α*-closed sets in bitopological spaces

Veronica Vijayan, Associate Professor in Mathematics, Nirmala College , Coimbatore.

A.Abarna, Department of Mathematics, Nirmala College , Coimbatore.

ABSTRACT

In this paper we introduce α^* -closed sets in bitopological spaces. Properties of this sets are investigated and we introduce seven new bitopological spaces namely, (i,j)- T_{α}^* , (i,j)- T_{α}^*

Key words: (i,j)- α^* -closed sets, (i,j)- T_{α}^* spaces, (i,j)-

1.INTRODUCTION

A triple (X, τ_1, τ_2) where X is a non-empty set and τ_1 and τ_2 are topologies in X is called a bitopological space and Kelly[7] initiated the study of such spaces. In 1985, Fukutake[3] introduced the concepts of g-closed sets in bitopological spaces. Levine [9] introduced the class of generalized closed sets, a super class of closed sets in 1970. M.K.R.S. Veerakumar[17] introduced and studied the concepts of g*-closed sets and g*-continuity in topological spaces. Sheik John. M and Sundaram. P[14] introduced and studied the concepts of g*-closed sets in bitopological spaces in 2002. Pauline Mary Helen, Ponnuthai Selvarani and Veronica Vijayan [13] introduced g**-closed sets in topological spaces in 2012. The purpose of this paper is to introduce the concepts of (i,j)- α *-closed sets, (i,j)- T_α * spaces, (i,j)- T_α * s

2.PRELIMINARIES

Definition 2.1

A subset A of a topological space (X,τ) is said to be

- 1. a pre-open set[10] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$
- 2. a semi-open [8] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$
- 3. a regular open set[10] if A=int(cl(A))

- 4. a generalized closed set[9] (briefly g-closed set) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .
- 5. a α -open set [11] if $A \subseteq int(cl(int(A)))$ and an α -closed if $cl(int(cl(A))) \subseteq A$
- 6. a semi-preopen set[1] if $A \subseteq cl(int(cl(A)))$ and a semi preclosed set if $int(cl(int(A))) \subseteq A$.
- 7. a α^* -closed set [18] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) .

If A is a subset of X with topology τ , then the closure of A is denoted by τ -cl(A) or cl(A), the interior of A is denoted by τ -int(A) or int(A) and the complement of A in X is denoted by A^c.

For a subset A of (X, τ_i, τ_j) , τ_j -cl(A)(resp. τ_i -int(A)) denotes the closure (resp.interior)of A with respect to the topology τ_i .

Definition 2.2

A subset A of a topological space (X, τ_i, τ_i) is called

- 1. (i,j) -g-closed[3] if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is open in τ_i .
- 2. (i,j) –rg-closed [12] if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i
- 3. (i,j) –gpr-closed [5] if τ_i -pcl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i .
- 4. (i,j) $-\omega g$ -closed [4] if τ_i -cl $(\tau_i$ -int(A)) $\subseteq U$ whenever $A \subseteq U$ and U is open in τ_i .
- 5. (i,j) $-\omega$ -closed [6] if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is semi open in τ_i .
- 6. (i,j)-gs-closed[16] if τ_i -scl(A) \subseteq U whenever A \subseteq U and U is open in τ_i .
- 7. (i,j)-gsp-closed[2] if τ_i -spcl(A) \subseteq U whenever A \subseteq U and U is open in τ_i
- 8. (i,j)- αg -closed[16] if τ_i - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ_i

Definition 2.3

A bitopological space (X, τ_i, τ_i) is called

- 1. an (i,j)- $T_{1/2}$ space[3] if every (i,j)-g-closed set is τ_i -closed.
- 2. an (i,j)-T_bspace [16] if every (i,j)-gs-closed set is τ_i -closed.
- 3. an (i,j)-T_dspace [16] if every (i,j)-gs-closed set is (i,j)-g-closed.
- 4. an (i,j)- αT_d space [3] if every (i,j)- αg -closed set is (i,j)-g-closed.
- 5. an (i,j)- αT_b space [16] if every (i,j)- αg -closed set is τ_j -closed.

3.(i,j)- α *-closed sets

We introduce the following definition.

