INTERACTION OF RED GRAPE EXTRACT AND LEAF EXTRACT ON NICOTINE INDUCED OXIDATIVE STRESS IN THE LUNG TISSUE OF MALE ALBINO RAT

K.Khalindar Basha1, M.Vani2, P.S.Poornima3, B.Vijayudu4, M.Venkatramudu5, B.Ravi6, S. Kishore7, P.Nagaraju8, K.Sathyavelu Reddy9 and *K.Chennaiah10

1,4,7,9,10 Department of Zoology, Sri Venkateswara University. Tirupati, Andhra Pradesh, India. 517502.
2,3 Department of Zoology, Sri Venkateswara Arts College. Tirupati, Andhra Pradesh, India. 517502.
6Department of Zoology, Sri Krishna Devaraya University, Anantapuramu.
7Dept. of Zoology, S.G.S. Arts College, Tirupati.
8Department of Environmental Science, S.V. Arts College, Tirupati, Andhra Pradesh, India-517502.

Abstract

Cigarette smoking (Nicotiana Tabacum. L) is also a risk factor for respiratory tract and other infections, osteoporosis, reproductive disorders, adverse postoperative events and delayed wound healing, duodenal and gastric ulcers and diabetes. Consumption of Red grape and leaf flavonoids has been shown to confer antioxidant protection. In the present study antioxidant has been assessed in nicotine administered rats to examine the effects of nicotine on the antioxidant defense systems in heart of male albino rat. Age matched rats were divided into 5 groups of six in each group and treated as follows: i) Normal Control (NC) , ii) Nicotine treated(Nt), iii) Nicotine treated + Red Grape extract treated(Nt+RGEt), iv) Nicotine treated+Red grape Leaf extract (Nt+RGLEt) and V) Nicotine + Red Grape extract +Leaf extract(Nt+RGEt+RGLEt).The enzymes such as Superoxide dismutase(SOD), Catalase(CAT), Glutathione (GSH) and Glutathione peroxidase (GSH-Px) were significantly decreased in nicotine treated rats in heart tissue and increase was observed in the combination treatment (Nt+RGEt), This study suggests that improve of red grape extract and leaf extract treatment may be beneficial for nicotine intoxications.

KEY WORDS: Nicotine, Red Grape Extract, Leaf Extract, Superoxide dismutase (SOD), Catalase (CAT), Glutathione (GSH), Glutathione peroxidase (GSH-Px), Heart and Male albino rats.

1Corresponding author:
Dr.K.Chennaiah,
Asst. Professor,
Dept.of Zoology,
S.V.University,Tirupati
A.P.,India-517502.

INTRODUCTION:

Grape (Vitis vinifera L.) is one of the most commonly consumed fruit growing worldwide. The total amount about 80% is used in wine making (Maier et al., 2009) and the grape byproduct consists 20% of weight from winery process (Lafka et al., 2007). In Thailand, grape is usually processed into various products such as wine, juice and raisins. Black queen is one of the grape varieties that is
normally processed into wine and juice and the large quantity of byproducts from both processes such as pomace (grape pulp, peels and seeds) were obtained and there has been several studies showing that these kind of by products could be a good source of antioxidants such as polyphenols and flavonoids. Wine is considered to be a high bioactive polyphenol content source. Many studies have revealed the key role played by phenolic compounds from grapes and wine on human health; cardiovascular diseases being the pathologies that have received much attention (Pozo-Bayón et al., 2012, Arranz et al., 2012). Wine is a widely consumed beverage in the world, with thousands of years of tradition. The phenolic compounds in grape berries are responsible for some of the major organoleptic properties of wine, such as color, astringency, bitterness, and aroma (Minussi et al., 2003; Pérez-Magariño and González-Sanjose, 2006). During the red winemaking process, phenolic compounds from the skins of red grapes transfer to the must during the fermentation and any maceration steps (Salas et al., 2003). Based on their carbon skeleton, phenolic compounds are divided into two groups: flavonoid (anthocyanins, flavan-3-ols, flavonols) and non-flavonoid compounds (hydroxybenzoic and hydroxycinnamic acids, stilbenes). Different types of phenolic compounds endow grape varieties and wines with specific quality characteristics.

Nicotine are highly addictive (Grana et al., 2014; Holbrook and Bradley, 2016). An average cigarette yields about 2 mg of absorbed nicotine, and in lesser doses of that order, the substance acts as a stimulant in mammals, while high amounts (50–100 mg) can be harmful (Mayer, 2014). This stimulant effect is a contributing factor to the addictive properties of tobacco smoking. Nicotine's addictive nature includes psychoactive effects, drug-reinforced behavior, compulsive use, relapse after abstinence, physical dependence and tolerance (Caponnetto et al., 2012). Nicotine is a natural ingredient acting as a botanical insecticide in tobacco leaves. It is the principal tobacco alkaloid, occurring to the extent of about 1.5% by weight in commercial cigarette tobacco and comprising about 95% of the total alkaloid content. Oral snuff and pipe tobacco contain concentrations of nicotine similar to cigarette tobacco, whereas cigar and chewing tobacco have only about half the nicotine concentration of cigarette tobacco. An average tobacco rod contains 10–14 mg of nicotine (Kozlowski et al., 1998), and on average about 1–1.5mg of nicotine is absorbed systemically during smoking (Benowitz and Jacob 1984). Nicotine in tobacco is largely the levorotary (S)-isomer; only 0.1–0.6% of total nicotine content is (R)-nicotine (Armstrong et al., 1998). Chemical reagents and pharmaceutical formulations of (S)-nicotine have a similar content of (R)-nicotine (0.1–1.2%) as impurity since plant-derived nicotine is used for their manufacture.

