α*-CLOSED SETS IN TOPOLOGICAL SPACES

Issue 3, Volume 4 (July-August 2013)

ISSN: 2250-1797

Veronica Vijayan, Associate Professor, Nirmala college, Coimbatore.

Priya F, M.Phil., Scholar, Nirmala college, Coimbatore.

Abstract : In this research paper we introduce a new class of sets namely, α^* -closed sets. Applying these sets, the authors introduce four new classes of space namely, $T_{\alpha}^{}$ spaces, ${}_{\alpha g}T_{\alpha}^{}$ spaces, ${}_{gs}T_{\alpha}^{}$ spaces and ${}_{g}T_{\alpha}$ spaces. Further the authors introduce α^* -continuous maps and α^* -irresolute maps.

Key words: α^* -closed sets; α^* -continuous maps; α^* -irresolute maps; T_{α}^* spaces; ${}_{\alpha g}T_{\alpha}^*$ spaces; ${}_{\alpha g}T_{\alpha}^*$ spaces and ${}_{g}T_{\alpha}$ spaces.

1.INTRODUCTION

In 1970, Levine [10] first introduced the concept of generalized closed (briefly,g-closed)sets as a generalization of closed sets in topological spaces. S.P.Arya and T.Nour [3] defined gs-closed sets in 1990. Dontchev [9] introduced gsp-closed sets. Maki et.al.[13] defined αg-closed sets in 1994. Levine [11], Mashhour et.al. [16] introduced semi-open sets, preopen sets respectively. Maki et.al. [13] introduced gα-closed sets. S.N.Maheshwari and P.C.Jain [12] introduced and investigated α-closed sets.

The purpose of this paper is to introduce the concept of α^* -closed sets, $T_{\alpha}^{}$ spaces, ${}_{\alpha g}T_{\alpha}^{}$ spaces, ${}_{gs}T_{\alpha}^{}$ spaces and ${}_{g}T_{\alpha}$ spaces and investigate some of their properties.

2. PRELIMINARIES

Definition: 2.1 - A subset A of a topological space (X, τ) is called,

- i. a pre open set [16] if $A \subseteq \text{int } (Cl(A))$ and a pre closed set if $Cl(\text{int}(A)) \subseteq A$.
- ii. a semi-open set [10] if $A \subseteq Cl$ (int (A)) and a semi-closed set if int (Cl (A)) $\subseteq A$.
- iii. an α -open set [17] if $A \subset \text{int}(Cl(\text{int}(A)))$ and an α -closed if $Cl(\text{int}(Cl(A))) \subset A$.
- iv. a semi-preopen set [1] if $A \subseteq Cl$ (int(Cl (A))) and a semi-preclosed set if int (Cl (int (A))) $\subseteq A$.

The intersection of all semi-closed (resp. Pre-closed, semi-preclosed and α -closed) sets containing a subset A of (X, τ) is called the semi-closure (resp. pre-closure,

semi-pre-closure and α -closure) of A and is denoted by Scl(A) (resp. Pcl(A), Spcl(A) and $\alpha cl(A)$).

Definition: 2.2 - A subset A of a topological space (X, τ) is called,

- i. a generalized closed set [10] (briefly g-closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- ii. a semi-generalized closed set [5] (briefly sg-closed) if $Scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- iii. a generalized semi-closed set [3] (briefly gs-closed) if $Scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- iv. a generalized α -closed set [6] (briefly $g\alpha$ -closed) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) .
- v. a α -generalized closed set [13] (briefly αg -closed) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- vi. a generalized semi-preclosed set [9] (briefly gsp-closed) if $Spcl(A) \subseteq U$ whenever $A \subset U$ and U is open in (X, τ) .
- vii. a generalized preclosed set [14] (briefly gp-closed) if $Pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- viii. Strongly g-closed [18] if $Cl(intA) \subset U$ whenever $A \subset U$ and U is open in (X, τ) .

Definition: 2.3 - A topological space (X, τ) is said to be,

- i. a T_{1/2}space [10] if every g-closed set in it is closed.
- ii. a T_b space [7] if every gs –closed set in it is closed.
- iii. a T_d space [7] if every gs –closed set in it is g-closed.
- iv. $a_{\alpha}T_{d}$ space [6] if every αg -closed set in it is g-closed.
- v. $a_{\alpha}T_{b}$ space [6] if every αg –closed set in it is closed.

Definition: 2.4 A function $f:(X,\tau) \longrightarrow (Y,\sigma)$ is called

- 1. an α -continuous [13] if $f^1(V)$ is an α -closed set of (X, τ) for every closed set V of (Y, σ) .
- 2. a g-continuous [4] if $f^{-1}(V)$ is an g-closed set of (X, τ) for every closed set V of (Y, σ) .
- 3. an αg -continuous [10] if $f^1(V)$ is an αg -closed set of (X, τ) for every closed set V of (Y, σ) .
- 4. a gs-continuous [8] if $f^{1}(V)$ is a gs-closed set of (X, τ) for every closed set V of (Y, σ) .
- 5. a gsp-continuous [9] if $f^1(V)$ is a gsp-closed set of (X, τ) for every closed set V of (Y, σ) .
- 6. a gp-continuous [2] if $f^{-1}(V)$ is a gp-closed set of (X,τ) for every closed set V of (Y,σ) .
- 7. a strongly g -continuous [18] if $f^{-1}(V)$ is a strongly g -closed set of (X, τ) for every closed set V of (Y, σ) .

- Issue 3, Volume 4 (July-August 2013) ISSN: 2250-1797
- 8. a gs-irresolute [8] if $f^{-1}(V)$ is an gs-closed set of (X, τ) for every gs-closed set V of (Y, σ) .
- 9. an αg -irresolute [6] if $f^1(V)$ is an αg -closed set of (X, τ) for every αg -closed set V of (Y, σ) .

3. BASIC PROPERTIES OF α*-CLOSED SETS

We introduce the following definition

Definition 3.1 - A subset A of a topological space (X,τ) is called a α^* -closed set if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in X.

Theorem 3.2 - Every closed set is a α^* -closed set.

The following example supports that an α^* -closed set need not be closed in general.

Example 3.3 - Let $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{a,b\}\}$. Let $A = \{a,c\}$. A is a α^* -closed set but not a closed set of (X,τ) .

So the class of α^* -closed sets properly contains the class of closed sets. Next we show that the class of α^* -closed sets is properly contained in the class of g-closed sets.

Theorem 3.4 - Every α^* -closed set is a g-closed set.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 3.5 - Let $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{a\}, \{a,c\}\}$. $B = \{a,b\}$ is g-closed but not α^* -closed in (X,τ) .

Theorem 3.6 - Every α^* -closed set is a gs-closed set.

The reverse implication does not hold as it can be seen from the following example.

Example 3.7 - Let $X = \{ a,b,c \}$, $\tau = \{ \emptyset, X, \{a\}, \{a,c\} \}$. $C = \{a,b\}$ is gs-closed but not α^* -closed in (X,τ) .

Theorem 3.8 - Every α^* -closed set is a gp-closed set.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 3.9 - Let $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{a\}, \{a,c\}\}$. $D = \{a,b\}$ is gp-closed but not α^* -closed in (X,τ) .

Theorem 3.10 - Every α^* -closed set is a $g\alpha$ -closed set.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 3.11 - Let $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{a\}, \{a,c\}\}$. $E = \{c\}$ is $g\alpha$ -closed but not α^* -closed in (X,τ) .

Theorem 3.12 - Every α^* -closed set is a αg -closed set.

The reverse implication does not hold as it can be seen from the following example

Example 3.13 - Let $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{a\}, \{a,c\}\}$. $F = \{c\}$ is αg -closed but not α^* -closed in (X,τ) .

Theorem 3.14 - Every α^* -closed set is a gsp -closed set.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 3.15 - Let $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{a\}, \{a,c\}\}$. $G = \{a,b\}$ is gsp -closed but not α^* -closed in (X,τ) .

Theorem 3.16 - Every α^* -closed set is a strongly g closed set.

The converse of the above theorem is not true in general as it can be seen from the following example

Example 3.17 - Let $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{a\}, \{a,c\}\}$. $H = \{a,b\}$ is strongly g-closed but not α^* -closed in (X,τ) .

Remark 3.18 - α^* -closedness is independent from α -closedness

Let (X, τ) be as in the example 3.5. Let $B = \{c\}$. Then B is α -closed but not α^* -closed. Let (X, τ) be as in the example 3.3. Let $B = \{a,c\}$. Then B is α^* -closed but not α -closed.

Remark 3.19 - If A and B are α^* -closed sets, then A \cap B is also a α^* -closed set.

The result follows from the fact that $Cl(A \cap B) = Cl(A) \cap Cl(B)$.

Theorem 3.20 - If A is both α -open and α^* -closed in (X, τ) , then A is a closed set.

Theorem 3.21 - A is an α^* -closed set of (X, τ) if and only if $Cl(A)\setminus A$ does not contain any non-empty α -closed set.

Proof: Necessity - Let F be a α -closed set of (X, τ) such that $F \subseteq Cl(A) \setminus A$. Then $A \subseteq X \setminus F$. Since A is an α^* -closed set and $X \setminus F$ is α -open such that $A \subseteq X \setminus F$. Then $Cl(A) \subseteq X \setminus F$. This implies $F \subseteq X \setminus Cl(A)$. So $F \subseteq (X \setminus Cl(A) \cap (Cl(A) \setminus A)$. Therefore $F = \emptyset$

Sufficiency - Let A be a subset of (X,τ) such that $Cl(A)\setminus A$ does not contain any non-empty α -closed set. Let U be a α -open set of (X,τ) such that $A\subseteq U$. If $Cl(A)\not\subseteq U$, then $Cl(A)\cap U^C\neq\emptyset$ and $Cl(A)\cap U^C$ is α -closed. Then $\emptyset\neq Cl(A)\cap U^C\subseteq Cl(A)\setminus A$. So $Cl(A)\setminus A$ contains a non-empty α -closed set which is a contradiction. This implies $Cl(A)\subseteq U$. Therefore A is an α^* -closed set .

Theorem 3.22 - If A is an α^* -closed set of (X, τ) such that $A \subseteq B \subseteq Cl(A)$, then B is an α^* -closed set of (X, τ) .

PROOF: Let U be a α -open set such that $B \subseteq U$, then $A \subseteq B \subseteq U$. Since A is an α^* -closed set, $Cl(A) \subseteq U$. Now $B \subseteq Cl(A)$ implies $Cl(B) \subseteq Cl(A) \subseteq U$. This implies $Cl(B) \subseteq U$. Therefore B is an α^* -closed set of (X, τ) .

3.23 – Thus we have the following diagram.

4.APPLICATIONS OF α*-CLOSED SETS

As applications of α^* -closed sets, four new spaces namely $T_{\alpha}^{\ *}$, $_{\alpha g}T_{\alpha}^{\ *}$, $_{gs}T_{\alpha}^{\ *}$ and $_{g}T_{\alpha}^{\ *}$ spaces are introduced.

We introduce the following definition.

Definition 4.1 - A space (X, τ) is called a T_{α}^* space if every α^* -closed set is closed.

Theorem 4.2 - Every $T_{1/2}$ space is a T_{α}^* space.

A T_{α}^* space need not be a $T_{1/2}$ space in general as it can be seen from the following example.

Example 4.3 - Let $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{a\}, \{a,c\}\}$. Then (X, τ) is a T_{α}^* space. $A = \{a,b\}$ is a g-closed set but not a closed set. Therefore (X, τ) is not a $T_{1/2}$ space.

Theorem 4.4 - Every T_b space is a T_a^* space.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 4.5 - Let $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{a\}, \{a,c\}\}$. α^* -closed sets of τ are $X, \emptyset, \{b,c\}, \{b\}$ and every α^* -closed set is closed. Therefore (X, τ) is a T_{α}^* space. $B = \{a,b\}$ is a gs-closed set but not a closed set of (X, τ) . Hence (X, τ) is not a T_b space. Therefore a T_{α}^* space need not be a T_b space.

Theorem 4.6 - A space (X, τ) which is both $T_{1/2}$ and T_d is a T_{α}^* space.

Theorem 4.7 - A space (X, τ) which is both ${}_{\alpha}T_d$ and $T_{1/2}$ is a $T_{\alpha}^{\ *}$ space.

Theorem 4.8 - Every ${}_{\alpha}T_{b}$ space is a T_{α}^{*} space.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 4.9 – Let $X = \{ a,b,c \}$, $\tau = \{ \emptyset, X, \{a\}, \{a,c\} \}$. Then $D = \{c\}$ is a αg -closed set but not a closed set in (X,τ) . Therefore (X,τ) is not a ${}_{\alpha}T_b$ space. α^* -closed sets are $\emptyset, X, \{b\}, \{b,c\}$ and all these are closed in (X,τ) . Therefore (X,τ) is a T_{α}^* space. Hence (X,τ) is a T_{α}^* space but not a ${}_{\alpha}T_b$ space.

Definition 4.10 - A space (X, τ) is called a $_{gs}T_{\alpha}^{*}$ space if every gs-closed set is α^* -closed.

Theorem 4.11 - Every T_b space is a $_{gs}{T_{\alpha}}^{\ast}$ space.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 4.12 - Let $X=\{a,b,c\}$, $\tau=\{\emptyset,X,\{a\},\{b,c\}\}$. Then $C=\{b\}$ is a gs-closed set but not a closed set in (X,τ) . Therefore (X,τ) is not a T_b space. α^* -closed sets are $\emptyset,X,\{a\},\{b\},\{c\},\{a,c\},\{b,c\}$. Every gs-closed set is α^* -closed in (X,τ) . Therefore (X,τ) is a ${}_{gs}T_{\alpha}^{*}$ space. Hence (X,τ) is a ${}_{gs}T_{\alpha}^{*}$ space but not a T_b space.

Definition 4.13 - A space (X, τ) is called a $_{\alpha g}T_{\alpha}^{\ \ *}$ space if every αg -closed set is $\alpha *$ closed.

Theorem 4.14 - Every ${}_{\alpha}T_{b}$ space is a ${}_{\alpha g}T_{\alpha}^{*}$ space.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 4.15 - Let $X=\{a,b,c\}$, $\tau=\{\emptyset,X,\{a\},\{b,c\}\}$. Then $E=\{b\}$ is a αg -closed set but not closed in (X,τ) . Therefore (X,τ) is not a $_{\alpha}T_{b}$ space. α^{*} -closed sets are $\emptyset,X,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}$. Every αg -closed set is α^{*} -closed in (X,τ) . Therefore (X,τ) is a $_{\alpha g}T_{\alpha}^{\ *}$ space. Hence (X,τ) is a $_{\alpha g}T_{\alpha}^{\ *}$ space but not a $_{\alpha}T_{b}$ space.

Definition 4.16 - A space (X, τ) is called a ${}_{g}T_{\alpha}^{\ \ *}$ space if every g-closed set is $\alpha*$ -closed.

Theorem 4.17 - Every $T_{1/2}$ space is a $_gT_\alpha^{\ *}$ space.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 4.18 - Let $X=\{a,b,c\}$, $\tau=\{\emptyset,X,\{a\},\{b,c\}\}$. Then $F=\{b\}$ is a g-closed set but not closed set in (X,τ) . Therefore (X,τ) is not a $T_{1/2}$ space. α^* -closed sets are $\emptyset,X,\{a\},\{b\},\{c\},\{a,c\},\{b,c\}$. Every g-closed set is α^* -closed in (X,τ) . Therefore (X,τ) is a ${}_gT_\alpha^*$ space. Hence (X,τ) is a ${}_gT_\alpha^*$ space but not a $T_{1/2}$ space.

Theorem 4.19 - A space (X,τ) is both ${}_{g}T_{\alpha}^{*}$ space and T_{α}^{*} space if and only if it is a $T_{1/2}$ space.

Proof: Necessity- Let (X,τ) be both a ${}_gT_\alpha^*$ space and a T_α^* space. Let A be a g-closed set. Then A is α^* -closed, since (X,τ) is a ${}_gT_\alpha^*$ space. A is closed, since (X,τ) is a T_α^* space. Since every g-closed set is closed, (X,τ) is a $T_{1/2}$ space.

Sufficiency- Let (X,τ) be a $T_{1/2}$ space. Then by theorem 4.17, (X,τ) is a ${}_gT_\alpha^*$ space. By theorem 4.2, (X,τ) is a T_α^* space. Hence (X,τ) is both a ${}_gT_\alpha^*$ space and a T_α^* space.

Theorem 4.20 - A space (X,τ) is both a ${}_{gs}T_{\alpha}^{\ *}$ space and a $T_{\alpha}^{\ *}$ space if and only if it is a T_b space.

Proof: Necessity - Let (X,τ) be both a $_{gs}T_{\alpha}^{\ \ \ \ \ }$ space and a $T_{\alpha}^{\ \ \ \ \ \ \ \ }$ space. Let A be a gs-closed set. Then A is α^* -closed, since (X,τ) is a $_{gs}T_{\alpha}^{\ \ \ \ \ \ }$ space and A is closed, since (X,τ) is a $T_{\alpha}^{\ \ \ \ \ \ \ \ \ }$ space. Therefore (X,τ) is a T_{α} space.

Sufficiency - Let (X,τ) be a T_b space. By theorem 4.11, (X,τ) is a ${}_{gs}T_{\alpha}^{*}$ space. By theorem 4.4, (X,τ) is a T_{α}^{*} space. Hence (X,τ) is both a ${}_{gs}T_{\alpha}^{*}$ space and a T_{α}^{*} space.

Theorem 4.21 - A space (X,τ) is both a $_{\alpha g}T_{\alpha}^{\ *}$ space and a $T_{\alpha}^{\ *}$ space if and only if it is a $_{\alpha}T_{b}$ space.

Proof : Necessity - Let (X,τ) be both a $_{\alpha g}T_{\alpha}^{\ *}$ space and a $T_{\alpha}^{\ *}$ space. Let A be a αg -closed set. Then A is $\alpha *$ -closed, since (X,τ) is a $_{\alpha g}T_{\alpha}^{\ *}$ space and A is closed, since (X,τ) is a $T_{\alpha}^{\ *}$ space. Therefore (X,τ) is a $_{\alpha}T_{b}$ space

Sufficiency - Let (X,τ) be a $_{\alpha}T_{b}$ space. By theorem 4.14, (X,τ) is a $_{\alpha g}T_{\alpha}^{\ *}$ space. By theorem 4.8, (X,τ) is a $T_{\alpha}^{\ *}$ space. Hence (X,τ) is both a $_{\alpha g}T_{\alpha}^{\ *}$ space and a $T_{\alpha}^{\ *}$ space.

Remark 4.22 - $_{gs}T_{\alpha}^{\ *}$ space and $T_{\alpha}^{\ *}$ space are independent as it can be seen from the next two examples.

Example 4.23 - Let $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{c\}, \{b,c\}\}\$ (X, τ) is a T_{α}^{*} space, since every α^* -closed set is closed. $A = \{b\}$ is gs-closed but not α^* -closed and hence (X, τ) is not a ${}_{gs}T_{\alpha}^{*}$ space. Therefore (X, τ) is a T_{α}^{*} space but not a ${}_{gs}T_{\alpha}^{*}$ space.

Example 4.24 - Let $X=\{a,b,c\}$, $\tau=\{\emptyset, X, \{a\},\{b,c\}\}\}$. (X, τ) is a $_{gs}T_{\alpha}^{\ *}$ space, since every gs-closed set is α^* -closed. But $A=\{b\}$ is α^* -closed and not closed and hence (X,τ) is not a $T_{\alpha}^{\ *}$ space. Therefore (X,τ) is a $_{gs}T_{\alpha}^{\ *}$ space but not a $T_{\alpha}^{\ *}$ space.

Remark 4.25 - $_{\alpha g}T_{\alpha}^{\ *}$ space and $T_{\alpha}^{\ *}$ space are independent as it can be seen from the next two examples.

Example 4.26 - Let (X,τ) be as in the example 4.23. (X,τ) is a T_{α}^{*} space since every α^{*} -closed set in it is closed. But $A=\{b\}$ is αg -closed but not α^{*} -closed and hence (X,τ) is not a ${}_{\alpha g}T_{\alpha}^{*}$ space. Therefore (X,τ) is a T_{α}^{*} space but not a ${}_{\alpha g}T_{\alpha}^{*}$ space.

Example 4.27 - Let (X,τ) be as in the example 4.24. From example 4.12 and example 4.15, every αg -closed set is α^* -closed. So (X,τ) is a $_{\alpha g}T_{\alpha}^{}$ space. But $A=\{b\}$ is α^* -closed but not closed. Hence (X,τ) is not a $T_{\alpha}^{}$ space. Therefore (X,τ) is a $_{\alpha g}T_{\alpha}^{}$ space but not a $T_{\alpha}^{}$ space.

Remark 4.28 - $_gT_\alpha^*$ space and T_α^* space are independent as it can be seen from the next two examples.

Example 4.29 - Let (X,τ) be as in the example 4.23. (X,τ) is a T_{α}^{*} space since every α^{*} -closed set in it is closed. But $A=\{a,c\}$ is g-closed and not α^{*} -closed and hence (X,τ) is not a ${}_{g}T_{\alpha}^{*}$ space. Therefore (X,τ) is a T_{α}^{*} space but not a ${}_{g}T_{\alpha}^{*}$ space.

Example 4.30 - Let (X,τ) be as in the example 4.24. From example 4.12 and example 4.18, every g-closed set is α^* -closed. So (X,τ) is a ${}_gT_\alpha^*$ space. But A={b} is α^* -closed but not closed. Hence (X,τ) is not a T_α^* space. Therefore (X,τ) is a ${}_gT_\alpha^*$ space but not a T_α^* space.

4.31 Thus we have the following diagram

5.α*-CONTINUOUS AND α*-IRRESOLUTE MAPS

We introduce the following definition

Definition 5.1 - A function $f: (X, \tau) \longrightarrow (Y, \sigma)$ is called α^* -continuous if $f^{-1}(V)$ is a α^* -closed set of (X, τ) for every closed set V of (Y, σ) .

Theorem 5.2 - Every continuous map is α^* -continuous.

The following example supports that the converse of the above theorem is not true

Example 5.3 - Let $X = \{a,b,c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b,c\}\}$. Define $g : (X, \tau) \longrightarrow (X, \tau)$ by g(a) = b, g(b) = a and g(c) = c. g is α^* -continuous but not continuous since $\{b,c\}$ is a closed set of (X,τ) but $g^{-1}(\{b,c\}) = \{a,c\}$ is not closed.

Theorem 5.4 - Every α^* -continuous map is g-continuous, α g-continuous, gs-continuous, gs-continuous, ga-continuous and strongly g-continuous.

Proof: Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be α^* -continuous. Let $V \subseteq Y$ be a closed set in Y. Then $f^1(V)$ is α^* -closed since f is α^* -continuous. Now by theorem 3.4 $f^1(V)$ is g-closed, by theorem 3.12 $f^1(V)$ is α -closed, by theorem 3.14 $f^1(V)$ is gsp-closed, by theorem 3.8 $f^1(V)$ is gsp-closed, by theorem 3.16 $f^1(V)$ is gs-closed, by theorem 3.10 $f^1(V)$ is ga-closed, by theorem 3.16 $f^1(V)$ is strongly g-closed.

Example 5.5 - Let $X = Y = \{a,b,c\}, \ \tau = \{\emptyset, X, \{c\}, \{b,c\}\} \}$ and $\sigma = \{\emptyset, X, \{a\}, \{a,b\}\} \}$. Define $g: (X, \tau) \longrightarrow (Y, \sigma)$ by g(a) = c, g(b) = a, g(c) = b. The mapping g is g-continuous

since $f^{-1}(V)$ is a g-closed set of (X, τ) for every closed set V of (Y, σ) . g is not α^* -continuous since $\{b,c\}$ is a closed set of (Y, σ) but $g^{-1}(\{b,c\}) = \{a,c\}$ is not α^* -closed.

Example 5.6 - Let $X = Y = \{a,b,c\}$, $\tau = \{\emptyset, X, \{c\}, \{b,c\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{a,b\}\}$. Define $g: (X, \tau) \longrightarrow (Y, \sigma)$ by g(a) = b, g(b) = c, g(c) = a. The mapping g is αg -continuous since $f^1(V)$ is a αg -closed set of (X, τ) for every closed set V of (Y, σ) . g is not α^* -continuous since $\{c\}$ is a closed set of (Y, σ) but $g^{-1}(\{c\}) = \{b\}$ is not α^* -closed.

Example 5.7 • Let $X = Y = \{a,b,c\}, \ \tau = \{\emptyset, X, \{c\}, \{b,c\}\} \$ and $\sigma = \{\emptyset, X, \{a\}, \{a,b\}\} \}$. Define $g: (X, \tau) \longrightarrow (Y, \sigma)$ by g(a) = c, g(b) = a, g(c) = b. The mapping g is gsp-continuous since $f^1(V)$ is a gsp-closed set of (X, τ) for every closed set V of (Y, σ) . g is not α^* -continuous since $\{b,c\}$ is a closed set of (Y, σ) but $g^1(\{b,c\}) = \{a,c\}$ is not α^* -closed.

Example 5.8 - Let $X = Y = \{a,b,c\}, \ \tau = \{\emptyset \ , \ X \ , \ \{c\} \ , \ \{b,c\} \ \}$ and $\sigma = \{\emptyset \ , \ X \ , \ \{a\} \ , \ \{a,b\} \ \}$. Define $g:(X,\tau) \longrightarrow (Y,\sigma)$ by g(a)=c, g(b)=a, g(c)=b. The mapping g is gp-continuous since $f^1(V)$ is a gp-closed set of (X,τ) for every closed set V of (Y,σ) . g is not α^* -continuous since $\{b,c\}$ is a closed set of (Y,σ) but $g^{-1}(\{b,c\})=\{a,c\}$ is not α^* -closed.

Example 5.9 • Let $X = Y = \{a,b,c\}, \ \tau = \{\emptyset \ , \ X \ , \ \{c\} \ , \ \{b,c\} \ \}$ and $\sigma = \{\emptyset \ , \ X \ , \ \{a\} \ , \ \{a,b\} \ \}$. Define $g: (X,\tau) \longrightarrow (Y,\sigma)$ by $g(a)=b,\ g(b)=c,\ g(c)=a$. The mapping g is gs-continuous since $f^1(V)$ is a gs-closed set of (X,τ) for every closed set V of (Y,σ) . g is not α^* -continuous since $\{c\}$ is a closed set of (Y,σ) but $g^1(\{c\})=\{b\}$ is not α^* -closed.

Example 5.10 - Let $X = Y = \{a,b,c\}$, $\tau = \{\emptyset, X, \{c\}, \{b,c\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{a,b\}\}$. Define $g: (X, \tau) \longrightarrow (Y, \sigma)$ by g(a) = b, g(b) = c, g(c) = a. The mapping g is $g\alpha$ -continuous since $f^1(V)$ is a $g\alpha$ -closed set of (X, τ) for every closed set V of (Y, σ) . g is not α^* -continuous since $\{c\}$ is a closed set of (Y, σ) but $g^{-1}(\{c\}) = \{b\}$ is not α^* -closed.

Example 5.11 - Let $X = Y = \{a,b,c\}$, $\tau = \{\emptyset, X, \{c\}, \{b,c\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{a,b\}\}$. Define $g: (X, \tau) \longrightarrow (Y, \sigma)$ by g(a) = c, g(b) = a, g(c) = b. The mapping g is strongly g-continuous since $f^1(V)$ is a strongly g-closed set of (X, τ) for every closed set V of (Y, σ) . g is not α^* -continuous since $\{b,c\}$ is a closed set of (Y, σ) but $g^{-1}(\{b,c\}) = \{a,c\}$ is not α^* -closed.

Definition 5.12 - A function $f: (X, \tau) \longrightarrow (Y, \sigma)$ is called α^* -irresolute if $f^1(V)$ is a α^* -closed set of (X, τ) for every α^* -closed set V of (Y, σ) .

Theorem 5.13 - Every α^* -irresolute function is α^* -continuous.

Proof: Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be an α^* -irresolute. Let V be a closed set of (Y, σ) . Every closed set is α^* -closed. Therefore V is α^* -closed. Then $f^1(V)$ is α^* -closed since f is α^* -irresolute and hence f is α^* -continuous

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 5.14 - Let $X = Y = \{a,b,c\}$, $\tau = \{\emptyset, X, \{c\}, \{b,c\}\}$ and $\sigma = \{\emptyset, X, \{a,b\}\}$. Define $g: (X,\tau) \longrightarrow (Y,\sigma)$ by g(a) = c, g(b) = a, g(c) = b. $g^{-1}(\{c\}) = \{a\}$ is α^* -closed in (X,τ) and hence g is α^* -continuous

 $g^{-1}(\{b,c\}) = \{a,c\}$ is not α^* -closed in (X,τ) and hence g is not α^* -irresolute.

Theorem 5.15 - Let (X, τ) be a T_{α}^* space and $f: (X, \tau) \longrightarrow (Y, \sigma)$ be α^* -irresolute, then f is continuous.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an α^* -irresolute. Let V be a closed set of (Y, σ) . Every closed set is α^* -closed. $f^1(V)$ is α^* -closed since f is α^* -irresolute. Every α^* -closed set is closed in X, since (X, τ) is a T_{α}^* space. Therefore $f^1(v)$ is closed and hence f is continuous.

Theorem 5.16 - Let (Y, σ) be a T_{α}^* space and $f: (X, \tau) \longrightarrow (Y, \sigma)$ be continuous, then f is α^* -irresolute.

Proof: Let A be a α^* -closed set in Y. Then A is closed, since (Y, σ) is a T_{α}^* space. $f^1(A)$ is closed, since f is continuous. Every closed set is α^* -closed. Therefore f is α^* -irresolute.

Theorem 5.17 - Let (Y, σ) be a $_{\alpha g}T_{\alpha^*}$ space and $f: (X, \tau) \longrightarrow (Y, \sigma)$ be α^* -irresolute, then f is αg -irresolute.

Proof: Let A be a αg -closed set in Y.Then A is α^* -closed, since (Y, σ) is a αg -closed. Therefore f is αg -irresolute. Every α^* -closed set is αg -closed. Therefore f is αg -irresolute.

Theorem 5.18 - Let (Y, σ) be a ${}_{gs}T_{\alpha}{}^*$ space and $f: (X, \tau) \longrightarrow (Y, \sigma)$ be α^* -irresolute, then f is gs-irresolute.

Proof: Let A be a gs-closed set in Y. Then A is α^* -closed, since (Y, σ) is a $_{gs}T_{\alpha^*}$ space. $f^1(A)$ is α^* -closed, since f is α^* -irresolute. Every α^* -closed set is gs-closed. Hence $f^1(A)$ is gs-closed and therefore f is gs-irresolute.

References

- [1] Andrijevic.D, Semi-preopen sets, Mat. Vesnik, 38(1)(1986), 24-32.
- [2] Arokiarani.I, Balachandran.K and Dontchev.J, Some characteristics of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 20(1999), 93-104.
- [3] Arya.S.P and Nour.T, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719

- [4] Balachandran.K, Sundaram.P and Maki.H, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 12(1991), 5-13.
- [5] Bhattacharya.P and Lahiri.B.K, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.
- [6] Devi.R, Balachandran.K and Maki.H, Generalized α-closed maps and α-generalized closed maps, Indian J. Pure. Appl. Math., 29(1998), 37-49.
- [7]] Devi.R, Balachandran.K and Maki.H, Semi-generalized closed maps and generalized closed maps, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 14(1993), 41-54.
- [8] Devi.R, Balachandran.K and Maki.H, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J. Pure. Appl. Math., 26(3)(1995), 271-284.
- [9] Dontchev.J, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. 9 Math.,17(1995),35-48.
- [10] Levine.N, Generalized closed sets in topology, Rend. Circ. Math. Palermo,19(2)(1970), 89-96.
- [11] Levine.N, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [12] Maheshwari.S.N and Jain.P.C, Some new mappings, Mathematica, Vol.24 (47) (1-2) (1982), 53-55.
- [13] Maki.H, Devi.R and Balachandran.K, Associated topologies of generalized α-closed maps and α-generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math.,15(1994),51-63.
- [14] Maki.H, Umehara.J and oiri.T.N, Every topological space is pre- $T_{1/2}$, Mem. Fac. Sci. Kochi.Univ. Ser. A. Math.,17(1996), 33-42.
- [15] Mashhour.A.S, Hasanein.I.A and El-Deeb.S.N, α -continuous and α -open mappings., Acta Math. Hung., 41(3-4)(1983), 213-218.
- [16] Mashhour.A.S, Abd El-Monsef.M.E and El-Deeb.S.N, On pre-continuous and weak pre-continuous mappings, Proc. Math, and Phys. Soc. Egypt,53(1982), 47-53.
- [17] Njastad.O, On some classes of nearly open sets, Pacific J. Math., 15(1965),961-970.
- [18] Pauline Mary Helen, Veronica Vijayan, Ponnuthai Selvarani, Punitha Tharani, Strongly g-closed sets and Strongly g**-closed sets, IJMA., 3(8)(2012),3108-3112.