Definition 3.1 A subset A of a topological space (X,τ_1,τ_2) is said to be an (i,j)- α^* -closed set if

 τ_{j} -cl(A) \subseteq U whenever A \subseteq U and U is α - open in τ_{i} . We denote the family of all (i,j)- α *-closed sets in (X,τ_{1},τ_{2}) by α *C(i,j).

Remark 3.2 By setting $\tau_1 = \tau_2$ in definition (3.1), a (i,j)- α^* -closed set is a α^* -closed set.

Proposition 3.3 Every τ_i -closed subset of (X,τ_1,τ_2) is (i,j)- α^* -closed.

The converse of the above proposition is not true as seen in the following example.

Example 3.4 Let $X = \{a,b,c\}$, $\tau_1 = \{\emptyset, \{c\}, \{a,c\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, X\}$. Then the set $A = \{b\}$ is $(1,2) - \alpha^*$ -closed but not τ_2 -closed in (X,τ_1,τ_2) .

Proposition 3.5 If A is $(i,j)-\alpha^*$ -closed and $\tau_i-\alpha$ – open, then A is $\tau_i-\alpha$ –closed.

Proposition 3.6 If A is both $(i,j)-\alpha^*$ -closed and $\tau_i-\alpha$ - open ,then it is τ_i -closed.

Proposition 3.7 In a bitopological space (X,τ_1,τ_2) every $(i,j)-\alpha^*$ -closed set is

- (i) (i,j)-g-closed
- (ii) (i,j)-rg-closed (iii) (i,j)-gpr-closed (iv) (i,j)-ωg-closed.

The following examples show that the converse of the above proposition is not true.

Example 3.8Let $X = \{a,b,c\}$, $\tau_1 = \{\emptyset,\{a\},X\}$ and $\tau_2 = \{\emptyset,\{a\},\{a,b\},X\}$. Then the set $A = \{b\}$ is (1,2)-g-closed but not (1,2)- α^* -closed.

Example 3.9Let $X = \{a,b,c\}$, $\tau_1 = \{\emptyset, \{a,b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, X\}$. Then the set $A = \{b\}$ is (1,2)-rg-closed but not (1,2)- α *-closed.

Example 3.10 Let $X = \{a,b,c\}$, $\tau_1 = \{\emptyset,\{c\},\{a,b\},X\}$ and $\tau_2 = \{\emptyset,\{a\},X\}$. Then the set $A = \{c\}$ is (1,2)-gpr-closed but not (1,2)- α^* -closed.

Example 3.11Let $X = \{a,b,c\}$, $\tau_1 = \{\emptyset,\{a,b\},X\}$ and $\tau_2 = \{\emptyset,\{a\},X\}$. Then the set $A = \{a\}$ is (1,2)- ω g-closed but not (1,2)- α *-closed.

Theorem 3.12 Every (i,j)- α^* -closed set is a (i,j)-gs-closed set.

The converse of the above theorem need not be true.

Example 3.13Let $X = \{a,b,c\}$, $\tau_1 = \{\emptyset,\{a\},X\}$ and $\tau_2 = \{\emptyset,\{a\},\{a,b\},X\}$. Then the set $A = \{b\}$ is (1,2)-gs-closed but not (1,2)- α^* -closed.

Theorem 3.14 Every (i,j)- α^* -closed set is a (i,j)-gp-closed set.

The converse of the above is not true as seen in the following example.

Example 3.15 Let $X = \{a,b,c\}$, $\tau_1 = \{\emptyset,\{c\},\{a,b\},X\}$ and $\tau_2 = \{\emptyset,\{a\},X\}$. Then the set $A = \{b\}$ is (1,2)-gp-closed but not (1,2)- α *-closed.

Theorem 3.16 Every (i,j)- α *-closed set is a (i,j)-g α -closed set.

The converse of the above theorem need not be true.

Example 3.17 Let $X = \{a,b,c\}$, $\tau_1 = \{\emptyset,\{a,b\},X\}$ and $\tau_2 = \{\emptyset,\{a\},X\}$. Then the set $A = \{b\}$ is (1,2)-gaclosed but not (1,2)- α^* -closed.

Theorem 3.18 Every $(i,j)-\alpha^*$ -closed set is a $(i,j)-\alpha g$ -closed set.

The following example support that the converse of the above theorem is not true.

