Prevalence and incidence of flat foot among Middle East and Asian Population: An Overview

Satheesha Nambiar Periya¹, Jagatheesan Alagesan²

1. Associate Professor, Department of Biomedical Sciences (Human Anatomy), College of Medicine, Gulf Medical University, Ajman, United Arab Emirates.

2. Assistant Professor, Department of Physical Therapy, College of Allied Health Sciences, Gulf Medical University, Ajman, United Arab Emirates

Abstract:

Flat foot is one of the most commonly seen foot deformity, which is also known as pes planus. It is characterised by a very low or an absence of arch, which are the main supportive structure of the foot. It becomes completely flat when the foot placed on the ground. The main supportive structure of the foot is the arches. Flat foot may be diagnosed if the arch is collapsed flattened or absent. Flat foot may be noted early in life and in this case it is considered to be congenital. Flat foot in an individual may be either flexible or rigid. The majority of the flat foot are of flexible type, and in this type the arch can be re-established either by manual manipulation or by standing on one’s toes. Rigid flat feet may be due to a congenital condition, trauma, and late stages of neuroarthropathy. The flat foot could be congenital, where the foot can have an arch but it flattens out when placed on the ground owing to flexibility.

The significance of flat foot has been studied since many years among the clinicians of various specialties. Individuals with flat foot do not experience any functional disadvantage or any symptoms; however, some people with a flat foot prone to foot/ankle/knee/hip/back pain,
foot fatigue/cramping, and other associated deformities such as hammer toes. In flat foot, the bone and joint instability are dependent on function of certain muscles and tendons. The degree of standing and walking, level and type of activities believed to have an impact on the symptoms associated with flat foot. The available literature on prevalence flat foot is limited and therefore, this article has been reviewed the prevalence of flatfoot among the Asian and Arab population.

Key Words: Flat foot; pesplanus; foot deformity; prevalence

Introduction:

Pesplanus or the flat foot is one of the frequent orthopaedic issues in paediatrics and adult health practice. The prevalence of flatfoot is not much known probably because there is no comprehensive definition, proper classification and distinct radiographic criteria for defining a flat foot\(^1\). The development of foot arch is brisk between the age of two and six years. It becomes structurally perfected around the age of twelve to thirteen years. There are several causes of flat foot, it can be congenital, adult flexible, posterior tibial tendon dysfunction, tarsal coalition, peroneal spasticity, post traumatic arthritis, charcot foot or due to neuromuscular incoordination\(^2\).

In adult population, pesplanus foot type exist about 10–25% and has been related to musculoskeletal symptoms like back and knee joint pain\(^3\),\(^4\). Presence of an averted rear foot, lowered medial longitudinal arch (MLA), abducted and dorsiflexed mid foot are the characteristic features of the flat foot\(^5\),\(^6\). The cause of pesplanus depends on the direct effect between external and internal forces at the articular surfaces, supporting ligaments, joint capsules, extrinsic and intrinsic muscles\(^7,8\). Fatigue, paralysis of the intrinsic muscles of the foot due to anaesthesia can also result in reduced height of the MLA\(^7,9\). There are few reports which indicate that, plantar fascia contributes in supporting the MLA along with flexor
digitorumbrevis and abductor hallucis muscles (ABH)10, 11. There are reports that the paralysis of ABH lowers medial arch height because it is the active elevator of the MLA12. About 80% of the resistance for lowering of MLA is furnished by tension in the plantar fascia in the final stage of the swing8, 13. Persons with pesplanus tend to develop plantar fasciitis and plantar fascia becomes thicker and rigid due to excessive load3. In pesplanus, the altered nature of the plantar fascia is not well understood in the mid and forefoot area where it divides into digital slips, however there reports suggesting studies at its calcaneal attachment14, 15, 16. In the foot, after skeletal maturity if the medial longitudinal arch undergoes a complete or partial collapse then it is referred as flat foot according to foot and ankle specialists17. The prevalence of flat feet is not well established. Most of the studies on prevalence of flat foot were done on children below 10 year age. Minimal literature is available with studies on flat foot between 18-25 years age group and in adults. All children are born with flat feet and more than 30% of them have the deformity referred as calcaneovalgus feet. Gradually, as the age advances by three to six years age this condition is reduced due to walking and activity of the child. It is reported that occurrence of flat feet is more in boys than girls18. Flat foot, weakens the usual ability of the foot with structural defect of the foot with lateral deviation of the toes, which may lead to bone damage and affects the adulthood18, 19, 20. A timely investigation of the prevalence of flat foot in society is necessary, to avoid any complications resulting from it21, 22, 23. The available literature on flat foot is scanty and therefore, this article has been reviewed the prevalence of flat foot among the Asian and Arab population.