In most tobacco strains, nor nicotine and anatabine are the most abundant of minor alkaloids, followed by anabasine. This order of abundance is the same in cigarette tobacco and oral snuff, chewing, pipe, and cigar tobacco (Jacob et al., 1999). However, nornicotine levels are highest in cigar tobacco, anatabine levels are lowest in chewing tobacco and oral snuff, and anabasine levels are lowest in chewing tobacco (Jacob et al., 1999). Small amounts of the N-methyl derivatives of anabasine and anatabine are found in tobacco and tobacco smoke. Several of the minor alkaloids are thought to arise by bacterial action or oxidation during tobacco processing rather than by biosynthetic processes in the living plant (Leete, 1983). These include myosmine, N-methylmyosmine, cotinine, nicotyrine, nornicotyrine, nicotine N-oxide, 2, 3-bipyridyl, and metanicotine. Myosmine is found not only in tobacco but also in a variety of foods including nuts, cereals, milk, and potatoes (Tyroller et al., 2002). Also, nicotine is found in low levels in vegetables such as potatoes, tomatoes, and eggplants (Siegmund et al., 1999). Hence, this study was designed to investigate the effects of red grape extract and leaf extract on nicotine induced oxidative stress in the lung tissue of male albino rat.
MATERIALS AND METHODS:

CARE AND MAINTENANCE OF EXPERIMENTAL ANIMALS

Pathogen free, wistar strain male albino rat. The usage of animals was approved by the Institutional Animal Ethics Committee (No: 2012/ 2013 / (i) a / CPCSEA/ IACE/ SVU/ KC/ KKB/ dt. 01/07/2012). The rats were housed in clean polypropylene cages under hygienic conditions with photoperiod of 12 hours light and 12 hours dark. The rats were fed with standard laboratory chow (Hindustan Lever Ltd, Mumbai) and water ad libitum.

CHEMICALS:

Nicotine and other fine chemical were obtained from Sigma chemical company, St. Louis, USA. All other chemicals and reagent used were of analytical grade.

PREPATION OF RED GRAPE AND LEAF EXTRACTION:

The leaves were dried in shade, powdered and extract by maceration with 70% (v/v) alcoholic for 72 h in ambient temperature. The extract was filtered and then solvent evaporated to dryness under reduced pressure in a rotary evaporator. The residual extract was used for the study.

Grape seeds and skin were removed from the grapes, the grape pulp were crussed for juice and dried in shade, powdered and extract by maceration with 70% (v/v) alcoholic for 72 h in ambient temperature. The extract was filtered and then solvent evaporated to dryness under reduced pressure in a rotary evaporator. The residual extract was used for the study.

EXPERIMENTAL DESIGN:

Age matched rats were divided into 5 groups of six in each group and treated as follows:

Group I – Normal Control : Control rats received 0.9% saline, Group II – Nicotine treated: Rats were received the nicotine with a dose of 0.6 mg/kg body weight (after the standardization) by subcutaneous injection for a period of 2 months, Group III – Nicotine + Red Grape extract : Rats were received the nicotine with a dose of 0.6 mg/kg body weight by subcutaneous injection and red grape extract 50mg/kg body weight via orogastric tube for a period of 2 months, Group IV – Nicotine + Leaf extract: Rats were received the nicotine with a dose of 0.6 mg/kg body weight by subcutaneous injection and leaf extract 50mg/kg body weight via orogastric tube for a period of 2 months, Group V – Nicotine + Red Grape extract +Leaf extract: Rats were received the nicotine with a dose as mentioned for Group II through subcutaneous injection and leaf extract, red grape extract as mentioned for Group III & IV via orogastric tube for a period of 2 months.

The animals were sacrificed after 24 hrs after the last treatment session by cervical dislocation and the Lung tissue were isolated at 4°C, washed with ice-cold saline, immediately immersed in liquid nitrogen and stored at -80°C for enzymatic assays. Selected parameters were estimated by employing standard methods.

BIOCHEMICAL ANALYSIS:

Catalase (CAT – EC: 1.11.1.6):

Catalase activity was measured by a slightly modified version of Aebi, (1984) at room temperature. The heart tissue was homogenized in ice cold 50 mM phosphate buffer (pH 7.0) containing 0.1 mM EDTA to give 5% homogenate (W/V). The homogenates were centrifuged at 10,000 rpm for 10 min at 40C in cold centrifuge. The resulting supernatant was used as enzyme source. 10 μl of 100% EtOH was added to 100 μl of tissue extract and then placed in an ice bath for 30 min. After 30 min the tubes were kept at room temperature followed by the addition of 10 μl of Triton X-100 RS. In a cuvette containing 200 μl of phosphate buffer and 50 μl of tissue extract was added 250 μl of 0.066 M H2O2 (in phosphate buffer) and decreases in optical density measured at 240 nm for 60 s
in a UV spectrophotometer. The molar extinction coefficient of 43.6 M cm\(^{-1}\) was used to determine CAT activity. One unit of activity is equal to the moles of H2O2 degraded / mg protein / min.

Superoxide Dismutase (SOD – EC: 1.15.1.6):

Superoxide dismutase activity was determined according to the method of Misra and Fridovich, (1972) at room temperature. The heart tissue was homogenized in ice cold 50 mM phosphate buffer (pH 7.0) containing 0.1 mM EDTA to give 5% homogenate (W/V). The homogenates were centrifuged at 10,000 rpm for 10 min at 40\(^\circ\)C in cold centrifuge. The supernatant was separated and used for enzyme assay. 100 µl of tissue extract was added to 880 µl (0.05 M, pH 10.2, containing 0.1 mM EDTA) carbonate buffer; and 20 µl of 30 mM epinephrine (in 0.05% acetic acid) was added to the mixture and measured the optical density values at 480 nm for 4 min on a Hitachi U-2000 Spectrophotometer. Activity expressed as the amount of enzyme that inhibits the oxidation of epinephrine by 50\%, which is equal to 1 unit.

Glutathione Peroxidase (GSH-PX – EC: 1.11.1.9):

Glutathione peroxidase (GSH-Px) was determined by a modified version of Flohe and Gunzler (1984). At 370\(^\circ\)C 5% (W/V) of heart tissue homogenate was prepared in 50 mM phosphate buffer (pH 7.0) containing 0.1 mM EDTA. The homogenates were centrifuged at 10,000 rpm for 10 min at 40\(^\circ\)C in cold centrifuge. The resulting supernatant was used as enzyme source. The reaction mixture consisted of 500 µl of phosphate buffer, 100 µl of 0.01 M GSH (reduced form), 100 µl of 1.5 mM NADPH and 100 µl of GR (0.24 units). The 100 µl of tissue extract was added to the reaction mixture and incubated at 370'C for 10 min. Then 50 µl of 12 mM t-butyl hydroperoxide was added to 450 µl of tissue reaction mixture and measured at 340 nm for 180 s. The molar extinction coefficient of 6.22 X 10\(^3\) M cm\(^{-1}\) was used to determine the activity. One unit of activity is equal to the mM of NADPH oxidized / mg protein/ min. The enzyme activity was expressed in µ moles of NADPH oxidized/ mg protein / min.

Glutathione (GSH – EC NO: 1.6.4.2) Content:

Glutathione content was determined according to the method of Theodorus et al., (1981). The heart tissue was homogenized in 0.1M ice cold phosphate buffer (pH 7.0) containing 0.001M EDTA and protein is precipitated with 1 ml of 5% sulfosalicylic acid (W/V) and the contents were centrifuged at 5000 g for 15 min at 40\(^\circ\)C. The resulting supernatant was used as the enzyme source. The reaction mixture in a total volume of 2.5 ml contained 2.0 ml of 0.1M potassium phosphate buffer, 0.05 ml of NADPH (4 mg / ml of 0.5% NaHCO\(_3\)), 0.02 ml of DTNB (1.5 mg / ml), 0.02 ml of glutathione reductase (6 units/ ml) and required amount of tissue source. The reaction was initiating by adding 0.41 ml of enzyme source and change in absorbance was recorded at 425 nm against the reagent blank. The glutathione content was expressed in nano moles/ gram wet weight of the tissue.

PROTEIN ASSAY:

Protein content where ever mentioned was estimated by the method of Lowry et al., (1951) using bovine serum albumin as standard.

STATISTICAL ANALYSIS

Statistical analysis has been carried out using INSTAT software. The data was analyzed for the significance; the results were presented with the P-values.

RESULTS :

CATALASE (CAT – EC: 1.11.1.6):

A Significantly decreased(-46.21\%) activities of CAT were observed in the lung tissue of nicotine treated rats when compared to normal rats. In all experimental animals increased (Nt+RG\(\text{Et}\) by +12.44\%,Nt+LE\(\text{t}\) by +24.85\% and Nt+RG\(\text{Et}\)+LE\(\text{t}\) by +33.28\%) the activity of enzyme was observed in the lung tissue, especially more increase was observed in the Nt+RG\(\text{Et}\)+RG\(\text{LEt}\) (Fig:1).
Fig.1: Per cent change over respective control in Catalase in the Lung tissue of i) Nicotine treated (Nt), ii) Nicotine treated + Red Grape extract treated (Nt+RGEt) iii) Nicotine treated + Leaf extract treated (Nt+ LEt) and iv) Nicotine treated + Red Grape extract treated + Leaf extract treated (Nt+RGEt+ LEt) in the male albino rats. Values are expressed in µ moles of H₂O₂ consumed /mg protein /minute.

SUPEROXIDE DISMUTASE (SOD – EC: 1.15.1.6):
Significantly decreased (-43.83%) activities of SOD were observed in the lung tissue of nicotine treated rats as compared to normal rats. In all the experimental animals increased (Nt+RGEt by +23.26%, Nt+LEt by +27.29% and Nt+RGEt+LEt by +30.19%) the activity of enzyme was observed in the lung tissue, especially more increase was observed in the Nt+RGEt+LEt.(Fig-2).

Fig.2: Per cent change over respective control in Superoxide dismutase (SOD) in the Lung tissue of i) Nicotine treated (Nt), ii) Nicotine treated + Red Grape extract treated (Nt+RGEt), iii) Nicotine treated + Leaf extract treated (Nt+ LEt) and iv) Nicotine treated + Red Grape extract treated + Leaf extract treated (Nt+RGEt+ LEt) in the male albino rats. Values are expressed in nano moles of Superoxide dismutase reduced / mg protein /minute.
GLUTATHIONE PEROXIDASE (GSH-PX – EC: 1.11.1.9):

In the present study a significantly decreased (−26.50%) activities of GPx were observed in the lung tissue of nicotine treated rats when compared to normal rats. In all the experimental animals increased (Nt+RGEt by +12.20%, Nt+LEt by+17.31% and, Nt+RGEt+LEt by+29.10%) the activity of enzyme was observed in the lung tissue, especially more increase was observed in the Nt+RGEt+LEt.(Fig:3).

Fig3: Per cent change over respective control in Glutathione peroxidase in the Lung tissue of i) Nicotine treated (Nt), ii) Nicotine treated + Red Grape extract treated (Nt+RGEt), iii) Nicotine treated + Leaf extract treated (Nt+LEt) and iv) Nicotine treated + Red Grape extract treated + Leaf extract treated (Nt++RGEt+LEt) in the male albino rats. Values are expressed in µ moles of NADPH oxidized/mg protein/minute.

GLUTATHIONE (GSH – EC NO: 1.6.4.2) CONTENT:

In the present a significantly decreased (−22.49%) activities of GSH were observed in the lung tissue of nicotine treated rats when compared to normal rats. In all the experimental animals increased (Nt+RGEt by +6.13%, Nt+LEt by +13.37% and Nt+RGEt+LEt by +18.18%) the activity of enzyme was observed in the lung tissue, especially more increase was observed in the Nt+RGEt+LEt.(Fig:4).

Fig4: Per cent change over respective control in Glutathione in the Lung tissue of i) Nicotine treated (Nt), ii) Nicotine treated + Red Grape extract treated (Nt+RGEt), iii) Nicotine treated + Leaf extract treated (Nt+LEt) and iv) Nicotine treated + Red Grape extract treated + Leaf extract treated (Nt++RGEt+LEt) in the male albino rats. Values are expressed in µ moles of glutathione/gm Wet wt of tissue.
DISCUSSION:

CATALASE (CAT – EC: 1.11.1.6):

In the present study, we found that the administration of nicotine was observed the decrease in CAT activity in the lung tissue. Similar studies have been reported by several authors. Chennaiah et al., (2006) reported due to nicotine treatment CAT activity was decreased in the muscle tissue. Helen et al., (2000) reported the decreased CAT activity in brain tissue of rat due to nicotine toxicity. Avati et al., (2005) reported chronic administration of nicotine the CAT activity was decreased in the rat lung, kidney and liver. The depletion of CAT activity was may be due to dispose of the free radical, produced by the nicotine toxicity. Similar changes in CAT activity was reported in various toxic conditions by varies authors. Bindu et al., (2002) reported the decrease in CAT activity with 4g / kg body weight alcohol treatment for a period of 50 days in Sprague Dawley albino rats. Recently Das and Vasudevan, (2005b) reported a significant decrease in CAT activity with 2g by / kg body weight ethanol treatment for a period of 4 weeks in hepatic tissue of Wistar strain male albino rats. This ethanol induced decrease in CAT activity may be due to enzyme protein oxidation as a result of accumulation of H$_2$O$_2$and other cytotoxic radicals (Somani et al., 1996). The decreased CAT activity with ethanol treatment indicates inefficient scavenging of hydrogen peroxide due to oxidative inactivation of enzyme. Husain and Somani, (1997a) reported a significant decrease in plasma CAT activity in alcohol treated rats. The lower levels of plasma CAT activity may be explained due to mobilization of iron, which can generate ROS and these species can release low molecular weight iron (Nordmann, et al., 1987). The two antioxidant enzymes namely SOD and CAT decreased significantly in the hepatic tissue of alcohol administered rats suggesting the increased damage to this tissue as a result of uncontrolled generation of partially reduced oxygen species (Mahendran and Shyamala Devi, 2001).

In the present study, in the lung tissue of Nt+ RGEt+ RGLEt rat the CAT activity was increased when compared to nicotine rat. The increased catalase activity indicates its active involvement in the decomposition of hydrogen peroxide during Nt+RGEt , Nt+RGLE and Nt+ RGEt+ RGLEt. A change in the binding characteristics of enzyme to membrane or their release from peroxisomes has been proposed as a possible mechanism for the increased activity levels of CAT (Somani and Rayback, 1996). CAT and SOD are considered to be indispensable for the survival of the cell against deleterious effects of hydroperoxides. The combination of SOD and CAT provide an efficient mechanism for removal of free radicals from the cell (Husain et al., 1996; Bhaskar Reddy, 2002). In vitro studies showed that grape juice has significant antioxidant activity and can inhibit oxidation of low density...
lipoprotein (LDL) (Castilla et al., 2006; O’Byrne et al., 2002). In addition to their antioxidant activity, polyphenols also possess many different biological properties. Normally phenolic compounds act by scavenging free radicals and quenching the lipid peroxidative side chain. It has been proposed that hydroxyl and hydroperoxy radicals initiate hydrogen abstraction from a free phenolic substrate to form phenoxy radicals that can rearrange to quinine methide radical intermediates which is excreted via bile (Rukkumani et al., 2005). Similar studies have been reported by several authors. Dani et al., (2007) reported the CAT activity was increased in rats when treated with organic grape juice.

In the current investigation, catalase activity was decreased with advancement of lung tissue. Demaree et al., (1999) reported the decreased aortic CAT activity in old age rats than in young rats. Rao et al., (1990) reported that the CAT activity was decreased in the tissues of liver, brain and kidney with aging. They also reported mRNA levels in the tissues of aged rats, which may result in the decreased activity of the enzyme in aged rats. Malsuo et al., (1992) also reported decreased CAT activity in the liver tissue between, 8, 14 and 32 months aged rats. The rates of mitochondrial superoxide and H₂O₂ generation were found to increase with age in mammals (Sohal et al., 1990; Jhansi Lakshmi, 1998). The increased concentration of LPO products observed in nicotine treated rats is also associated with decreased activity of scavenging enzyme catalase and superoxide dismutase. A decrease in the activities of these enzymes can lead to the excessive availability of superoxides and peroxide radicals. In preset study Nt+RGEt, Nt+RGLE and Nt+RGEt+ RGEt consisting more polyphenolic antioxidant compounds, so that they decreases the LPO and increase the catalase activity.

SUPEROXIDE DISMUTASE (SOD – EC: 1.15.1.6):

In the present study a decrease was absorbed in SOD activity in the lung tissue, due to nicotine treatment. The present results in the current investigation are in consistence with the previous findings. Among the generated free radicals due to nicotine metabolism, superoxide anion is the first derived free radical from nicotine. Thus, increased generation of superoxide radicals caused oxidative stress and damages the lung cells. In fact SOD scavenges the superoxide radicals in the tissues. In addition, the over production of superoxide radicals due to nicotine intoxication implies the over utilization of SOD, this may indicate its low activity under nicotine induced oxidative stress condition. The decrease in SOD activity due to nicotine consumption may impairs the other antioxidant enzyme activities like catalase and glutathione peroxidase. Because the superoxide radicals that are produced in the lung tissue during nicotine metabolism are quickly scavenged to H₂O₂ by the enzyme superoxide dismutase. Under these circumstances, if SOD is not detoxifying the superoxide radical to hydrogen peroxide, there would be deficiency of substrate i.e., H₂O₂ for catalase and glutathione peroxidase enzyme activities. Thus, this kind of situation leads to impair the other antioxidant enzymes in the tissue metabolism.

The results of the present study showed a fall in SOD activity in the lung tissue, in the nicotine treated groups. SOD, dismutate O₂⁻⁻ and the same in turn is a potent inhibitor of CAT (Ashakumari and Vijayammal, 1996). The depletion in SOD activity was may be due to dispose off the free radicals, produced due to nicotine toxicity. Beside this, on nicotine administration, H₂O₂ produced by dismutation of superoxide anion, may have been efficiently converted to O₂ by CAT and the enzyme activities showed a marked reduction. The depletion of antioxidant enzyme activity was may be due to inactivation of the enzyme proteins by nicotine-induced ROS generation, depletion of the enzyme substrates, and/or down-regulation of transcription and translation processes.

In the present study the SOD activity was decreased due to nicotine treatment in the male albino rat in lung tissue. Similar studies have been reported by several authors. Kazim Husain et al., (2001) reported a significant depression of renal SOD activity was observed in nicotine treated rats.
The observed decrease in renal SOD activity may be a consequence of decreased de novo synthesis of enzyme proteins or oxidative inactivation of enzyme protein. Chennaiah et al., (2006) reported due to nicotine treatment SOD activity was decrease in the muscle tissue. The depletion of SOD activity was may be due to dispose of the free radical, produced by the nicotine toxicity. Helen et al., (2000) reported the decreased SOD activity in brain tissue of rat due to nicotine toxicity. Sokkary et al., (2001) reported chronic administration of nicotine the SOD activity was decreased in the rat liver and lung. Chattopadhyay and Chattopadhyay (2008) reported due to nicotine treatment the SOD activity was decreased in ovary tissue. Similar changes in SOD activity was reported in various toxic conditions. Mahendran and Syamala Devi, (2001) reported decrease in SOD activity with 18% ethanol treatment in the hepatic tissue. Somani and Husain, (1997b) reported significant decrease in plasma and hepatic SOD activity with 20% of chronic ethanol treatment. When alcohol is metabolized in the liver by the MEOS pathway, a potentially dangerous byproducts such as, acetaldehyde and cytotoxic free radicals are generated (Temel et al., 2002, Lieber, 2004). Evidences are exist that ethanol intake increases the oxidative stress in the liver (Chen and Cohen, 1995) and its toxicity is associated with elevated s generation of reactive oxygen species (Reinke et al., 1994). Among the generated free radicals due to ethanol metabolism, superoxide anion is the first derived free radical from ethanol. Thus, increased generation of superoxide radicals caused oxidative stress and damages the liver cells. Nordmann, (1994) showed that an acute ethanol load significantly enhanced superoxide generation in rat liver sub-mitochondrial particles.

In the present study lung SOD activity was increased with Nt+RGEt , Nt+RGLE and Nt+ RGEt+ RGLEt in lung tissue of rat. This elevation was more pronounced in Nt+RGEt lung issue of rat. In vitro studies showed that grape juice has significant antioxidant activity and can inhibit oxidation of low density lipoprotein (LDL) (Castilla et al., 2006; O’Byrne et al., 2002). In addition to their antioxidant activity, polyphenols also possess many different biological properties. Normally phenolic compounds act by scavenging free radicals and quenching the lipid peroxidative side chain. It has been proposed that hydroxyl and hydroperoxo radicals initiate hydrogen abstraction from a free phenolic substrate to form phenoxy radicals that can rearrange to quinine methide radical intermediates which is excited via bile (Rukkumani et al.,2005). Dani et al., (2007) reported the SOD activity was increased in rats when treated with organic grape juice. The activities of two major antioxidant enzymes, mitochondria SOD and cytosolic glutathione peroxidase (GSH-Px) were significantly higher in Nt+RGEt+RGLEt animal than the nicotine treated animal. The increased generation of free radicals i.e., superoxide anion radicals would have triggered the induction of SOD enzyme and hence SOD activity was elevated during Nt+RGEt , Nt+RGLE and Nt+ RGEt+ RGLEt. animal. Among the various antioxidant enzymes SOD provides the first line of defense against superoxide radicals, elevated SOD activity may reduce the exposure of the hepatic tissue to superoxide radicals and perhaps hydroxyl radicals formed via the Haber-Weiss reaction (Halliwell and Gutteridge, 1989). In the present investigation increased lung SOD activity during Nt+RGEt , Nt+RGLE and Nt+ RGEt+ RGLEt helps in preventing accumulation of superoxide anion radicals in the lung tissue of rat by converting them to H2O2 which is considered to be an adaptational change by Nt+RGEt , Nt+RGLE and Nt+ RGEt+ RGLEt to mitigate superoxide toxicity.

This study supported a long standing hypothesis that generation of oxygen derived free radicals and other reactive oxidants may be increased in the lung tissue. These results were also agree with previous findings, which reported the decreased SOD activity with advancement of age (Rao et al., 1990). Vohra et al., (2001) reported the decrease in SOD activity in brain regions of 36 months old age guinea pigs. The reported decrease in SOD activity with age may further accelerated the aging process (Carilo et al., 1992). Miquel, (1980) and others postulated that mitochondrial decay is a significant
factor in aging, caused, in jart, by the release of reactive oxygen species (ROS) as byproducts of mitochondrial electron transport. Several authors quoted that during aging, inner mitochondrial membrane being a major intracellular site for the generation of superoxide anion radicals, which are toxic to the body (Yan and Sohal, 1998; Bejma and Ji, 1999). Mitochondria are the targets of oxidant byproducts. The steady state and the percentage of oxygen converted to superoxide anion radical increased with age (Sohal et al., 1995; Perez et al., 1998; Sastre et al., 2000). SOD activity may also reduce in nicotine rat due to over utilization of SOD to counter the induced free radicals in the lung tissue. Moderate Nt+RGLE, Nt+RGEt and Nt+ RGEt+ RGLEt produce a beneficial effect by decreasing the levels of oxidative stress markers in the mitochondria of lung and prevent the associated decrease of antioxidant enzyme activities in the same organ. In the combination treatment (Nt+RGLEt+RGLEt) observed upregulation of antioxidant enzyme activity, decrease in oxidative stress and increased activity of mitochondrial electron transfer enzymes, are logically related.

GLUTATHIONE PEROXIDASE (GSH-PX – EC: 1.11.1.9):

The present study reveals that the activity of glutathione peroxidase was decreased in nicotine treated rats in the lung tissue. Similar studies have been reported by several authors due to nicotine, hepatic GPx activity was decreased in mice (Vijayan and Helen, 2007), Wistar rats (Avti et al., 2006). The decreased GSH-Px activity in the current investigation may disturb the glutathione (GSH) homeostasis in the liver cell and ultimately it leads to the damage of hepatocytes. Several studies have been reported by varies authors in different toxic conditions. Kazeem et al., (2011) reported the GSH-Px activity was decreased in the hepatic tissue. Recently Das and Vasudevan, (2005a) reported the decreased GSH-Px activity in the liver homogenate with a series of ethanol treatments like, 0.8g, 1.2g, 1.6g and 2.0g / kg body weight for a period of 4 weeks, our results also agreement with this. Decrease in GSH-Px activity may be due to either free radical dependant inactivation of enzyme or depletion of its co-substrate i.e., GSH and NADPH in the nicotine treatments. Similar studies, Santanu Kar Mahapatra et al., (2008) reported smoking decreases the Glutathione peroxidase in the serum of mans. GPx works nonspecifically to scavenge and decompose excess hydro peroxides including H2O2, which may prevalent under oxidative stress (Somani et al., 1996). In this study, decreased GPX activity seems to indicate the smoking induced oxidative stress. The decreased level of GSH and activity of GSH-dependent enzymes i.e. GPX, GR.

The results obtained from the present study reveals that red grape extract treatment and red grape leaf extract treatment enhanced the lung tissue glutathione peroxidase activity of rats when compared to their respective controls. GSH-Px activity increased in heart tissue at a high level indicating an efficient elimination of organic peroxides (Husain and Somani, 1997a). By accepting an electron from the peroxide (or donating a hydrogen ion), GSH is oxidized to half of disulphide (GSSH). This reaction is catalyzed by Se-containing GSH-Px enzyme. The elevation of glutathione peroxidase activity due to Nt+RGEt, Nt+RGLE and Nt+ RGEt+ RGLEt suggests an increased capacity to handle hydroperoxides in the lung tissue. It appears that Nt+ RGEt+ RGLEt provide the required substrate for a high increase in the GSH-Px activity. Similar to the results obtained for SOD in this studies, the Nt+ RGEt+ RGLEt induced upregulation of GSH-Px activity, appears that SOD and GSH-Px are actively involving in decomposing the oxygen derived free radicals in the lung tissue of rat. The reason for higher GSH-Px activity in Nt+ RGEt+ RGLEt rats may be due to higher production of ROS and increased activity of SOD in the rats. However, the available reports suggest the fact that higher SOD activity may be responsible in part, for higher GSH-Px activity (Ray and Husain, 2002).

The specific activity of GSH-Px was remarkably decreased in nicotine rats compared to the N+RGEt, Nt+RGLE and Nt+ RGEt+ RGLEt rats. The GSH-Px activity was decreased in different
animals and different tissues reported by varies authors. The decrease in lung tissue GSH-Px activity in the current study was supported by earlier reports also. Vohra et al., (2001) reported both cytosolic and mitochondrial GSH-Px activities were decreased in different brain regions of 32 months old guinea pigs. There appears to be an inter relationship between the activity of SOD and GSH-Px. The deficiency of SOD has been shown to be associated with decrease in the activity of GSH-Px vice-versa (Michiels et al., 1994). Both Se-dependent and Se-independent GSH-Px were decreased in nicotine rats compared to the Nt+RGEt, Nt+RGL and Nt+ RGEt+ RGLEt rats. The production of free radicals and other reactive oxygen species are believed to increase with age in most tissues (Lawler and Powers, 1998). These increased -free radicals especially hydrogen peroxide (H2O2) may be responsible for the low activity of lung glutathione peroxidase in rats. The decreased SOD activity in old rats which was also reported in the present study may also be responsible for the lower GSH-Px activity, because of their interrelation in detoxifying the toxic radicals. In the lung tissue decrease GSH-Px activity was augmented with Nt+RGEt, Nt+RGL and Nt+ RGEt+ RGLEt compared to nicotine rat. Thus, Nt+RGEt, Nt+RGL and Nt+ RGEt+ RGLEt play a prominent role in preventing nicotine induced oxidative stress by promoting the GSH-Px activity in lung tissue.

In the present investigation the impact of Nt+RGEt, Nt+RGL and Nt+ RGEt+ RGLEt on nicotine induced oxidative stress has been studied in the lung tissue with reference to antioxidant enzymes system by taking male albino rat as an experimental model. Nicotine +Red grape + Red grape leaf extract treatment (Nt+ RGEt+ RGLEt) enhances the ability to release energy by effective utilization of various metabolic fuels including stored ones, due to improved oxidative capacity. The survey of literature revealed that the reports on the effect of Nt+RGEt, Nt+RGL and Nt+ RGEt+ RGLEt, nicotine is limited. The activity of GPx levels more increase in the combination treatment Nt+ RGEt+ RGLEt than the other experimental animals in the lung tissue this is due to the antioxidant properties of both the Nt+RGEt, Nt+RGL and Nt+ RGEt+ RGLEt.

GLUTATHIONE (GSH – EC NO: 1.6.4.2) CONTENT:

In the present study we found that the administration of nicotine showing the decreased in GSH activity in the lung tissue. Similar studies have been reported by several authors. Chennaiah et al., (2006) reported due to nicotine treatment GSH activity was decrease in the muscle tissue. Sokkary et al., (2007) reported chronic administration of nicotine the GSH activity was decreased in the rat lung, kidney and liver. Saner et al., (2005) reported chronic administration of nicotine the GSH activity was decreased in the rat tissues. Nicotine is oxidized primarily into its metabolite cotinine in the liver (Sastry et al., 1995).

A similar change in GSH activity was reported in various toxic conditions by varies authors in varies tissues. Chronic ethanol consumption significantly depleted the GSH concentration in the hepatic tissue of different mammals like, rats (Mahendran and shyamala Devi, 2001; Kim et al., 2003) mice (Zhou et al., 2002) and man (Kannan et al., 2004; Das and Vasudevan, 2005a). One important antioxidant that is affected by alcohol is glutathione. Liver cells contain an abundance of glutathione, especially with in structures called mitochondria, where most of each cell’s energy is generated. The key enzymes in mitochondria are certain cytochromes that are integral components of inner mitochondrial membrane. Glutathione is not synthesized in mitochondria; adequate concentrations of glutathione are maintained there by active transport form the cytoplasm through the mitochondrial membrane. Alcohol interferes with the transport of GSH through membranes, leading to its depletion from mitochondria. The resulting GSH deficiency may permit mitochondrial damage and cell death by means of unimpeded lipid peroxidation (Maher, 1997; Zhou et al., 2002). The decrease in GSH concentration in mitochondria would thus be highly responsible for ROS generation and the structural
and functional damage in this organelle (Kannan et al., 2004). The decrease in GSH/ CSSG ratio in the hepatic tissue of ethanol fed rats and inhibition of GR activity are indicative of ethanol induced oxidative stress in the hepatic tissue. Depletion of hepatic GSH by chronic ethanol ingestion induced oxidative stress is well reputed.

In the present study the GSH activity was increased in both groups supplemented with Nt+RGEt, Nt+RGLE and Nt+ RGEt+ RGLEt in the lung tissue of rat. Moreover, the percent elevation of GSH was more pronounced in nicotine treated rat compared to Nt+ RGEt+ RGLEt rats. Increased GSH content with Nt+ RGEt+ RGLEt may also due to the increase in the synthesis of precursors for GSH formation and increase the γ-Glutamyl-Cystineglycine enzyme, which is very essential for the GSH. The synthesis and degradation of GSH is referred as the γ-Glutamyl cycle. This cycle small responsible for the enhanced GSH concentration in the lung tissue with Nt+ RGEt+ RGLEt traded rat.

Nicotine treated rat an alteration in the levels of reduced glutathione seems to be very complicated. Decreased tissue concentrations of GSH have been reported in several diseased states and are associated with an increase risk to oxidative stress. GSH decrease may be due to increased oxidation of GSH or decreased in the synthesis of GSH and low decreased availability of precursors for GSH formation. Low glutathione reductase activity may also contribute to the lower levels of GSH in the tissues. Vohra et al., (2001) reported the decreased glutathione peroxides and glutathione reductase activities in old age animals, indicate inadequate concentrations of GSH for their action in the tissues.

The decreased antioxidants with nicotine treatment were recovered with combination treatment in both Nt+RGEt, Nt+RGLE and Nt+ RGEt+ RGLEt traded rats. The combination Nt+ RGEt+ RGLEt rats has the beneficial effect by enhancing the decreased antioxidants in the lung tissue. These results clearly indicate that the combination treatment for a period of 2 month would provide the favorable, condition to the cells by decrease the nicotine and improving their antioxidant aging caused oxidative stress capacity and decreased the nicotine caused oxidative stress conditions in the lung tissue.

CONCLUSION:

In the present study all the antioxidant enzymes (CAT, SOD, GSH-Px and GSH), the upregulation was found with response of combination (Nt+RGEt+REGLEt) in the male albino rat. In the present study than the leaf extract is beneficial than the is beneficial for human being.

REFERENCES

11) Caponnetto, Pasquale; Campagna, Davide; Papale, Gabriella; Russo, Cristina; Polosa and Riccardo (2012)."The emerging phenomenon of electronic cigarettes". Expert Review of Respiratory Medicine. 6 (1): 63–74. doi:10.1586/ers.11.92. ISSN 1747-6348. PMID 22283580.