Example 3.19Let $X = \{a,b,c\}$, $\tau_1 = \{\emptyset,\{a,b\},X\}$ and $\tau_2 = \{\emptyset,\{a\},X\}$. Then the set $A = \{b\}$ is (1,2)- αg -closed but not (1,2)- α^* -closed.

Theorem 3.20 Every $(i,j)-\alpha^*$ -closed set is a (i,j)-gsp-closed set.

The converse of the above is not true as seen in the following example.

Example 3.21 Let $X = \{a,b,c\}$, $\tau_1 = \{\emptyset, \{a,b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, X\}$. Then the set $A = \{b\}$ is (1,2)-gsp-closed but not (1,2)- α *-closed.

Theorem 3.22 Every (i,j)- ω -closed set is a (i,j)- α *-closed set.

The converse of the above is not true as seen in the following example.

Example 3.23Let $X=\{a,b,c\}$, $\tau_1=\{\emptyset,\{c\},\{a,c\},X\}$ and $\tau_2=\{\emptyset,\{a\},X\}$. Then the $A=\{b\}$ is (1,2)- α^* -closed but not (1,2)- ω -closed.

Proposition 3.24 If $A,B \in \alpha^*C(i,j)$ then $A \cup B \in \alpha^*C(i,j)$

Remark 3.25The intersection of two (i,j)- α^* -closed set need not be (i,j)- α^* -closed as seen from the following example.

Example 3.26Let $X = \{a,b,c\}$, $\tau_1 = \{\emptyset, \{a\}, \{b,c\}, X\}$ and $\tau_2 = \{\emptyset, \{b\}, \{b,c\}, \{c\}, \{a,c\}, X\}$. Let $A = \{a,b\}$ and $B = \{b,c\}$. Then A and B are $(2,1)-\alpha^*$ -closed sets but $A \cap B = \{b\}$ is not a $(2,1)-\alpha^*$ -closed set.

Remark 3.27 α *C(1,2) is generally not equal to α *C(2,1)

Example 3.28 In example (3.26), $A=\{b\} \not\in \alpha^*C(2,1)$ but $A=\{b\} \in \alpha^*C(1,2)$.

Hence $\alpha *C(2,1) \neq \alpha *C(1,2)$

Proposition 3.29 If $\tau_1 \subseteq \tau_2$ in (X, τ_1, τ_2) , then $\alpha * C(1,2) \subseteq \alpha * C(2,1)$

Proposition 3.30 If A is a (i,j)- α^* -closed, then τ_i -Cl(A)\A contains no non-empty τ_i - α -closed set.

Proof Let A be a (i,j)- α *-closed set and let F be a τ_i - α -closed set such that $F \subseteq \tau_j$ -Cl(A)\A .Since $A \in \alpha$ *C(i,j),we have τ_i -Cl(A) \subseteq $F^c : F \subseteq (\tau_i$ -Cl(A))^c and hence $F \subseteq (\tau_i$ -Cl(A) $\cap ((\tau_i$ -Cl(A))^c= \emptyset . $: F = \emptyset$

The converse of the above proposition is not true as seen in the following example.

Example 3.31 Let $X = \{a,b,c\}, \tau_1 = \{\emptyset,\{b\},\{c\},\{b,c\},\{a,c\},X\} \text{ and } \tau_2 = \{\emptyset,\{a\},\{b,c\},X\}$

Let $A=\{b\}$. Then τ_2 -cl(A)\ $A=\{c\}$ is not τ_1 - α -closed.i.e. τ_2 -cl(A)\A contains no nonempty τ_1 - α -closed set but $A=\{b\}$ is not (1,2)- α *-closed.

Theorem 3.32 If A is (i,j)- α^* -closed in (X, τ_i, τ_j) , then A is τ_j -closed if and only if τ_j -Cl(A)\A is τ_i - α -closed.

Proof: Necessity: If A is τ_i -closed then τ_i -Cl(A)=A (i.e) τ_i -Cl(A)\A = \emptyset which is τ_i - α -closed.

Sufficiency:If τ_j -Cl(A)\A is τ_i - α -closed, since A is (i,j)- α *-closed by proposition 3.29, τ_j -Cl(A)\A contains no non empty τ_i - α -closed set. $\dot{\tau}_j$ -Cl(A)\A = \emptyset and hence A= τ_j -Cl(A) and A is τ_j -closed.