Prevalence of flat foot in Middle East population:

A study on flat foot among 2100 military recruits with mean age of them was 19.3 years was conducted in Saudi Arabia Abdel-Fattah MM et al (2006)24. About 104 recruits was diagnosed with flat foot (5.0%) and 412 of them had normal flat foot which was the control study group. Majority were from rural regions of Saudi Arabia. About 5.8% of cases in comparison with
2.2% among controls had obesity. 75.0% of cases had bilateral flat foot, with normal heel in all cases (99.0%), 37.5% had moderate 45.2% had severe degrees of flat foot. All cases of flat foot were asymptomatic with no signs of metatarsalalgia or disfigurement. In one-fifth of cases (20.2%) this condition was related to abnormalities in the knee joint and 2 cases (1.9%) had a congenital defect. Urban population and overweight or obese persons was associated higher chance of flat foot compared with normal subjects and was related to family history. It was noted that the quality and model of foot wear used in childhood was an indicator for the occurrence of flat foot. This was by comparing the cases of bare-footed children with those children who wore shoes in their early life. The risk of developing flat foot in later were almost twice. It was found that no history of rheumatic arthritis or accidents with ruptured ligaments or tendons were associated with flat foot.

A study on flat foot in 400 school children (156 boys and 244 girls) with average weight of 61-70 kilograms was conducted in Iran by Abtahian A and Farzan S (2016). The report indicates, 377 children had rigid foot and 13 students had flexible flatfoot and 10 students had rigid flatfoot. Homayouni K et al (2015) studied the flat foot by using the method of navicular drop test in 290 school girls between 6 to 11 years age. Beighton score was used to study the joint laxity. Among 290 school girls, four of them were excluded from the study due to of rigid flatfoot. Median age of the children was 8.45 years (range was 6-11 years) including: 52 (18.2%) as 6 years age, 46 (16.1%) 7 years age, 44 (15.4%) 8 years age, 52 (18.1%) 9 years age, 47 (16.4%) 10 years age, and 45 (15.7%) were 11 years age. Flexible flatfoot was detected in 100 students with estimated prevalence of 34.9%. Mean age of children with flatfoot was lower than that of children without flatfoot significantly, and the former group had a greater risk of joint laxity.
Halbachi F et al (2013) undertook a study in Iran on algorithmic approach to pediatric flexible flatfoot and its clinical aspects. They reported that no treatment required for most flexible flatfeet, because they are physiologic and asymptomatic and only the symptomatic flexible flatfoot should require treatment. Proper orthoses, shoe, exercises, activity modification, and medications are the prime treatment. If the non-surgical treatment is unsuccessful then the surgical intervention is required.

Pourhoseingholi E and Pourhoseingholi MA (2013) compared the of foot arch index in twenty children with normal foot and flatfoot in each category aged between 6-7 years. The difference in arch index measurement between the left and right foot was significant in normal children and between left and right foot the difference was not significant as per the foot posture index measurement. A significant difference in foot posture index and arch index measurement was found in left and right flatfoot. By using Mann-Whitney test it was found mean value of arch index of the right and left foot in normal foot were significantly less than the flatfoot. The mean value of foot posture index in healthy children for left and right foot were less than respective foot in flatfoot cases.

