A STUDY ON $(i,j) - \Psi^*, (i,j) - \overline{\Psi}$ and $(i,j) - \overline{\Psi}^*$ -CLOSED SETS IN BITOPOLOGICAL SPACES

VERONICA VIJAYAN

Associate Professor in Mathematics, Nirmala College for Women (Autonomous),

Coimbatore-18, India.

R.NITHIYAKALYANI

Department of Mathematics, Nirmala College for Women (Autonomous),

Coimbatore-18, India.

ABSTRACT

In this paper we introduce new classes of sets $(i,j) - \Psi^*$, $(i,j) - \overline{\Psi}$ and $(i,j) - \overline{\Psi}^*$ - Closed Sets in Bitopological Spaces. Properties of these sets are investigated and we introduce nine new spaces namely, (i,j)- $T_{\overline{\Psi}}$ -space, (i,j)- $T_{\overline{\Psi}^*}$ -space.

Keywords: $(i,j) - \Psi^*$, $(i,j) - \overline{\Psi}$ and $(i,j) - \overline{\Psi}^*$ - closed Sets, $(i,j) - T_{\overline{\Psi}}$, $(i,j) - T_{\overline{\Psi}^*}$, $(i,j) - T_{$

1. INTRODUCTION

A triple (X, τ_1, τ_2) where X is a non empty set and τ_1 and τ_2 are topologies in X is called a bitopological space and Levine[10] introduced the class of generalized closed sets, a super class of closed sets in 1970. Purpose of this paper is to introduce the concept of $(i,j) - \Psi^*$ closed sets, $(i,j) - \overline{\Psi}$ closed sets and $(i,j) - \overline{\Psi}^*$. Closed Sets, $(i,j) - T_{\overline{\Psi}}$, $(i,j) - T_{\overline{\Psi}^*}$, (i

2. PRELIMINARIES

Definition 2.1: A subset A of a topological space (X,τ) is called

- 1. a semi open set [9] if $A \subseteq cl(int(A))$ and a semi closed set if $int(cl(A)) \subseteq A$
- 2. a generalized closed set [10] (briefly g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .
- 3. a generalized semi closed set[2](briefly gs-closed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .
- 4. a α -open set[13] if A \subseteq int(cl(int(A))) and a α -closed set if cl(int(cl(A))) \subseteq A
- 5. a generalized α closed set[12](briefly $g\alpha$ -closed) if α cl(A) \subseteq Uwhenever A \subseteq U and U is α -open in (X, τ) .

- 6. a semi generalized closed set[3](briefly sg-closed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in (X,τ) .
- 7. A α generalised closed set[11] (briefly α g-closed) if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- 8. a g*-closed set[15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X,τ) .
- 9. a ψ -closed set[16] if scl(A) \subseteq U whenever A \subseteq U and U is sg-open in (X, τ).
- 10. a g*s-closed set[4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs-open in (X,τ) .
- 11. a Ψ^* -closed set [17] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is ψ -open in (X, τ) .
- 12. a $\overline{\Psi}$ -closed set [17] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open in (X, τ) .
- 13. a $\overline{\Psi}^*$ -closed set [17] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\overline{\Psi}$ -open in (X, τ) .

If A is a subset of X with topology τ , then the closure of A is denoted by τ -cl(A) or cl(A). The interior of A is denoted by τ -int (A) or int (A) and the complement of A in X is denoted by A^c

Definition 2.2: A subset A of a bitopological space (X, τ_i, τ_j) is called

- 1. (i,j)-g-closed [7] if τ_i -cl (A) \subseteq U whenever A \subseteq U and $U \in \tau_i$.
- 2. $(i,j)-\omega$ -closed [8] if τ_i -cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in τ_i .
- 3. (i,j)- g^* s-closed [14] if τ_i -scl (A) \subseteq U whenever A \subseteq U and U is gs-open in τ_i .
- 4. (i,j)-sg-closed[5] if τ_i -scl(A) \subseteq U whenever A \subseteq U and U is semi-open in τ_i .
- 5. (i,j)- αg -closed[6] if τ_i - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau_i$.
- 6. (i,j)- ψ -closed [1] if τ_i -scl (A) \subseteq U whenever A \subseteq U and U is sg-open in τ_i .

Definition 2.3: A bitopological space (X, τ_i, τ_i) is called

- 1. an (i,j)- $T_{1/2}$ space[7] if every (i,j)-g-closed set in it is τ_i -closed.
- 2. an (i,j)-T_b-space[6] if every (i,j)-gs-closed set in it is τ_i -closed.
- 3. an (i,j)-T_d.space[6] if every (i,j)-gs-closed set in it is (i,j)-g-closed.
- 4. an (i,j)- αT_b -space[6] if every (i,j)- αg -closed set in it is τ_i closed.
- 5. an (i,j)- αT_d -space[7] if every (i,j)- αg -closed set in it is (i,j)- g-closed

3. $(i,j) - \Psi^*, (i,j) - \overline{\Psi}$ and $(i,j) - \overline{\Psi}^*$ -Closed sets.

We introduce the following definitions.

Definition 3.1: A subset A of a bitopological space (X, τ_1, τ_2) is called (i,j)- Ψ^* -closed if τ_j -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i - Ψ -open.

Definition 3.2: A subset A of a bitopological space (X,τ_1,τ_2) is called (i,j)- $\overline{\Psi}$ -closed if τ_j -cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i -sg-open.

Definition 3.3: A subset A of a bitopological space (X, τ_1, τ_2) is called (i,j)- $\overline{\Psi}^*$ -closed if τ_j -cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_i - \overline{\Psi}$ -open.

Remark 3.4: By setting $\tau_1 = \tau_2$ in definitions 3.1, 3.2 and 3.3,

- a (i,j)- Ψ^* -closed set is Ψ^* -closed,
- a (i,j)- $\overline{\Psi}$ –closed set is $\overline{\Psi}$ –closed &
- a (i,j)- $\overline{\Psi}^*$ -closed set is $\overline{\Psi}^*$ -closed.

Proposition 3.5: Every τ_i -closed subset of a bitopological space (X, τ_1, τ_2) is

- (i) (i,j)- Ψ^* -closed,
- (ii) (i,j)- $\overline{\Psi}$ -closed &
- (iii) $(i,j)-\overline{\Psi}^*$ -closed.

The following example shows that the converse of the above proposition is not true.

Example 3.6: Let $X = \{a,b,c\}, \tau_1 = \{X,\phi,\{a\}\}, \tau_2 = \{X,\phi,\{b,c\}\}.$ Then the set $\{b,c\}$

is (1,2)- ψ^* -closed, (1,2)- $\overline{\Psi}$ -closed & (1,2)- $\overline{\Psi}^*$ -closed but not τ_2 -closed.

Proposition 3.7: Every (i,j)- Ψ^* -closed set is (i,j)- gs-closed.

Converse of the above proposition is not true as seen in the following example.

Example 3.8: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\}\}$, $\tau_2 = \{X,\phi,\{b,c\}\}$. Then the set $\{a,b\}$ is (1,2)-gs-closed but not (1,2)- Ψ^* -closed. Hence every (1,2)-gs-closed set need not be (1,2)- Ψ^* -closed.

Proposition 3.9: Every (i,j)- $\overline{\Psi}$ -closed set is (i,j)- gs-closed.

The converse of the above proposition is not true as seen in the following example.

Example 3.10: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\}\}$, $\tau_2 = \{X,\phi,\{b,c\}\}$. Then the set $\{b\}$ is (1,2)- gs-closed but not (1,2)- $\overline{\Psi}$ -closed.

Proposition 3.11: Every (i,j)- $\overline{\Psi}^*$ -closed set is (i,j)- gs-closed.

The converse of the above proposition is not true.

Example 3.12: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a,b\},\{a\}\}$, $\tau_2 = \{X,\phi,\{b\}\}$. Then the set $\{a\}$ is (1,2) gs-closed but not (1,2)- $\overline{\Psi}^*$ -closed.

Proposition 3.13: In a bitopological space (X, τ_1, τ_2) every (i,j)- $\overline{\Psi}$ -closed set is (i) (i,j)-sg-closed, (ii) (i,j)-g-closed, (iii) (i,j)- αg -closed, (iv) (i,j)- ψ -closed, (v) (i,j)- $\overline{\Psi}^*$ -closed, (vi) (i,j)- ω -closed and (vii) (i,j)-g*s-closed.

The following examples support that the converse of the above proposition is not true.

Example 3.14: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a,b\},\{a\}\},\tau_2 = \{X,\phi,\{b\}\}\}$. The set $\{a\}$ is (1,2)- sg-closed but not (1,2)- $\overline{\Psi}$ -closed.

Example 3.15: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\}\}$, $\tau_2 = \{X,\phi,\{b,c\}\}$. The set $\{b\}$ is (1,2)-g closed but not (1,2)- $\overline{\Psi}$ -closed.

Example 3.16: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\}\}$, $\tau_2 = \{X,\phi,\{b,c\}\}$. Then the set $\{a,c\}$ is (1,2)- αg -closed but not (1,2)- $\overline{\Psi}$ -closed.

Example 3.17: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a,b\},\{a\}\}$, $\tau_2 = \{X,\phi,\{b\}\}$. Then set $\{a\}$ is $(1,2)-\psi$ -closed but not $(1,2)-\overline{\Psi}$ -closed.

Example 3.18: Let $X = \{a,b,c\}, \ \tau_1 = \{X,\phi,\{a\}\}, \tau_2 = \{X,\phi,\{b,c\}\}.$ Then the set $\{a,b\}$ is $(1,2) - \overline{\Psi}^*$ -closed but not $(1,2) - \overline{\Psi}$ -closed.

Example 3.19: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\},\{b,c\}\}$, $\tau_2 = \{X,\phi,\{b\}\}$. Then the set $\{a,b\}$ is (1,2)- ω -closed but not (1,2)- $\overline{\Psi}$ -closed.

Example 3.20: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\},\{b,c\}\}$, $\tau_2 = \{X,\phi,\{b\}\}$. Then the set $\{c\}$ is (1,2)- g^* s-closed but not (1,2)- $\overline{\Psi}$ closed.

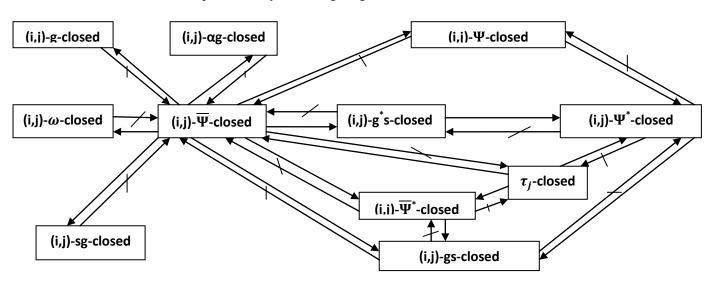
Proposition 3.21: Every (i,j)- g*s-closed set is (i,j)- ψ *-closed .But the converse is not true.

Example 3.22:Let X={a,b,c}, $\tau_1 = \{X,\phi,\{a\},\{b,c\}\}\$, $\tau_2 = \{X,\phi,\{c\}\}\$. Then the set {a,c} is (1,2)- ψ^* -closed but not (1,2)- g^* s-closed.

Proposition3.23: Every (i,j)- ψ -closed set is (i,j)- ψ^* -closed. Converse of this proposition is not true.

Example 3.24: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a\},\{b,c\}\}$, $\tau_2 = \{X,\phi,\{c\}\}$. Then the set $\{a,c\}$ is $(1,2)-\psi^*$ -closed but not $(1,2)-\psi$ -closed.

All the above results can be represented by following diagram.



where A \longrightarrow B represents A implies B and A \longrightarrow B represents A does not imply B

Theorem 3.25: If A and B are (i,j)- ψ^* -closed then AUB is (i,j)- ψ^* -closed.

Proof: Let U be ψ -open in τ_i such that $A \cup B \subseteq U$. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are (i,j)- ψ^* -closed sets τ_j -scl $(A) \subseteq U$ and τ_j -scl $(B) \subseteq U$. Hence τ_j -scl $(A \cup B) \subseteq U$. Therefore τ_j -scl $(A \cup B) \subseteq U$ whenever $A \cup B \subseteq U$ and U is ψ -open in τ_i . Hence $A \cup B$ is (i,j)- ψ^* -closed.

Theorem 3.26: If A and B are (i,j)- $\overline{\Psi}$ -closed then AUB is (i,j)- $\overline{\Psi}$ -closed.

Proof:Let U be sg-open in τ_i such that $A \cup B \subseteq U$. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are (i,j)- $\overline{\Psi}$ -closed sets τ_j -cl(A) $\subseteq U$ and τ_j -cl(B) $\subseteq U$. Hence τ_j -cl(AUB) $\subseteq U$. Therefore τ_j -cl(AUB) $\subseteq U$ whenever $A \cup B \subseteq U$ and U is sg-open in τ_i . Hence $A \cup B$ is (i,j)- $\overline{\Psi}$ -closed.

Theorem 3.27:If A and B are(i,j)- $\overline{\Psi}^*$ -closed then AUB is (i,j)- $\overline{\Psi}^*$ -closed.

Proof: Since τ_j -cl(AUB) $\subseteq \tau_j$ -cl(A) $\cup \tau_j$ -cl(B), τ_j -cl(AUB) $\subseteq U$ whenever AUB $\subseteq U$ and U is $\overline{\Psi}$ -open in τ_i . Hence AUB is (i,j)- $\overline{\Psi}^*$ -closed.

Definition 3.28

A subset A of a bitopological space (X, τ_1, τ_2) is called $(i,j)-\Psi^*$ -open if A^c is $(i,j)-\Psi^*$ -closed.

Theorem 3.29: If A and B are (i,j)- Ψ^* -open sets in (X,τ_1,τ_2) , then A \cap B is also an (i,j)- Ψ^* -open-set in (X,τ_1,τ_2) .

Proof: Let A and B are (i,j)- Ψ^* -open sets in (X,τ_1,τ_2) . Then A^c and B^c are (i,j)- Ψ^* -closed. By theorem $3.25,A^c \cup B^c$ is (i,j)- Ψ^* -closed in (X,τ_1,τ_2) . (ie) $(A \cap B)^c$ is (i,j)- Ψ^* -closed in (X,τ_1,τ_2) and hence $A \cap B$ is (i,j)- Ψ^* -open set in (X,τ_1,τ_2) .

Definition 3.30: A subset A of a bitopological space (X, τ_1, τ_2) is called (i,j)- $\overline{\Psi}$ –open if A^c is (i,j)- $\overline{\Psi}$ – closed.

Theorem 3.31:If A and B are (i,j)- $\overline{\Psi}$ -open sets in (X,τ_1,τ_2) then A∩B is also an (i,j)- $\overline{\Psi}$ -open set in (X,τ_1,τ_2) .

Proof follows from theorem 3.26.

Definition 3.32:A subset A of a bitopological space $(X\tau_{1,}\tau_{2},)$ is called (i,j)- $\overline{\Psi}^{*}$ -open if A^{c} is (i,j)- $\overline{\Psi}^{*}$ -closed set in $(X,\tau_{1,}\tau_{2})$.

Theorem 3.33: If A and B are (i,j)- $\overline{\Psi}^*$ -open sets in (X,τ_1,τ_2) , then A \cap B is also an (i,j)- $\overline{\Psi}^*$ -open set in (X,τ_1,τ_2) .

Proof follows from theorem 3.27.

Theorem 3.34: For each element x of (X, τ_1, τ_2) ,

- (i) $\{x\}$ is either τ_i ψ -closed or $\{x\}^c$ is $(i,j)-\psi^*$ -closed,
- (ii) $\{x\}$ is either τ_i sg-closed or $\{x\}^c$ is (i,j)- $\overline{\Psi}$ -closed &
- (iii) {x} is either $\tau_i \overline{\Psi}$ -closed or {x}^c is (i,j)- $\overline{\Psi}^*$ -closed

Proof (i): If $\{x\}$ is not τ_i ψ -closed, then $\{x\}^c$ is not τ_i - ψ -open and the only τ_i - ψ -open set containing $\{x\}^c$ is X. Also τ_i -scl($\{x\}^c$) \subseteq X. Therefore $\{x\}^c$ is (i,j)- ψ^* -closed.

Proof (ii): If $\{x\}$ is not τ_i -sg-closed, then $\{x\}^c$ is not τ_i -sg-open and the only τ_i -sg-open set containing $\{x\}^c$ is X. Also τ_i -cl($\{x\}^c$) \subseteq X. Therefore $\{x\}^c$ is (i,j)- $\overline{\Psi}$ -closed.

Proof (iii): If $\{x\}$ is not $\tau_i - \overline{\Psi}$ -closed, then $\{x\}^c$ is not $\tau_i - \overline{\Psi}$ -open and the only $\tau_i - \overline{\Psi}$ -open set containing $\{x\}^c$ is X. Also $\tau_i - \operatorname{cl}(\{x\}^c) \subseteq X$. Therefore $\{x\}^c$ is $(i,j) - \overline{\Psi}^*$ -closed.

Theorem 3.35: If A is an (i,j)- Ψ^* -closed set of (X,τ_1,τ_2) such that $A \subseteq B \subseteq \tau_j$ -scl(A) then B is also (i,j)- Ψ^* -closed in (X,τ_1,τ_2)

Proof: Let U be τ_i ψ -open such that B \subseteq U. Then A \subseteq U. Since A is an (i,j)- Ψ^* -closed, τ_j -scl(A) \subseteq U. We have τ_j -scl(B) \subseteq τ_j -scl(A) \subseteq U. τ_j -scl(B) \subseteq U, whenever B \subseteq U and U is τ_i ψ -open. Thus B is also (i,j)- Ψ^* -closed in (X,τ_1,τ_2) .

Theorem 3.36: If A is an (i,j)- $\overline{\Psi}$ -closed set of (X,τ_{1,τ_2}) such that $A \subseteq B \subseteq \tau_j$ -cl(A), then B is also (i,j)- $\overline{\Psi}$ -closed in (X,τ_{1,τ_2})

Proof: Let U be τ_i -sg -open set such that B \subseteq U. Then A \subseteq U.Since A is (i,j)- $\overline{\Psi}$ -closed, τ_j -cl(A) \subseteq U. We have τ_j -cl(B) \subseteq τ_j -cl(A) \subseteq U. Therefore τ_j -cl(B) \subseteq U, whenever B \subseteq U and U is τ_i -sg- open. Thus B is also (i,j)- $\overline{\Psi}$ -closed in (X, τ_1 , τ_2).

Theorem 3.37: If A is an (i,j)- $\overline{\Psi}^*$ -closed set of (X,τ_1,τ_2) such that $A \subseteq B \subseteq \tau_j$ -cl(A), then B is also (i,j)- $\overline{\Psi}^*$ -closed in (X,τ_1,τ_2)

Proof: Let U be τ_i - $\overline{\Psi}$ -open set such that B \subseteq U. Then A \subseteq U.Since A is (i,j)- $\overline{\Psi}^*$ -closed, τ_j -cl(A) \subseteq U.We have τ_j -cl(B) \subseteq τ_j -cl(C) \subseteq U.Therefore τ_j -cl(B) \subseteq U, whenever B \subseteq U and U is τ_i - $\overline{\Psi}$ - open. Thus B is also (i,j)- $\overline{\Psi}^*$ -closed in (X, τ_1 , τ_2)

Theorem 3.38: If A is (i,j)- Ψ^* -closed set, then τ_j -scl(A)-A contains no non empty τ_i ψ -closed set.

Proof: let A be (i,j)- Ψ^* -closed set and F be a τ_i ψ -closed subset of τ_j -scl(A)-A. Now $F \subseteq \tau_j$ -scl(A)-A. Then $F \subseteq (\tau_j$ -scl(A)) \cap A^c. Therefore $F \subseteq \tau_j$ -scl(A) and $F \subseteq A^c$. Then $A \subseteq F^c$.Since F^c is τ_i ψ -open set and A is (i,j)- Ψ^* -closed set, τ_j -scl(A) $\subseteq F^c$. Then $F \subseteq (\tau_j$ -scl(A))^c. Hence $F \subseteq (\tau_j$ -scl(A)) \cap $F \subseteq (\tau_j$ -scl(A))^c = Φ , (ie) $F = \Phi$. Thus τ_j -scl(A)-A contains no non empty τ_i ψ -closed set.

Theorem 3.39: If A is (i,j)- $\overline{\Psi}$ -closed set, then τ_j -cl(A)-A contains no non empty τ_i -sg-closed set.

Proof: let A be (i,j)- $\overline{\Psi}$ -closed set and F be a τ_i -sg-closed subset of τ_j -cl(A)-A. Now $F \subseteq \tau_j$ -cl(A)-A. Then $F \subseteq (\tau_j - \text{cl}(A)) \cap A^c$. Therefore $F \subseteq \tau_j$ -cl(A) and $F \subseteq A^c$. Then $A \subseteq F^c$. Since F^c is τ_i -sg-open set and A is (i,j)- $\overline{\Psi}$ -closed set, τ_j -cl(A) $\subseteq F^c$ (ie) $F \subseteq (\tau_j - \text{cl}(A))^c$. Hence $F \subseteq (\tau_j - \text{cl}(A)) \cap F \subseteq (\tau_j - \text{cl}(A))^c = \Phi$. Therefore $F = \Phi$. Hence τ_j -cl(A)-A contains no non empty τ_i -sg-closed set.

Theorem 3.40: If A is (i,j)- $\overline{\Psi}^*$ -closed set, then τ_j -cl(A)-A contains no non empty τ_i - $\overline{\Psi}$ -closed set.

Proof: let A be (i,j)- $\overline{\Psi}^*$ -closed set and F be a τ_i - $\overline{\Psi}$ -closed subset of τ_j -cl(A)-A. Now $F \subseteq \tau_j$ -cl(A)-A. Then $F \subseteq (\tau_j - \operatorname{cl}(A)) \cap A^c$. Therefore $F \subseteq \tau_j$ -cl(A) and $F \subseteq A^c$. Then $A \subseteq F^c$. Since F^c is τ_i - $\overline{\Psi}$ -open set and A is (i,j)- $\overline{\Psi}^*$ -closed set, τ_j -cl(A) $\subseteq F^c$ (ie) $F \subseteq (\tau_j - \operatorname{cl}(A))^c$. Hence $F \subseteq (\tau_j - \operatorname{cl}(A)) \cap F \subseteq (\tau_j - \operatorname{cl}(A))^c$ = Φ , Therefore $F = \Phi$. Hence τ_j -cl (A)-A contains no non empty τ_i - $\overline{\Psi}$ -closed set.

4. Applications of $(i,j) - \Psi^*$, $(i,j) - \overline{\Psi}$ and $(i,j) - \overline{\Psi}^*$ - Closed Sets.

As Applications of $(i,j) - \Psi^*$, $(i,j) - \overline{\Psi}$ and $(i,j) - \overline{\Psi}^*$ - Closed Sets, nine new space namely $(i,j) - T_{\overline{\Psi}}$ -space, $(i,j) - T_{\overline{\Psi}^*}$ -space, (i,j) -

We introduce the following definitions:

Defnition 4.1: A bitopological space (X, τ_1, τ_2) is said to be an (i,j)- T_{ψ^*} -space if every (i,j)- ψ^* -closed set is τ_j -closed.

Definition 4.2: A bitopological space (X, τ_1, τ_2) is said to be an (i,j)- $T_{\overline{\Psi}}$ -space if every (i,j)- $\overline{\Psi}$ -closed set is τ_i -closed

Defnition 4.3: A bitopological space (X, τ_1, τ_2) is said to be an (i,j)- $T_{\overline{\Psi}^*}$ -space if every (i,j)- $\overline{\Psi}^*$ closed set is τ_j -closed

Defnition 4.4: A bitopological space (X, τ_1, τ_2) is said to be an (i,j)- $T_{\overline{\Psi}}^*$ -space if every (i,j)- $\overline{\Psi}^*$ -closed set is (i,j)- $\overline{\Psi}$ -closed.

Defnition 4.5: A bitopological space (X, τ_1, τ_2) is said to be an (i,j)- $T_{\Psi^*}^*$ -space if every (i,j)- Ψ^* -closed set is (i,j)- $\overline{\Psi}$ -closed.

Defnition 4.6: A bitopological space (X, τ_1, τ_2) is said to be an (i,j)- $_gT_{\overline{\Psi}}$ -space if every (i,j)-g-closed set is (i,j)- $\overline{\Psi}$ -closed.

Defnition 4.7: A bitopological space (X, τ_1, τ_2) is said to be an (i,j)- T_{Ψ}^* -space if every (i,j)- Ψ^* -closed set is (i,j)- Ψ -closed.

Defnition 4.8:A bitopological space (X, τ_1, τ_2) is said to be an (i,j)- $_g T_{\overline{\psi}^*}$ -space if every (i,j)-gs-closed set is-(i,j)- $\overline{\Psi}^*$ -closed

Defnition 4.9:A bitopological space (X, τ_{1}, τ_{2}) is said to be an (i,j)- $\alpha T_{\overline{\Psi}}$ -space if every (i,j)- αg -closed set is (i,j)- $\overline{\Psi}$ -closed.

Theorem 4.10: Every (i,j)- T_{Ψ^*} -space is (i,j)- T_{Ψ^*} -space but not conversely.

Example 4.11: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a,b\},\{a\}\}$, $\tau_2 = \{X,\phi,\{b,c\},\{b\}\}$. Then (X,τ_1,τ_2) is a (i,j)- T_{ψ}^* -space. But it is not a (i,j)- T_{ψ}^* -space since $A = \{c\}$ is $(1,2)-\psi^*$ closed but not τ_2 -closed.

Theorem 4.12: Every (i,j)- $T_{\overline{\Psi}^*}$ space is (i,j)- $T_{\overline{\Psi}^*}$ --space but not conversely.

Example 4.13: Let $X=\{a,b,c\}$, $\tau_1=\{X,\phi,\{a,c\}\}$, $\tau_2=\{X,\phi,\{a,b\}\}$. Then (X,τ_1,τ_2) is $(i,j)-T_{\overline{\Psi}}^*$ -space. But it is not a $(i,j)-T_{\overline{\Psi}}^*$ space since $\{b,c\}$ is $(1,2)-\overline{\Psi}^*$ closed but not τ_2 -closed.

Theorem 4.14: Every $(i,j)-T_{\Psi^*}$ space is $(i,j)-T_{\Psi}^*$ -space but not conversely.

Example 4.15: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a,c\}\}$, $\tau_2 = \{X,\phi,\{b\},\{a,b\},\{b\}\}$. Then (X,τ_1,τ_2) is (i,j)- T_{Ψ}^* -space. But it is not a (i,j)- $T_{\Psi^*}^*$ space since $\{b,c\}$ is (1,2)- Ψ^* -closed but not $\overline{\Psi}$ -closed.

Theorem 4.16: Every (i,j)- T_b - space is (i,j)- ${}_gT_{\overline{\psi}^*}$ -space but not conversely.

Example 4.17: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a,b\},\{a\}\}$, $\tau_2 = \{X,\phi,\{b,c\},\{b\}\}$. Then (X,τ_1,τ_2) is (i,j)- ${}_{g}T_{\overline{w}^*}$ space. But it is not a (i,j)- T_b –space, since the set $\{c\}$ is (1,2)- gs closed but not τ_2 -closed.

Theorem 4.18: Every (i,j)- $T_{1/2}$ - space is (i,j)- ${}_{g}T_{\overline{\Psi}}$ -space but not conversely.

Example 4.19: Let $X = \{a,b,c\}$, $\tau_1 = \{X,\phi,\{a,b\},\{a\}\}$, $\tau_2 = \{X,\phi,\{b,c\},\{b\}\}$. Then (X,τ_1,τ_2) is (i,j)- ${}_{g}T_{\overline{\Psi}}$ space. But it is not a (i,j)- $T_{1/2}$ -space, since the set $\{b,c\}$ is (1,2)-g closed but not τ_2 -closed.

Theorem 4.20: Every (i,j)- $_{\alpha}T_{b}$ - space is (i,j)- $_{\alpha}T_{\overline{\psi}}$ -space but not conversely.

Example 4.21: Let $X=\{a,b,c\}$, $\tau_1=\{X,\phi,\{a,b\},\{a\}\}$, $\tau_2=\{X,\phi,\{b,c\},\{b\}\}$. Then (X,τ_1,τ_2) is (i,j)- $\alpha T_{\overline{\Psi}}$ space. But it is not a (i,j)- αT_b -space, since the set $\{b,c\}$ is (1,2)- αg closed but not τ_2 -closed.

Theorem 4.22: Every (i,j)- $\alpha T_{\overline{\psi}}$ - space is (i,j)- αT_d -space but not conversely.

Example 4.23:

Let $X=\{a,b,c\}$, $\tau_1=\{X,\phi,\{a\}\}$, $\tau_2=\{X,\phi,\{b,c\}\}$. Then (X,τ_1,τ_2) is (i,j)- $_{\alpha}T_d$ space. But it is not a (i,j)- $_{\alpha}T_{\overline{\Psi}}$ -space, since the set $\{a,b\}$ is (1,2)- $_{\alpha}g$ closed but not (1,2)- $_{\overline{\Psi}}c$ losed.

REFERENCES

- 1. I.Arockiarani and A.Selvi, Pairwise ψ-open sets in Bitopological spaces (Accepted on 04.07.11).
- 2. S.P.Arya and T.M.Nour characterizations of S-normal spaces, Indian J.Pure.Appl.Math., 21(8)(1990), 717-719.
- 3. P.Bhattacharya and B.K.Lahiri, Semi generalized closed sets in topology, Indian J.Math., 29(3)(1987), 375-382.
- 4. Definition Bank in general topology by G.B.Navalagi.
- 5. R.Devi, K.Balachandran and H.Maki, semi generalized homeomorphisms and generalized semi-homeomorphisms, Indian J.Pure. Appl.Math., 26(1995), 271-284.
- 6. O.A.El-Tantawy and H.M.Abu Donia, Generalized separation Axioms in Bitopological spaces. The Arabian JI for science and Engg. Vol.30.No.1A(2005), 117-129.
- 7. T.Fukutake, Bull.Fukuoka Univ.Ed. Part III, 35(1986), 19-28.
- 8. T.Fukutake, P.Sundaram and M.Sheik John, Bull. Fukuoka Univ. Ed. Part III, 51(2002), 1-9.
- 9. N.Levine, Semi-open sets and semi-continuity in topological spaces, 70(1963), 36-41.
- 10. N.Levine, Generalized closed sets in topology, Rend. circ Mat. Palermo, 19(2)(1970), 89-96.
- 11. H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem.Fac.Sci.Kochi.Univ.Ser.A.Math., 15(1994), 51-63.
- 12. H.Maki, R.Devi and K.Balachandran, Generalized α-closed sets in topology, Bull.Fukuoka Univ. Ed. Part IV, 42(1993), 13-21.
- 13. O.Njastad, on some classes of nearly open sets, pacific J.Math, 15(1965), 961-970.
- 14. N.Selvanayaki, on g*s closed sets in Bitopological spaces.
- 15. M.K.R.S Veera Kumar, "Between closed sets and g-closed sets", Mem.Fac.Sci.Kochi Univ.Ser. A.Math., 17(1996), 38-42.
- 16. M.K.R.S Veera Kumar Between ψ-closed sets and gsp-closed sets, Antartica. J.Math, Reprint.
- 17. Veronica Vijayan, K.Selvapriya, A study on $\Psi^*, \overline{\Psi}$ & $\overline{\Psi}^*$ -closed sets in topological spaces, International Journal of Computer Applications, Issue 3, Volume 2(April 2013), pg-(105-114)