oxidation resistance.The addition vanadium as a -

stabilizer causes the higher strength of beta-phase to persist below the transformation temperature 

which results in a two-phase system. The -phase can precipitate by an ageing heat treatment. The 

modulus of elasticity of these materials is about 110 GPa. This is much lower than stainless steels 

and Co-base alloys modulus 210 and 240 GPa, respectively. (Davidson& Gergette, 1986).  
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1.3 TITANIUM-HYDROXYAPATITE COMPOSITE  
Bio composite materials have been developed in order to combine bioactivity of ceramics and 

mechanical properties of metals. Hydroxyapatite (HA), is a naturally mineral form of calcium apatite 

with the formula Ca10(PO4)6(OH)2. Hydroxyapatite (HA) is weak and brittle but has an excellent 

biocompatibility and is a bioactive material. When HA is coated to titanium, a chemical property of 

the biomaterial occurs improves. New developments try to combine hydroxyapatite as a second 

phase to the Ti alloy. In this material, particles of HA are incorporated in a porous titanium matrix 

providing points of good bone reaction. It allows improved adhesion strength of the load bearing 

metallic component to the bone and results in shorter healing periods and also it has good behavior 

of the implant for longer periods of time. 

 

Table.1 Hydroxyapatite properties 

Hardness (Mohs) 5 

Density (g/cm
3
) 3.1 

Elastic Modulus (GPa) 100 

Ultimate Tension Stress (MPa) 100 

Compression Stress (MPa) >50 (good) 

Toughness KIC (MPa m
1/2

) 1 

Solubility It has the less solubility in body fluids media, so it is 

impossible to have Ca
2+

 or PO4
3+

 ions in water (pH=7) 

 

1.4 PERFORMANCE FACTORS OF BIO-IMPLANTS 

MECHANICAL BEHAVIOR 

The yield strength, elastic modulus, tensile strength, ductility, fracture strength and toughness 

of a material can be determined by a simple tensile test. All of these parameters not only give 

valuable information to a design engineer, but also play an important role in deciding the long-term 

stability and biocompatibility of an implant material. A material with high elastic modulus may not 

be ideal for load bearing implants. This is because insufficient load transfer from an artificial implant 

to the adjacent remodelling bone may result in bone resorption and eventual loosening of the 

prosthetic device. Modulus of elasticity determines the stiffness of the material. Yield strength of a 

material determines the minimum stress necessary to produce plastic deformation. Hence, yield 

strength determines the ease at which a material can be deformed plastically into different shapes. 

Tensile strength gives an idea of the maximum load a material can withstand before failure. Ductility 

of a material indicates the extent to which a material can be deformed without fracture. Fracture 

strength determines the stress at which a material fails following necking after reaching the peak 

stress or the ultimate tensile strength. It occurs when the cohesive strength of a material is exceeded. 

This is an important parameter for designing hip implants as they are expected to withstand the loads 

during service without fracture. Toughness of a material may be defined as the area under the stress–

strain curve. It determines the amount of work per unit volume that can be done on the material 

without rupture [3]. 

 

CORROSION 

Corrosion is the deterioration of a material as a result of chemical and electrochemical 

reactions with its surrounding environment. Implant materials used inside a human body are 

generally exposed to a harsh aqueous environment containing various anions (Cl
-,
 HCO

3-
, HPO4

2-
), 
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cations (Na
+
, K

+,
 Ca

2+
, Mg

2+
), organic substances, and dissolved oxygen. The metallic components of 

the alloy are initially oxidized to their ionic forms and release a free electron. The dissolved oxygen 

present in the aqueous environment then react with the water molecules and free electron to form 

hydroxyl ions. These hydroxyl anions then react with the metallic cations to form a corrosion 

product. The different types of corrosion that may take place on implant metallic materials are 

pitting, crevice, galvanic, intergranular, stress-corrosion cracking, corrosion fatigue, and fretting 

corrosion [3]. 

 

SURFACE PROPERTIES 

When an implant material is inserted into the living tissue, an interface is created between the 

surface of the foreign implant material and the surrounding tissues. The surrounding tissue consists 

of water molecules, oxygen, negative and positive ions, proteins, and other biomolecules which may 

further built into larger structures such as cells and cell membranes. The biomaterial surfaces with 

different surface morphology, surface chemistry, and surface wettability may strongly influence the 

cell interaction and thereby tissue integration at the defect sites [3].  

 

SURFACE MORPHOLOGY 
It is well established that morphological features such as surface roughness and its 

topography can strongly influence the protein adsorption, cell attachment, cell proliferation, contact 

guidance, and differentiation. The surface roughness or its topography can be characterized by 

atomic force microscopy (AFM), mechanical stylus profilometry, SEM, laser profilometry, and 

confocal laser scanning microscopy [4]. 

 

SURFACE WETTABILITY 

 When an implant material is placed inside a human body, the first and the foremost event 

takes place is the wetting of the implant material by the physiological fluids. This further controls the 

adsorption of proteins followed by attachment of cells to the implant surface. The three most 

important factors that affect the wettability of a surface are its chemical composition, microstructural 

topography, and surface charge. Contact angle measurements are probably the most adopted 

technique to measure the average wettability of a surface [4]. 

 

 

2. LITERATURE REVIEW 

 

2.1 Preparation Methods 

Mechanical alloying and powder metallurgical process 

The titanium–hydroxyapatite nanocomposite materials with different contents of HA were 

prepared by powder metallurgical process and mechanical alloying. The materials used were 

titanium (99%) from Alfa Aesar and hydroxyapatite (reagent grade) powder from Sigma–Aldrich. 

Mechanical alloying was performed under argon atmosphere using a SPEX 8000 Mixer Mill. The 

vial was loaded and unloaded in Labmaster 130 glove box in high purity argon atmosphere. The 

mixed powders were first blended by mechanical alloying process with hard steel balls for 44 h and 

then uniaxially pressed at compacting pressure of 600MPa. The typical dimensions of the pellets 

were d = 10mm in diameter and h=3mm in height. Finally, the green compacts were heat treated at 

1150⁰C for 2h under an argon atmosphere (99.999% purity) to form ordered phases.[5] 

 

HA Preparation processes 

The bioactive surface treatment processes are, in general, classified as dry processes and wet 

processes. There are various dry and wet processes. The dry processes are further classified as direct 

HApreparation methods and indirect HA preparation methods. The examples of the former methods 
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are the plasma spray method, ion plating, RF magnetron sputtering, pulse laser deposition method is 

some of the methods for coating HA directly on the titanium alloy surface. Examples of the latter 

methods are calcium ion implantation, in which calcium ions are implanted into biomedical titanium 

alloys; the calcium ion mixing method, in which Ca is sputtered on the surface of biomedical 

titanium alloys followed by Ar ion implantation; etc. When biomedical titanium alloys from these 

preparation methods are implanted into a living body, CaP precipitation is enhanced on the surface. 

Wet processes are, for example, electrical chemical treatment, in which the biomedical titanium is 

first subjected to anodic treatment followed by cathodic treatment in (Ca(NO3)2) solution, following 

which, it is immersed into living body liquid, and alkali treatment, in which the biomedical titanium 

alloy is first immersed into NaOH solution and heated, following which, it is immersed into living 

body liquid. The whole surface of CP-Ti is covered with HAP, while the HAP is not formed on the 

surface of TNTZ. Therefore, which element is strongly inhibiting the formation of HAP should be 

made clear. Calcium hydroxyapatite (Ca10[PO4]6.5H2O) is a prominent calcium phosphate salts 

found in bone.  But crystallographically hydroxyapatite (HA) is the dominant lattice structure of hard 

tissue. HA can be synthesized from biological skeletal carbonate by hydrothermal exchange as per 

the following reaction. [3] 

10CaCO3 + 6(NH2)2 + 2H2O  Ca10(PO4)6(OH)2 + 6(NH4)2CO3 + 4H2CO3 

 

Electrodeposition Method 

The electrolyte for deposition was prepared by dissolving the analytical grade 0.294M 

CaCl2.2H2O, 0.042M SrCl2.6H2O, 0.042M MgCl2.6H2O and 0.042M ZnCl2 and 0.25M (NH4)2HPO4 

in deionized water to produce the target (Ca2X)/P ratio of 1.67 (where X ¼ Sr2Mg2Zn). In the 

electrolyte solution, 2000 ppm of H2O2 was added to reduce the H2 gas evolution. The electrolyte 

was de-aerated with N2 for 30 min during the deposition to minimize the formation of CaCO3 

deposits. The pH of the electrolyte was adjusted to 4.5 using NH4OH or HCl and the temper-nature 

was maintained at 65⁰C using thermostat. To keep the uniform concentration of the electrolyte, the 

magnetic stirring was controlled at a speed of 180 rpm. [6] 

 

Plasma spray coating  

HA coatings were applied to the grit-blasted gauge sections of cylindrical Ti–6Al–4V 

coupons in thicknesses of 25, 50, 75, 100 and 150mm. All coatings were deposited using identical 

atmospheric plasma-spray (APS) parameters by American Plasma-Spray Ltd. Dayton, Ohio, USA. 

Evaluations of coating porosity were conducted independently each revealing 5% porosity by 

volume and cylindrical pore sizes ranging from 0.1 to 10 mm.Mill-annealed Ti–6Al–4V extrusions 

machined to a minimum gauge diameter of 5.0 mm were used to construct unnotched fatigue 

specimens with a nominal Kt of 1.00. Each coupon was grit blasted with 80-grit Al2O3 under a gas 

pressure of 0.689MPa (100 Psi). Tensile testing revealed yield and ultimate tensile strengths of 1014 

and 1075MPa, respectively, and fully reversed axial fatigue tests revealed the endurance limit after 

grit blasting to be 615MPa.Cross-sections from the gauge sections of coupons in the as-machined, 

grit blasted, and grit blasted and sprayed conditions were prepared for metallographic examination. 

Each sample was ground and polished, then etched using an 85 H2O:10 HF:5 HNO3 etchant before 

examination under a scanning electron micro-scope (SEM).Two additional specimens were given a 

full stress relieving treatment to alleviate the residual stresses generated during the grit blasting and 

extrusion processes. The treatment consisted of a 90-hour hold at 400⁰C in air, with a subsequent 

furnace cool; the thin oxide layer evolved during the treatment was not removed before fatigue 

testing. [7] 
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2.2 Observations & discussions 

Structural Characteristics 

Hamdi and Ide-Ektessabi synthesized hydroxyapatite (HA) films on silicon substrate by 

vaporizing both CaO and P2O5 targets using electron beam heater and resistance heater, respectively 

and by simultaneous bombardment with Ar ion beams. The effects of ion beam current density on 

the phase evolution during the deposition process were investigated. From the XRD spectra strong 

tricalcium phosphate (TCP) phase together with the HA phase was observed when the ion beam is 

not used to assist the deposition. At ion beam current density of 180mA/cm
2
 a small TCP peak was 

observed, and at ion beam current density of 260mA/cm
2 

only the HA peaks were observed. The 

increase in Ca/P ratio with increasing ion beam current density is mostly due to the high sputtering of 

P compared to that of Ca from the layer being coated. [8] 

X-ray diffraction was employed to study the effect of mechanical alloying on Ti–HA 

composites. During MA process the original sharp diffraction lines of the Ti and HA gradually 

become broader and their intensity decreases with milling time. The peak broadening represents a 

reduction in the crystallite size and increase in the internal strain in the mechanically alloyed 

materials. After 44h of MA, the amorphous phase forms directly from the starting mixture, without 

formation of other phases. But differentiation between a “truly” amorphous, extremely fine grained 

or a material in which very small crystals are embedded in an amorphous matrix in so produced 

materials has not been easy on the basis of diffraction analysis. [9] 

 

 

 
Fig. 1(a) SEM micrograph of a cross-sectioned sample of plasma-sprayed hydroxyapatite coating on 

the titanium: (HA) hydroxyapatite, (Ti) titanium and (b) an X-ray diffraction pattern taken from the 

surface of a plasma sprayed hydroxyapatite coating on titanium. [8] 
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Fig. 2 XRD spectra of Ti and HA powders mechanically alloyed for 44 h and heat 

treated at 1150 ◦C for 2 h under an argon atmosphere: 

(a) Ti–3 vol% HA, (b) Ti–10 vol% HA and (c) Ti–20 vol% HA. 

(b)  
The milled titanium and hydroxyapatite powder’s microstructure was analyzed by TEM. The 

sample milled for 44h was mostly amorphous. Apart from prevailing amorphous phase, the milled 

powders contained small amount of fine-crystalline and crystalline phases. Lack of any sharp 

reflections in the XRD pattern suggests that the amount of the crystalline phase is very low and/or it 

forms during in TEM observation. During TEM studies, it has been found that the amorphous 

powders were unstable upon exposure to electron beam and underwent some crystallization. It can be 

seen that after 10 h of milling, the powder shows inhomogeneous size distribution. With the increase 

of milling time, the size of the mixed powders decreases gradually and the microstructure is more 

homogeneous. Formation of the bulk nanocomposites was achieved by cold uniaxial pressing and 

sintering of the amorphous materials. In all cases, XRD analysis of Ti–HA nanocomposites showed 

the presence of -Ti (hexagonal-type structure), but hydroxyapatite no longer exists. When 10 or 20 

vol% of hydroxyapatites is added to titanium the lattice constants of Ti increases, as manifested by a 

shift of the diffraction peaks of the (1 0 0), (0 0 2) and (1 0 1) crystal planes of titanium towards 

smaller angles in comparison with pure microcrystalline titanium. Calcium has higher atomic 

diameter in comparison with titanium. [10] 

Rabiei et al. [11] deposited functionally graded HA films on silicon substrate using a dual ion 

beam assisted deposition and simultaneous heat treatment process. shows the TEM cross-sectional 

view of the graded film. It was observed that grain size and crystallinity gradually decreased from 

the film/substrate interface to the film surface. The microstructure at the interface reveals very fine 

nanoscale crystalline columnar grains and at the top surface it is mostly amorphous. Micro scratch 

adhesion test and nanoindentation test on the deposited films were carried out to study the 

mechanical behavior of the coatings. The functionally Young’s modulus (132 GPa) as compared to 

both sputter-deposited and sintered HA. Micro scratch adhesion test illustrated a better integrity of 

the graded film with no transverse cracking and delamination from the substrate. Several authors also 

studied the microstructure and morphological evolutions of the Ca–P coatings on Ti base alloys 

synthesized using IBAD process.  

Choi et al. [12] deposited HA films on Ti–6Al–4V by electron beam vaporization of pure HA 

target and simultaneous bombardment using a focused Ar ion beam on the metal substrate to assist 

deposition. The effect of Ar ion beam current on the bond strength and dissolution of the coating in a 
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physiological solution is studied. The bond strength between the coating and the substrate increased 

with increasing current, whereas the dissolution rate in physiological solution decreased remarkably. 

Zhao et al. [13] deposited two types of Ca–P coatings, i.e. HA and porous tricalcium 

phosphate/hydroxyapatite (TCP/HA) on CP-Ti by IBAD. The biocompatibility of commercially pure 

titanium (CP-Ti), HA-coated CP-Ti, and porous TCP/HA-coated CP-Ti were investigated by culture 

of human gingival fibroblasts for different time periods. Cell attachment, cell spreading, collagen 

formation and the number of focal adhesion plaque was predominant with TCP/HA coated substrate 

as compared to Ti and HA coated substrate. This improved biocompatibility of TCP/ HA coated 

substrate is attributed to the lower Ca/P ratio. 

The SEM micrographs of the electrodeposited HAP and Cu-doped HAP are observed. SEM 

results provide the direct information about the size and shape of the deposited coatings. The results 

suggested that the substitution of Cu in HAP increased the density, i.e., a relatively lower porosity 

than HAP coating. The chemical composition consisted of Ca, P, Ti, and O. The Ca/P ratio was 

around 1.13, which was lower than 1.67 (the mole ratio of Ca to P of stoichiometric HAP). The Ca/P 

and Cu/P molar ratios were 1.04 and 0.026, respectively. The above results suggest that CuHAP was 

Ca deficient with a few Cu substitutions (about 0.80 wt%). EDS elemental mapping demonstrated 

uniform distribution of Cu, Ca, P, Ti, and O on the structure surface. Evidently, the coating 

maintained a uniform and evenly distributed Cu across the entire surface. [14] 

 

Compositional analysis 

Chemical composition of a biomaterial surface can be characterized using X-ray photo electron 

spectroscopy (XPS), auger electron spectroscopy (AES), Fourier transformation infrared (FTIR) 

spectroscopy, X-ray diffraction (XRD), and secondary ion mass spectroscopy (SIMS). XPS is widely 

used to determine the elemental composition of solid surfaces (except H and He). AES can be used 

for determining both the chemical composition of a solid surface and mapping the spatial distribution 

of the surface constituents and obtain a depth profile of these constituents into the bulk of the 

material. FTIR holds the capability for chemical analysis of solids, liquids and gasses. It is based on 

the fact that every molecule has a vibrational spectrum, which is a unique physical property and is a 

characteristic of the molecule [15]. SIMS is used to determine the surface and near-surface 

composition in a wide range of solid materials. It is based on the principle that bombardment of a 

material with a high-energy (1-30 keV) ion beam results in the ejection or sputtering of atoms from 

the material. XRD is a non-destructive technique that provides detailed information about the 

chemical composition and crystallographic structure of natural and manufactured materials. The 

phases of the spark-plasma-sintered composites, as determined by XRD analysis, contained a-Ti, 

TiC, and CaO for the composites with 10% and 20% HA, and additional phases of CaTiO3 and TiN 

formed on the composites with 30% HA [17]. No HA phase was observed. HA decomposition 

during SPS is unavoidable owing to the high-temperature process and the presence of Ti that 

catalyses such decomposition. In general, Ca concentration increased with HA concentration. The 

intensity of the O signal was high at the start of the measurement but decreased significantly at about 

25s. After sputtering for 50s, the intensity of the O signal became stable at nearly zero, which 

indicated the presence of metal, as confirmed from the Ti profile that showed a stable concentration. 

The Ti and Ca profiles of the 10%-HA-containing composite were lower than those of the other 

composites possibly owing to defects in the analysis area. The intensities of Ca and P increased with 

increasing HA concentration. The Ca profile of Ti–30HA–MA4 reached a stable intensity 

immediately after the measurement started, indicating Ca incorporation in the oxide film, possibly 

corresponding to the hydrated CaO phase. Phosphorus, which was not detected by XRD analysis, 

was successfully analysed both qualitatively and quantitatively by GDOES and EDX spectroscopy, 

respectively. It is probably present in the amorphous phase. Calcium might exist in the amorphous or 

crystalline phase, as was previously detected by XRD analysis [16]. 
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Surface microstructure 

The pure Ti surface exhibited a smooth solid structure similarly to the polished surface of 

CP-Ti. There was no significant difference between the surface structures of the pure Ti specimens 

milled for 4 and 8h. Ti– (10–30) HA composites also showed similar compact structures, except that 

few craterlike defects were observed randomly on their surface owing to the release of some ceramic 

particles during polishing. Particulate residue could sometimes be observed on the surface. Many 

large defects were observed only on the Ti–10HA–MA4 surface. They were about 50 lm long and 30 

ln deep. The EDX spectra of the circular spot gave only Ca and O peaks corresponding to the CaO 

phase that was probably hydrated upon humidity or water exposure [18]. 

 

Corrosion behavior 

The implants are placed in a corrosive environment which includes blood and other constituents 

of the body fluid which encompass several constituents like water, sodium, chlorine, proteins, 

plasma, amino acids along with mucin in the case of saliva [19]. The aqueous medium in the human 

body consists of various anions such as chloride, phosphate, and bicarbonate ions, cations like Na
+
, 

K
+
, Ca

2+
, Mg

2+
 etc., organic substances of low-molecular-weight species as well as relatively high 

molecular- weight polymeric components, and dissolved oxygen [20]. Changes in the pH values also 

influence the corrosion. Though, the pH value of the human body is normally maintained at 7.0, this 

value changes from 3 to 9 due to several causes such as accidents, imbalance in the biological system 

due to diseases, infections and other factors and after surgery the pH value near the implant varies 

typically from 5.3 to 5.6. It has been well accepted that the tolerable corrosion rate for metallic 

implant systems should be about 2.5 x 10-4 mm/yr, or 0.01 mils/yr [21]. The most common forms of 

corrosion that occur are uniform corrosion, intergranular, galvanic and stress corrosion cracking, 

pitting and fatigue corrosion. The study of Yu et al. reveals that the nitrogen ion implantation and 

heat treatment procedures enhance the corrosion fatigue of Ti-6Al-4V alloy [57]. In spite of the fact 

that there is no histological evidence to show the slow release of metallic ions due to corrosion, the 

discoloration of the surrounding tissue and the foreign body reactions clearly indicate that this is due 

to corrosion of implants. It is found that this dissolution of metal ions can be reduced by suitable 

biocompatible inorganic coatings, such as hydroxy-apatite (HAP) coating with some binders, and 

this can lead to delay in corrosion and wear and also minimize the loosening of implants from bone 

[22].  

Electrochemical Analysis 

In this study, potentiodynamic polarization and electrochemical impedance measurements 

(EIS) were carried out in simulated body fluid. The ion concentrations and pH of the simulated body 

fluid must be nearly equal to that of human blood plasma. The chemical composition and preparation 

of the simulated body fluid is adopted from Kokubo’s procedure [23]. Potentiodynamic polarization 

studies were performed in a potential range of 0.2eV vs SCE at a scan rate of 0.001 Vs
-1

. The EIS 

measurements were carried out with the frequency ranging from 10
-2

-10
5
 Hz. Nyquist and Bode plots 

were obtained after the specimens were immersed in the simulated body fluid for 1h. The 

potentiodynamic polarization and EIS were repeated at least three times in order to obtain the 

average test results. 

The open-circuit potential of the polished specimens was measured for 1000 min in 0.9 wt.% 

NaCl solution. All the curves demonstrated similar trends of an immediate increase in potential from 

the corrosion potential and tended to stabilize at higher potentials, indicating surface passivation. The 

potential for the Ti– (0–10) HA composites stabilized in the range between 0.03 and 0.1V Increasing 

HA concentration to 20–30% shifted the curve to a lower potential with the steady state potential. 

The variation in the stable potential for either Ti– (0–10) HA or Ti– (20–30) HA was within the 

range of experimental reproducibility. The h-alloyed composites containing 0–30% HA in 0.9 wt.% 

NaCl solution at 36.5⁰C [24]. 
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The peak became larger but the curve shifted to a slightly lower potential and a higher current 

when a higher scan rate of 10 mV/s was used. Oppositely, lower scan rates of 1 and 0.5 mV/s tended 

to flatten the curves as the second oxidation peak disappeared in all cases including that of pure Ti 

and the whole curves shifted to a nobler potential and a lower current. Therefore, a medium scan rate 

of 5 mV/s was used in this work to observe the two characteristic peaks of Ti in most of the curves. 

However, the corrosion current density determined from the polarization curve is meant only for 

comparison, and is unlikely to be in the steady state at the scan rate used (5mV/s). The corrosion 

potentials of both 4 and 8h alloyed Ti–10HA composites were on the same order of 0.3 V Ag/AgCl 

[25]. 

The anodic polarization curve for Ti–10HA–MA4 also shifted to a higher current than those 

for pure Ti and the 8-h-alloyed composite. Increasing HA concentration to 20% and 30% in the 

composites respectively decreased the corrosion potential gradually to 0.63 and 0.71 V Ag/AgCl for 

the 8 h-alloyed composites and further to 0.75 and 0.95 V Ag/AgCl for the 4-h-alloyed composites. 

The anodic polarization curve for the Ti–30HA composite shifted at a nearly tenfold higher current 

than that for the Ti–20HA composite. The anodic currents of Ti– 20HA and Ti–30HA above the 

corrosion potential were consistently higher by about one and two orders of magnitude, respectively, 

than that of Ti– (0–10) HA. Thus, the 8-h-milled composites tended to show a higher corrosion 

potential and a slightly lower anodic current than the 4-h-milled composites [26].  

The potentiodynamic curves were generally highly reproducible on the replicate specimens. 

The curve for Ti–10HA–MA4, which had many large craterlike defects, was also reproducible, but 

only up to a potential of 0.1V. To study corrosion behavior as a function of time, potentiostatic test 

was performed on the Ti–HA composites at a potential of 0.5V Ag/AgCl, which was in the region 

where the specimens showed a passivation tendency in the polarization curve. The current density 

for Ti– (0– 10) HA decreased, reaching 10
-7

 A/cm
2
 after a 40-min test, indicating passivation. A 

similar behavior was demonstrated by CP-Ti but at a slightly lower current. Increasing HA content to 

20% stabilized current at a higher current density of 6*10
6
 A/cm

2
 for the 8-halloyed composite and 

further at 2x10
5
 A/cm

2
 for the 4-alloyed one. The 30% HA composite showed the highest plateau 

current density at 3x10
5
 A/cm

2
 for the 4-h-alloyed and 6 *10

5
 A/cm

2 
for the 8h-alloyed; however, the 

time to reach the stable current was faster for the latter composites than for the former [27].  

 

Antimicrobial study 

The antimicrobial activity of the samples was tested against two bacterial strains S. aureus 

and E. coli by agar diffusion method. The inoculums of all microorganisms were prepared from fresh 

overnight broth cultures (Trypton soy broth with 0.6% yeast extract) that were incubated at 37 ºC. 

The resulting broth cultures were used for the test. The diffusion technique was carried out by 

pouring agar into petri dishes to form 4 mm thick layers and adding dense inoculum of the tested 

microorganisms in order to obtain semiconfluent growth. Petri plates were dried for 10 min in air. 

Then, the discs were prepared using Whatmann filter paper, immersed into different samples, placed 

on petri dishes and incubated for 24 h at 37 ºC. The result of inhibition was calculated by measuring 

the width of the inhibited zone [28,29]. 

 

Cell viability Study 

MG63 osteoblast-like cells from human osteosarcoma were cultured in standard culture 

medium which consisted of a minimal essential medium, supplemented with 10% fetal bovine serum 

(FBS), and 1% non-essential amino acids (GIBCO). The medium was renewed every 2 days and the 

cultures were maintained in a humidified atmosphere with 5% CO2, at 37ºC. The confluent 

osteoblast cultures were detached from the culture flask by incubation with 0.1% trypsin and 0.1% 

ethylene diamine tetra acetic acid (EDTA) for 5 min [30]. The growth and viability of cells 

colonizing the samples were evaluated by measuring the mitochondrial dehydrogenase activity using 

a modified MTT (3-(4,5-dimetyl-2-tiazolyl)-2,5-diphenyl-2Htetrazolium bromide) assay. To 
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determine the cytotoxicity of MHAP at different conditions, MG63 cells were seeded in 12-well 

plates at 104 cells/ml in a humidified 5% CO2 atmosphere. After 24h of incubation, MTT solution in 

1ml serum free medium was added and incubated for 4h at 37⁰C in a humidified 5% CO2 

atmosphere. The solution was then removed, added dimethyl sulfoxide, and the plate was shaken for 

15min before measuring absorbance at 570nm (the reference value was 690nm) on an ELISA 

microplate reader and then % cell viability was calculated [31]. 

 

Cell adhesion study 

The M-HAP coatings on Ti-6Al-4V alloy deposited at prolonged pulse on and off time were 

used as the samples for cell adhesion experiment. The seeded test sample was incubated in a CO2 

incubator with the standard culture condition. The culture medium was aspirated after 2days interval 

and fresh culture medium was added into each well. After the stipulated time period (36 - 48 h), the 

samples were washed twice with phosphate buffer saline (pH 7.4). For cell morphology observation, 

the HOS MG63 cells attached to the samples were fixed with 2% glutaraldehyde for 1 h at room 

temperature followed by dehydration with a series of ethanol water solution for 10 min twice. Then 

0.5 ml hexamethyl disilazane was added to each well to preserve the original morphology of the cells 

[32]. 

 

In vitro bioactivity analysis 

Some specimens were selected for bioactivity test in SBF including pure Ti as well as Ti–

30HA–MA4 and Ti– 10HA–MA8, corresponding to the composites with the highest and lowest Ca/P 

ratios, respectively. All of the pure Ti specimens showed no growth of HA layers or particles after 

immersion for 2 days or 1 week. Meanwhile, few bright particles were observed randomly on the 

surface of Ti–30HA–MA4 after a 2-day immersion. The EDX point analysis of the particles showed 

strong intensities of Ca and P with a Ca/P ratio of 1.22, which was lower than the ratio for HA. The 

Ca/P ratio was 1.33, which was relatively higher than that of the polished surface (0.70). A similar 

Nano-HA layer was also grown on the Ti–10HA– MA8 surface after an identical test was performed. 

Longer immersion in SBF for 5days and 1week was also examined for Ti–10HA–MA8 and Ti–

30HA–MA4. The size and density of HA particles increased with exposure time. The Nano globular 

layer probably thickened. However, the FE-SEM instrument used in this work could not differentiate 

between the thicknesses of the layers grown for 2 days and 1 week because the layers were very thin, 

i.e., on the order of 5–10 nm [33]. 

 

In vitro cytotoxicity studies  

SEM images revealed differences in cell density and spreading patterns among the MC3T3-

E1 cells grown on the HAP-coated and non-coated Ti substrates after 24h. The results indicated that 

the cells spread well onto all the samples and exhibit active cytoskeletal extension. This appearance 

suggested good cell viability on the CuHAP and HAP films. The cell viability of 0.8 wt% Cu-HAP 

showed cell morphology similar to the HAP which declares that this does not show any toxic nature 

[34]. Therefore, it could be concluded that Cu(II) does not affect the cell morphology of MC3T3-E1 

cells. In the present work, the cytotoxicity of Cu-HAP coating was evaluated by the MTT test using 

the MC3T3-E1 as a cell model. From the MTT tests, it is distinct that the number of cells proliferated 

with time for all samples. After 1day of culturing, the cell number did not significantly differ 

between the pure Ti and the coated specimens (Cu-HAP and HAP coatings), which was in agreement 

with the cell adhesion results. During the following two periods (3 and 5 d), the cell numbers on bare 

Ti were significantly lower (P\0.05) than those on the coated specimens, indicating that the Cu-HAP 

and HAP coatings had higher cytocompatibility than the bare Ti. However, there was a slight trend 

of increased proliferation activity in a Cu-content-dependent manner after culturing for 5d. These 

results showed that the obtained HAP coating doped with the lower content of Cu
2+

 (0.80 wt%) 

showed good cytocompatibility and had no noticeable cytotoxicity toward osteoblast cells, and was 
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favourable for implant applications. But, such concentration of Cu must also instil an antibacterial 

effect by restraining the growth of bacteria to prevent the microbial infections when used as in vivo 

implants. It is critical that the target coating surface does not release any toxic ions or compounds 

that could injure the cells involved in osteogenesis. In this case, HAP, the main component of the 

hard tissue, releases minimal toxicity to the cells of the guest organism. Cu ions may be useful in 

vitro to promote angiogenesis prior to implantation; therefore, stimulating the survival of cells is 

incorporated in tissue engineering equipment [35 - 37]. Cu has been shown to reduce osteogenic 

differentiation of mesenchymal stem cells after 14 days [38]. 

 

CONCLUSION 

The application of titanium and its alloys in biomedicalapplications is rapidly increasing. 

Therefore, further developmentsof titanium alloys appropriate for biomedicalapplications are 

strongly desired. For these applications,titanium alloys that comprise nontoxic and allergy-

freeelements should be developed. Further, these alloys shouldexhibit functionalities such as super 

elasticity and shapememory effect. In addition, mechanical performance parameterssuch as strength, 

ductility, fatigue strength, frettingfatigue strength, and wear resistance are very importantfactors for 

biomedical applications. Biomaterials with appropriate mechanical properties, surface chemistry and 

surface topography are in a great demand for enhancing cell attachment, cell growth and tissue 

formation at such defect sites.  
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