Prevalence of flatfoot male adolescents in Turkey was studied by Cilli F et al (2009) among 3169 school children in Istanbul. The relationship of weight and height of the samples with flatfoot were evaluated in which 22 students who had flatfoot. Almost 3147 were had normal foot. All flat feet were flexible and not rigid. Prevalence of flatfoot in this study was estimated to be 0.69%. In the normal group average of body weight is 55.4 kilograms and the flatfoot group it was 58.6 kilograms. According to Mann Whitney U, the difference observed in two groups was not significant. The body weight alone did not have any impact on the occurrence of flat foot. The normal and flat foot group had an average body height was 165.5 cm in the normal group and 166.40 cm in the flat foot group. Between the two study groups
there was no much height difference was observed and it did not influence the occurrence of flatfoot.

By means of a radiological method, Pehlivan O et al (2009)30 distinguished asymptomatic and symptomatic flexible flat feet in 56 adult males in Istanbul, Turkey. Statistical evaluation of the results indicates among 56 flat feet, 43% were asymptomatic and 57% were symptomatic. The chi-square test revealed no statistically significant difference between two groups; however it was significant according to the non-parametric method. Statistically, the talo-first metatarsal angle is a risk factor as per on the logistic regression and its alteration towards higher degrees increases the symptomatic threat by 2.41 times. Statistically, the calcaneal pitch angle was not a risk factor; its alteration towards the lower degree increases the symptomatic threat by 0.83 times as per the logistic regression.

Angin S et al (2014)31 compared the thickness and cross-sectional area (CSA) of plantar fascia, foot muscles (extrinsic and intrinsic) in 49 pes planus feet in Izmir, Turkey. Recording of images of the plantar fascia and muscles were done using a 5–13 MHz transducer and venue 40 ultrasound system. In comparison to the normal group, the CSA of abductor hallucis, flexor hallucis brevis, peroneus longus and brevis muscle were significantly lesser in pes planus foot. Thickness of these muscles was also found to be less. In flat foot group, flexor hallucis longus, flexor digitorum longus and muscle had a significantly larger CSA by 28.3% and 24% and the muscle were thicker as 15.2% and 9.8%. CSA and thickness of the flexor digitorum brevis muscle and the calcaneal part of the flexor digitorum profundus were found in normal and pes planus group were not statistically significant. In the pes planus group the metatarsal portion and middle of the PF were thin by 10.6% and 21.7% respectively.
Prevalence is Asian population:
Sanadheera Vet al (2016)32 undertaken a descriptive cross sectional study using 722 participants (360 males, 362 females) aged between six to ten year children in the central district of Sri Lanka. The prevalence of flatfoot was found to be about 16.06\% (116). Unilateral flatfoot were present in forty three cases (5.95\%) and seventy three (10.11\%) were with bilateral flatfoot. Right and left side unilateral flatfoot were found in 7.76\% and 2.35\% of the cases. In 6 years age group, the mean normalized navicular height (NNH) was 0.196 and NNH less than 0.1565 considered as flatfoot. In 7 and 8 age group mean NNH were 0.203 and 0.1733, respectively and NNH less than 0.1676 and 0.1416 considered as flatfoot. Meanwhile in age 9 groups, NNH less than 0.1677 considered as flatfoot and in 10 year age group less than 0.1721 considered as the flatfoot. The maximum prevalence of the flatfoot was seen in the 6 year age group (26.35\%), 23 (16.2\%) in the 7 year age group, 19 (12.75\%) in the 8 year age group. In the 9 year age group flat foot was present in 19 (13.57\%) of the cases. The lowest prevalence was seen in the age group 10 (11.19\%). A significant association between flatfoot and age was observed and flatfoot prevalence has reduced with increase in age. Sixty one (8.44\%) males and 55 (7.61\%) females had flatfoot and was not statistically significant. The body mass index and prevalence of flat foot were much related and found to be increased as body mass index value increases.