Theorem 3.33 If A is an (i,j)- α^* -closed set of (X, τ_i, τ_j) such that $A \subseteq B \subseteq \tau_j$ -Cl(A), then B is also an (i,j)- α^* -closed set of (X, τ_i, τ_j) .

Proof: Let A be a (i,j)- α^* -closed set. Let U be a τ_i - α -open set such that B \subseteq U then A \subseteq B \subseteq U. Then

 τ_i -Cl(A) \subseteq U, since A is (i, j)- α *-closed.B \subseteq τ_i -Cl(A) \Rightarrow τ_i -Cl(B) \subseteq τ_i -Cl(A) \subseteq U, \vdots τ_i -Cl(B) \subseteq U

∴ B is a (i,j)- α *-closed set.

Proposition 3.34 For each element x of (X, τ_1, τ_2) , $\{x\}$ is either τ_i - α -closed or X- $\{x\}$ is (i,j)- α *-closed.

The following figure gives all the above results we have proved.

where $A \longrightarrow B$ represents A implies B and A $\longrightarrow B$ represents A does not imply B.

4. Applications of $(i,j)-\alpha^*$ -closed sets

As applications of (i,j)- α^* -closed sets, we introduce seven new bitopological spaces, (i,j)- T_{α}^* space, (i,

We introduce the following definitions.

Definition 4.1A bitopological space (X, τ_1, τ_2) is said to be an (i,j)- T_{α}^* space, if every (i,j)- α^* -closed set is τ_j -closed.

Definition 4.2 A bitopological space (X, τ_1, τ_2) is said to be an (i,j)- $_{\alpha g}T_{\alpha}^{\ *}$ space, if every (i,j)- αg -closed set is (i,j)- $\alpha *$ -closed.

Definition 4.3 A bitopological space (X, τ_1, τ_2) is said to be an (i,j)- $_{gs}T_{\alpha}^{*}$ space, if every (i,j)-gs-closed set is (i,j)- α^{*} -closed.

Definition 4.4 A bitopological space (X, τ_1, τ_2) is said to be an (i,j) - ${}_{g}T_{\alpha}^{*}$ space, if every (i,j)-g-closed set is (i,j)- α^{*} -closed.

Definition 4.5 A bitopological space (X, τ_1, τ_2) is said to be an (i,j) - $_{gsp}T_{\alpha}^*$ space, if every (i,j)-gsp-closed set is (i,j)- α^* -closed.

Definition 4.6A bitopological space (X, τ_1, τ_2) is said to be an (i,j) - $_{gp}T_{\alpha}^{\ *}$ space, if every (i,j)-gp-closed set is (i,j)- α^* -closed.

Definition 4.7A bitopological space (X, τ_1, τ_2) is said to be an (i,j) - $_{gpr}T_{\alpha}^{\ \ \ \ }$ space, if every (i,j)-gpr-closed set is (i,j)- α^* -closed.

Theorem 4.8 Every (i,j)- $T_{1/2}$ space is a (i,j)- T_{α}^* space.

The converse of the above theorem is not true.

Example 4.9 In example (3.8), (X, τ_1, τ_2) is a (1,2)- T_{α}^* space, since all the (i,j)- α^* -closed sets are τ_j -closed. Since A={a,b}is (1,2)-g-closed but not τ_2 -closed,it is not a (1,2)- $T_{1/2}$ space.

Theorem 4.10 Every (i,j)- T_b space is a (i,j)- T_{α}^* space.

The following example shows that the converse of the above theorem is not true.

Example 4.11 In example (3.8), we have proved that the (i,j)- α *-closed sets are X, \emptyset ,{b,c} which are τ_j -closed.Hence (X, τ_1 , τ_2) is a (1,2)- T_{α} * space. Since A={a,b}is (1,2)-gs-closed but not τ_2 -closed. Hence (X, τ_1 , τ_2) is not a (1,2)- T_b space.

Theorem 4.12 A space which is both (i,j)- ${}_{\alpha}T_{d}$ and (i,j)- ${}_{1/2}$ is a (i,j)- ${}_{\alpha}T_{\alpha}^{*}$ space.

Theorem 4.13 Every (i,j)- $_{\alpha}T_{b}$ space is a (i,j)- T_{α}^{*} space.

The following example shows that the converse of the above theorem is not true.

Example 4.14 In example (3.8), (X, τ_1, τ_2) is a (1,2)- T_{α}^* space. Since A={b} is a (1,2)- α g-closed but not τ_2 -closed. Hence (X, τ_1, τ_2) is not a (1,2)- T_{α}^* space.

Theorem 4.15 Every (i,j)- T_b space is a (i,j)- ${}_{gs}T_{\alpha}^{\ *}$ space.

The converse of the above theorem is not true as seen in the following example.

Theorem 4.16 In example (3.31), (X, τ_1, τ_2) is a (i,j)- $_{gs}T_{\alpha}^*$ space. It is not a (i,j)- T_b space, since $A=\{a,b\}$ is (1,2)-gs-closed but not τ_2 -closed.

Theorem 4.17 Every (i,j)- ${}_{\alpha}T_{b}$ space is a (i,j)- ${}_{\alpha g}T_{\alpha}^{*}$ space.

The converse of the above theorem is not true as seen in the following example.

Example 4.18 In example (3.31), (X, τ_1, τ_2) is a (1,2)- $\alpha_g T_\alpha^*$ space ,since every (i,j)- αg -closed set in it is (i,j)- α^* -closed. Since $A=\{a,b\}$ is a (1,2)- αg -closed but not τ_2 -closed, (X, τ_1, τ_2) is not a (1,2)- αT_b space.

Theorem 4.19 Every (i,j)- $T_{1/2}$ space is a (i,j)- ${}_{g}T_{\alpha}^{*}$ space.

The following example shows that the converse of the above theorem is not true.

Example 4.20 In example (3.4), we have proved that the (i,j)-g-closed sets are X, \emptyset ,{b},{a,b},{b,c} which are (i,j)- α *-closed in (X, τ_1 , τ_2),where X={a,b,c}, τ_1 ={ \emptyset ,{c},{a,c},X} and τ_2 ={ \emptyset ,{a},X}. A={b} is (1,2)-g-closed but not τ_2 -closed .Hence (X, τ_1 , τ_2) is not a (1,2)- $T_{1/2}$ space.

Theorem 4.21 A space is both (i,j)- ${}_{g}T_{\alpha}^{*}$ space and (i,j)- T_{α}^{*} space if and only if it is a (i,j)- $T_{1/2}$ space.

Theorem 4.22 A space (X, τ_i, τ_j) which is both (i,j)- ${}_{\alpha}T_d$ and (i,j)- $T_{1/2}$ is a (i,j)- T_{α}^* space.

Theorem 4.23 A space (X, τ_i, τ_j) which is both (i,j)- $g_s T_\alpha^*$ space and (i,j)- T_α^* space is a (i,j)- T_b space.

 $\textbf{Theorem 4.24} \quad \text{A space } (X,\,\tau_i,\,\tau_j) \quad \text{which is both } (i,j) - {}_{\alpha g} T_{\alpha}^{\ *} \text{ space and } (i,j) - T_{\alpha}^{\ *} \text{ space is a } (i,j) - {}_{\alpha} T_b \text{ space.}$

Theorem 4.25 Every (i,j)- $_{\alpha g}T_{\alpha}^{\ *}$ space is a (i,j)- $_{g}T_{\alpha}^{\ *}$ space.

The following example shows that the converse of the above theorem is not true.

Theorem 4.27 Every (i,j)- $_{gs}T_{\alpha}^{\ *}$ space is a (i,j)- $_{g}T_{\alpha}^{\ *}$ space.

The converse of the above theorem is not true as seen in the following example.

Example 4.28 Consider example 4.26, (X, τ_1, τ_2) is a (1,2)- $_gT_\alpha^*$ space.But it is not a (1,2)- $_{gs}T_\alpha^*$ space,since A={a} is (1,2)-gs-closed but not (1,2)- α^* -closed.

Theorem 4.29 Every (i,j)- $_{gp}T_{\alpha}^{\ *}$ space is a (i,j)- $_{g}T_{\alpha}^{\ *}$ space.

The converse of the above theorem is not true as seen in the following example.

Example 4.30 In example 3.15, (X, τ_1, τ_2) is a (1,2)- $_gT_\alpha^*$ space. But it is not a (1,2)- $_{gp}T_\alpha^*$ space, since $A=\{b\}$ is (1,2)-gp-closed but not (1,2)- α^* -closed.

Theorem 4.31 Every (i,j)- $_{gsp}T_{\alpha}^{\ *}$ space is a (i,j)- $_{g}T_{\alpha}^{\ *}$ space.

The converse of the above theorem is not true as seen in the following example.

Example 4.32 Consider example 3.10, where $X = \{a,b,c\}, \tau_1 = \{\emptyset, \{c\}, \{a,b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, X\}$.

 (X, τ_1, τ_2) is a (1,2)- ${}_gT_\alpha^*$ space. But it is not a (1,2)- ${}_{gsp}T_\alpha^*$ space, since A={b} is (1,2)-gsp-closed but not (1,2)- α^* -closed .

Theorem 4.33 Every (i,j)- $_{gpr}T_{\alpha}^{\ *}$ space is a (i,j)- $_{g}T_{\alpha}^{\ *}$ space.

The following example shows that the converse of the above theorem is not true.

Example 4.34 Consider example 3.10, where $X = \{a,b,c\}, \tau_1 = \{\emptyset, \{c\}, \{a,b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, X\}$.

 (X, τ_1, τ_2) is a (1,2)- $_gT_{\alpha}^{\ *}$ space. But it is not a (1,2)- $_{gpr}T_{\alpha}^{\ *}$ space,since A={c} is (1,2)-gpr-closed set but not (1,2)- α^* -closed .

All the results we have proved in this section can be represented by the following figure:

REFERENCES

- [1] Andrijevic.D, Semi-pre open sets, Mat. vesnik, 38(1)(1986), 24-32.
- [2] Dontchev.J,On generalizing semi-preopen sets,Mem.Fac.Sci.Kochi.Univ.Ser.A.Math.,16(1995),35-48.
- [3] Fukutake.T,Bull,Fukuoka Univ.Ed.Part III,35(1985),19-28.
- [4] Fukutake.T,P.Sundaran and N.Nagaveni, Bull,Fukuoka Univ.Ed.Part III,48(1999),33-40.
- [5] Fukutake.T,P.Sundaran and M.Sheik John, Bull,Fukuoka Univ.Ed.Part III,51(2002),1-9.
- [6] Fukutake.T,P.Sundaran and M.Sheik John,ω-closed sets,ω-open sets and ω-continuity in bitopological spaces Bull,Fukuoka Univ.Ed.Part III,51(2002),1-9.
- [7] Kelley.J.C,proc,London.Math,Sci,13(1963),71-89.
- [8] Levine.N,Semi-open sets and Semi continuity in topological spaces,Amer,Math.Monthly,70(1963),36-41
- [9] Levine.N,Generalized closed sets in topology,Rend,Circ.Math.Palermo,19(2)(1970),89-96.
- [10] Mashhour.A.S,M.E.Abd El-Monsef and S.N.El-Deeb,On Pre-continuous and weak-pre continuous mappings,proc.Math and Phys.Soc.Egypt,53(1982),47-53.
- [11] Njastad.O,On some classes of nearly open sets,Pacific J.Math.,15(1965),961-970.
- [12] Palaniappan.N and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J, 33(2)(1993), 211-219.
- [13] Pauline Mary Helen.M,Ponnuthai Selvarani,Veronica vijayan,g**-closed sets in topological spaces,IJMA,3(5)(2012),1-15.
- [14] Sheik John.M and P.Sundaram,g*-closed sets in bitopological spaces,Indian J.Pure,Appl.Math,35(1) (2004),71-80.
- [15] Stone.M, Trans. Amer. Math. Soc, 41(1937), 374-481.
- [16] Tantawy.O.A.El and H.M.Abu Donia, Generalized separation Axioms in bitopological spaces. The Arabian Jl for science and Engg. Vol. 30. No. 1A(2005), 117-129.
- [17] Veerakumar.M.K.R.S,Mem.Fac.Sci.Kochi.Univ(Math),21(2000),1-19.
- [18] Veronica Vijayan, Priya.F., \alpha*-closed sets in topological spaces, IJMA (communicated).