Lower limb kinematics was performed in Taiwan by Shih YF et al (2012)3 in twenty children with normal foot and flexible flatfoot. Mean age of 10 children with flat foot was 9.7 years and 10 normal foot arch children were 9.6 years. The body mass index, quadriceps angle, femoral anteversion, measurement of ankle flexibility, weight, age and height had no significant difference in the groups. The measurement of navicular height and calcaneal eversion angle were different between the two groups, indicating that the collapse of arches of foot is higher in flexible flatfoot group. An average angular displacements of calcaneus, hip and knee joint is
seen during gait cycle the in lower extremity kinematics. Similar of movement around hip, ankle joints and knee were seen in cases with or without flexible flat foot. No significant interaction factors like joint, plane of movement across the stance phase. The group differences were identified by t-tests and the kinematic variables in two groups were compared. Flexible flat foot cases had greater knee internal rotation angle and lower hip internal rotation excursion in the stance in comparison to the children with normal arches.

In Korea, Lee JH et al (2016) studied the differences in angulation of MLA, task of abductor hallucis, tibialis anterior muscle as well as the activity ratio of tibialis anterior/abductor hallucis (TA/ABDH) during short-foot exercises in pesplanus and normal foot. Using an independent t-test the groups were analyzed. Among 28 students (14 in each group) it was found that the ABDH muscle activity was lower significantly and the TA/ABDH muscle activity ratio was significantly greater in pesplanus subjects, whereas the MLA angle and activity of the TA muscle did not have significant difference in two groups. In the height, weight, BMI and age, between the groups no significant difference was observed as well as in the MLA angle or the activity of the TA muscle. The ABDH muscle activity was significantly lower in subjects with pesplanus than in those with normal foot, and the TA/ABDH activity ratio was significantly greater in the pesplanus subjects.

In Indonesia, Idris FH (2005) studied the factors influencing the growth of foot arches in 8376 children aged 0-18 years. He reported that, the stable proportions of grade 3 flat foot were found most of the age groups. Older age had smaller proportions grade 2 flat foot and 1 compared to young generation. The normal foot proportions were higher in old age people. A small percentage of pes cavus was found in girls at the age of 9 and boys at the age of 7. At zero to three year age group showed flat foot grade 2, at 4 years flat foot grade 1, and at 18 years age normal foot was found with consistent mean foot arch measurements. Children 0-10
years were consistent median foot arch measurement of with grade 1 flat foot, and 11 years old children were with healthy normal foot. There was a positive influence of age and height on flat foot. It was suggested that the best and advantageous period for surgical interference is 0-7 years for males 0-3 years for females.

Rao UB and Joseph B (1992) conducted a survey on 2300 children to find out the consequence and result of footwear on the prevalence of pes planus in India. In this study normal arches in both feet were found in 1551, high arch in one or both feet was found in 595 and had unilateral or bilateral flat foot was found in 154 (6.7%). With increasing age the prevalence of flat foot found decreasing. Children who wore shoes had significantly higher prevalence (8.6%) than those who did not wear (2.8%). Four of the flat foot were rigid and had a negative Jack’s test. 710 children showed a ligament laxity. Children with ligament laxity had 14.4% flat foot compared with 3.3% in those who had no ligament laxity. The mean body mass index for children with flat foot and without flat foot was not statistically significant.

Conclusion

Prevalence of flat foot is high in overweight children in Asian population. Studies indicated that the prevalence of flat foot students ages 14 to 18 years and the prevalence of flat feet is not depend on gender. Study indicated that younger children with excessive joint laxity are more predisposed to flat foot compared with older children with normal joint laxity. Most of the research indicated that the prevalence of flat foot were asymptomatic. The statistical value of between asymptomatic and symptomatic flat foot was useful in orthotic management of flexible flat foot or surgical interventions.

Flexible flat foot showed more calcaneal eversion standing position and did not show any kinematic adaptation during walking which requires more evidence before any clinical implication. However, there is no significant association observed between flat foot and gender. Continuation of these exercises probably reduces the severity of effects and
deformation of ankle and other abnormalities. Use of orthotic insoles could be recommended for treatment of flexible flatfoot to prevent further development. The main risk factors for the prevalence of flat foot were family background, types of shoe wearing in childhood, obesity and urban life. However, future research and further study is required to estimate the effects of orthotics on another plantar pressure variables and lower limb kinematics with flexible flatfoot.

References:

