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Abstract

In this paper, the well known concept of matching of graph theory has been
discussed in the setting of semigraphs resulting in few new concepts like maximal vertex-
saturated matching, minimal edge-saturated matching and optimum matching which have
no parallels in graphs. In this connection, we record a number of characterizations of
maximum matching and other related terms of semigraphs developed here and also
establish parallels of theorems due to Berge and Kdnig for graphs. A new concept on total
adjacent domination in connection with adjacent domination in semigraph as studied by
Kamath and Bhat [7] is introduced here and few results are developed that establish links
between adjacent domination number and total adjacent domination number as well as
between total adjacent domination number and minimal edge-saturated matching.
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Maximal vertex-saturated matching, Minimal edge-saturated matching, Optimum
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1. Introduction

The matching is one of the most interesting and well-studied concept in Graph Theory and
it has vast applications in real world situations. One of the most significant results about
this concept is due to C. Berge [4], which gives the characterization of a maximum
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matching. D. Konig [6] and P. Hall [5] establishedults on matching for a bipartite graph
that assume much significance in graph theory.

Coming to the context of this paper it may be nogred that there are two
important generalizations of graphs, one of whiglalled a hypergraph, while another is
called a semigraph. The former being a generatizdiy C. Berge [4] the latter is due to E.
Sampathkumar [2].While both hypergraph and semigedjow edges with more than two
vertices, however, the vertices in any edge ofmaigg@aph follow a particular order though
the vertices in a hypergraph have no such ordee different modifications in edge
structure of both the generalizations have widetiesl periphery of applications and
interpretations of graphs to real situations irfedént perspectives. So far the semigraphs
are concerned this fact has been justified by smeghmples here.

The pioneering works on “Semigraphs” by E. Sampatidr [2] have already
created much interest and enthusiasm among theh gilagorists and the flow of
development of this newly born idea is on the gdirend. In [7], S. S. Kamath and R. S.
Bhat introduced three types of domination in seapps. Y. B. Venkatakrishnan and V.
Swaminathan [8] introduced the domination and ietel@nce parameters for the bipartite
semigraph. Xchromatic number, xhyperindependent number andg-iKedundant
number are few other concepts in semigraph defayetiem [8].

2. Preliminaries
The terminology and notations used here are ag|iand [2] unless otherwise specified.

A Semigraph G is an ordered paiMX), whereV is a non-empty set of points,
called vertices oz andX is a set oh-tuples (>2) of distinct vertices of G, called edges
satisfying the following conditions:

(a) Any two edges have at most one vertex in common
(b) Any two edgedu,,u,,...,u,) and(v,,v,,...,v,,) are equal if and only if (in = n
and (ii) eitherq =y Oru,=v,_,, for 1<i<n.

For obvious reason, all vertices on an edge ofmaiggeaph are considered to be
adjacent to one another. Accordingly, the vertiaes divided into four types namely end
vertices, middle vertices, middle-end vertices &ulated vertices. Also the degree of a
vertex in a semigraph has different forms in thetert of semigraph depending upon its
position on a particular edge or edges.

A semigraphG may be drawn as a figure in a plane using theo$gboints
representing its vertices. An ed@e= (v,,v,....,v, )is represented by a simple open Jordan

curve (which may be drawn as a straight line asagapossible) whose end points are the
end vertices oE. The middle vertex i.em-vertex ofE which is not am-vertex of another
edge of G is denoted by a small circle placed on the cunvbatween its end vertices, in
the order specified bi. The end vertex of an edge which is notnawertex of another
edge is represented by a thick dot. Ifraivertex of an edg€& is an end vertex of another
edgeE’, we draw a short tangent to the circle at the ehthe edge&’ (for illustration,

refer to Fig.1)

R S. Publication (http://rspublication.com), rspublicationhouse@gmail.com Page 22



International Journal of Computer Application Issue 3, Volume 6 (November - December 2013)
Available online on http://www.rspublication.com/ijcalijca_index.htm ISSN: 2250-1797

The structure of an edge of a semigraph helps antlergence of new ideas like
subedge and partial edge of edges.suledge of an edgeE=(vl,v2,...,vn) is ak-tuple
E' = (vil,viz,...,vik) where 1<i, <i, <...<i,  <n or 1<i, <i,, <...<i;<n and apartial
edgeof Eis a (-i+ 1)-tuple E(\/i,vj):(vi ,viﬂ,...,vj), where I<i<j<n(ora (-j+ 1)
tuple E(vl. ,vi): (vj ,vjﬂ,...,vi), where ¥j <i<n). From this definition it is clear that

every edge is a subedge (partial edge) of itsalf aproper subedge is not an edge. For
otherwise it would contradict the condition thatotwdges have at most one vertex in
common.

There are four types of degree for a vertex inraigeph as defined in [2] viz.,
degree, edge degree, adjacent degree and conseaudjacent degree. Here, we give
definition for adjacent degree only. Aljacent degree of a vertexv denoted bylegav is
the number of vertices adjacentto

Example 2.1 A semigraph is displayed in Fig.1, where the vediw,,v,,v,are end

vertices, v,,V;, Vs are the middle vertices and the verticesv,are middle-end vertices.
(v5,Vs,Vg) is a subedge of the edde,,v,,Vs,V,,V,) . But (v,,v,V,) represents a partial
edge of the edgév,,v,, Vs, Vv, V,) . Also,deq, v, =6 anddeg, Vv, =3.

Vs Ve

=<9

Fig.1

Similar to the concept of subgraph of a graph, weéiné subsemigraph of a
semigraph depending on the concept of subedges s#nagraph. Thus, a semigraph

G'=(V',E') is asubsemigraph of a semigraptG = (V,E) if V'OV and the edges in
G' are subedges of edges®tnd it is called apanning subsemigraph if, V =V'.

A spanning subsemigraph is callsaturated spanning subsemigraph [3] of a
semigraph if its edges are the same as the edgibe @friginal semigraph. We illustrate
this by an example given below.
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Example2.2 Let G = (V, X) be a semigraph wheké ={v,,v,,Vv,,Vv,,Vs,V,,V,} and
X ={(vy,V,,V3), (v, vy, Ve), (V5, V), (Vs, Vg, V5 )} @s shown in the Fig.given below

Vl V2 V3
Vy
O °
V5 V6 V7
Fig.2
A saturated spanning subsemigraph of the alseveigraph G is displayed below
(Fig.3).
Vv, v, Vv,
O °
Vy
—O0— °
V5 V6 V7
Fig.3

In [2], E. Sampathkumar defined adjacency grapbaated with a semigraph. The
adjacency graph G, associated with a semigragh= (V, X) has the same vertex 3¢of

G with two vertices inG, being adjacent if and only if they are adjacerin

Example 2.3 The adjacency graplt, associated with the semigraph given in Fig.2 is
displayed below (Fig. 4).

Fig. 4
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The concepts of subedge and partial edge of a saphi@ motivate us for defining
two different types of path. A path is said to be ams-path (strong path) if any two
consecutive vertices on it are also consecutivBces of an edge db otherwise, it is said
to be aw-path (weak path). Thus ans-path in a semigraph consists of edges and partial
edges only. Arspath is ans-cycle (strong cycle) if its beginning and end vertices are
same. A semigrapls is connected if there is aw-path or ans-path between any two
vertices ofG. However, we shall consider ordypaths here.

Example 2.4 The Fig.5 displays &, —v, s-path viz.vEv E V.E.v, E,v, of a semigraph,
whereE, = (v;,V,,V;), B, =(v5,V,,Vs, V) , By = (Vg, V) @ndE, =(v,,,V,). This path can be
written as \,\,V, VoV VoV, - Butvivv,vv, v, is av, —v, w-path because it involves the
subedgedv,,v,) and(v,,v,,V) .

Fig.5

In [7], S.S. Kamath and R.S. Bhat defined adjacemghbour set and consecutive
neighbour sein a semigraph. For any vertexn a semigrapl® = (V, X), the setNa(v) =
{xOV | x is adjacent ta} is called anadjacent neighbour set of the vertexv and the set
N.(v)= {xOV | x is consecutive adjacent tg is called a consecutive adjacent
neighbour set of the vertexv. If SOV, then N,(S)=0 N, ¢). The setN_, § )is
called the neighbourhood of the &ih G.

In a semigrapit, a vertexv and an edgg are said t@over each other ivOOE. A
setS of vertices that covers all edges of a semigi@ph said to be aertex cover for G.
Thevertex covering number a, = a,(G)is the minimum cardinality of a vertex cover for
G. An edge cover for a semigraghis a subset 0K=X(G) that covers all vertices of the
semigraphG = (V, X) and the minimum cardinality of such a subsetalied theedge
covering number of G. It is denoted by, (G).

A setSof vertices of a semigraph is said to béndependent if no edge is a subset
of S The maximum cardinality of such a set is ¥ieetex independence number of G and

it is denoted by, = 5,(G ) Similarly, a set. of edges of a semigraph is said to be
independent if no two of the edges ih are adjacent. Thedge independence number
B, = B,(G) of Gis the maximum cardinality df.
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The removal of a vertax, 1<i<n(n=3) from an edge
E=\V,V,,...V 4,V ,Vi,y,...v,) of a semigraphG = (V, X) results in a subedge
E'=(V,Vy,... V4, VyysooV,) - If we remove a vertex from G then we obtain a semigraph
G-v=(V', X)whereV'=V «{ V} and the edge irX' are defined as follows:

If EOX andE does not contaimthen ECJ X" .
If EO0X andE containsy then E-v X' if and only if|E = 3.

The removal of an edgk from G results in a semigrapls’ =(V', X") where
V=V 'and X'=X-E.

A cut vertex in a semigrapl® is the vertex whose removal increases the nuntber o
components ofG and abridge is an edge whose removal increases the number of
components ofs. If there is a bridge in a semigraph then, thedistewo cut vertices
incident with the bridge. Anon-separable semigraph is the one which is connected,
nontrivial and has no cut vertices.

Example 2.5 In the semigraph shown in Fig. 6 below, the vesteis a cut vertex whereas
Vv, is not a cut vertex. The eddg = (v,,v,,V,;) is a bridge buE, = (v,,v,,V;) is not a
bridge.

Vl El YZ V3 \fg V7

Fig. 6

Let G = (V, X) be a semigraph. A sdD IV is calledadjacent dominating set
(ad-set) if for every vV —D there exist aullD such thatu is adjacent tos in G. The
adjacency domination number is the minimum cardinality of an adjacent domingtset

of G. Itis denoted by, =y, (G )[7]

An edge bipartite semigraph is a semigraph which has no any edujycles.

A dendroid is a connected semigraph withasttycle. A dendroid is an edge
bipartite semigraph and in fact, it is a generdimraof a tree. The example of a dendroid is
shown in the Fig. 7.
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Fig. 7

Proposition 2.1 [2] If T = (V, X) is a dendroid, them,(T) = S,(T).

For details on preliminaries about semigraphseferito [2].

3. The Matching in Semigraphs

In case of graphs, two edges are adjacent to ethar d they have a common
point. But in semigraphs there are different typeadjacency of edges, because the edges
are n-tuple, which are defined as follows: Two edgesemigraph are said to be rfip
adjacent if the common vertex is a middle vertexmmé and an end vertex of the other, (ii)
mmadjacent if the common vertex is a middle vert&baoth of the edges and (iige
adjacent if the common vertex is an end vertexath lof the edges [2].

Two distinct edges€; and E; in a semigraph are said to be disjoint or adjacent
according asE, n E,|=0or|E, n E,|=1.

Definition3.1 A matching M in a semigraph G = (V, X) is the set of paiseidisjoint
edges.

Definition 3.2 A vertex v of a semigraph £(V, X) is said to besaturated, if there exists a
matching M such thav L1 E for someE [1M

Definition 3.3 An edge E is said to tsaturated by a matching MiELCIM .
Definition 3.4 A matching that saturates all the vertices is chigperfect matching.

Clearly, a perfect matching and afactor of a semigraph are one and the same
thing [3].

Definition 3.5 A matching M saturating the maximum number of eddessemigraph G
is called amaximum matching.

A set consisting of5, (G) independent edges (& is a maximum matching @.

We now illustrate some examples of matching anfepematching.
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Example 3.1 There is a set of groups of worke&,,W,,...W,} such that in each group

there exist at least two workers and between aoygreups there is at most one worker in
common. Provided that each of these groups is fdraseording to the experience of its
membersthe issue of determining the maximum number of ggdo be involved in a
certain number of works so that no worker is atetko more than two works at a time or
the number of groups of workers to be involved artain number of works so that all
workers are involved in the groups with the obvioasdition that no worker can do more
than two works at a time reflects the example ahaximum matching or a perfect
matching.

Example 3.2 There are p number of citiegor stationg and g number of passenger train
routes(a route may be used to imply the passage of a tminhing all the stations on its
way or those stations on its way at which it hagppage} through these cities such that
between any two routes there exists at most ogeircicommon and in any route there
exist more than or equal to two cities. Such a odtws clearly capable of describing
various types of matchings of semigraphs.

C. Berge [4] gives a characterization of maximumtahimg in graph and
hypergraph. We give a similar result in semigraplefore going to characterize the
maximum matching we incorporate a definition folemhby a theorem.

Definition 3.6 A collection{E,,E,,E,,....E,} of edges of a semigraph G = (V, X) is said
to be achain if (i) |E n E|=1and (ii)‘Ei N Ej‘:o, for every #j,j#i+1, i.e. no
edges are adjacent except the consecutive ones.

The length of a chain is oddespectively, everif the number of edges involved in
it is odd(respectively, evgn

Definition 3.7 An M-alternating chain is a chain with respect to a matching M that
alternates edges between those in M and thosennbt. iAn M-alternating chain i$1-
augmented with respect to a matching M, if both the startiamgd ending edges are M-
unsaturated edges.

Clearly, the length of an M-augmenting chain rekatio a matching M is always
odd. It is always possible to obtain an s-path feoohain.

Proposition 3.1 Let M,AM, = (M, —=M,) U (M, —M,) be the symmetric difference of two

matchings of semigraph G and H be the subsemigodih induced b ,AM,. Then the
components of H either contain an s-cycle or arathtpnith edgeqor partial edge¥
alternately inM, and M, such that the starting and the ending verticethsf s-cycle or

s-path are unsaturated iM,orM,.

Proof:

Let v be any vertex irH. Since M, and M, are matchings i&, there is at most
one edge inM,or there is at most one edge ikl and at most one edge M, incident
with v. Hence the edge degreewah H is either 1 or 2. So, every component$ids ans-
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cycle or ars-path with edges (or partial edges) alternateliinand M, . Also the starting
and ending vertices of thgscycle ors-path are clearly unsaturated eitheMiporM,. m

We now obtain a characterization of semigraphateelmaximum matching.

Proposition 3.2 A matching M in a semigraph G &, X is a maximum matching if and
only if G contains no M-augmenting chain.

Proof:

Let M be a maximum matching in a semigra®k (V, X) and le{E,,E,,E,.....E,}
be an M-augmenting chain i%. Then by definition, this chain is of odd lengtidahe
edge£ | E,,....E, are not inM whereas the edgel,,E,,...,E _ are inM. Also the edges
E,, E;,....E, form a matching foG, whose length igV|+1, |M| being the number of edges
in M. This contradicts the maximum natureMf HenceG has ndvl-augmenting chain.

Conversely suppose th@tis without anyM-augmenting chain. LeM ' be another
matching inG larger thanM. LetH = MAM' . Then, by proposition 3.1, we have an
alternating chain which is ancycle or ans-path with more edges (or partial edgesMn
than edges iM. This chain can be apath only which starts and ends with edge$fih
and so it is aM-augmenting chain ic. =

We now derive a result relating a matching witheat@x cover of a semigraph.

Proposition 3.3 Let M be a matching and C be a vertex cover ofraig@ph G. Then
|C| > [M].

Proof:
The set C covers every edges of the semigraph Geabkehe set M contains only
the disjoint edges of G. Therefore, we hav€|>|M|. =

From the preceding result it follows immediatehator,(G) = 5,(G), for any

semigraphG. We now focus on a result for an edge bipartitmigeaph G, analogue of
which is the well known Koénig's [6] theorem of gragheory.

Proposition 3.4 Let G be any edge bipartite semigraph. Then theimax size of a
matching in G equals the minimum size of its vertaser.

Proof:
We prove the theorem by considering various ptessilases of semigraphs as
follows:

Casel: Supposés is a connected semigraph without a cut vertex3.is. non-separable.

Every scycle in G must be even. We consider a longestcycle
C=EE,E;..E _EE. (nis an odd positive integer) i6. From thiss-cycle, it is
possible to find a longestpathP =E,E,E,..E,_E, in G of odd length from which we
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have a matchingM. We construct the matching by choosing the edges
E,,E;, E;,....E, ., E, from thes-pathP. This s-pathP is notM-augmented, as it starts and

ends with theM-saturated edges (or partial edges). Thereéfbie a maximum matching in

Gand|M |= nT+1 Consequentlys, (G) = nT+1

We now obtain a vertex covering s8tfrom the s-cycle C, by choosing the
common vertex from every pa(g;,E,;, () = 1,3,...n) of thes-cycle. The cardinality of

+
the setS isnT1 whereSis the minimum vertex cover set for the edgeshefstcycle C.

ThereforeS =4,= nT+1 and thus follows the proposition.

Case Il: Suppose the semigraghis disconnected so th& has at least two components.
Applying Case | for each component@fwe have the required result.

Caselll: Suppose the semigra@hhas a cut vertex

Let G, and G,be the two components @, which are clearly edge bipartite
semigraphs. Applying the Case | for each of them olgain, £,(G,) =a,(G, ) and
B.(G,) =a,(G,). If Sis a minimum vertex cover set Gf

a,(G) :|S| =a,(G) +a,(G,) +{ V}|’ (1)
whereyv is the cut vertex ob.

If M is the maximum matching &3,

B.(G) =M|= B(G) + B(G,) +1 2)
1 in (2) above corresponds to the edge considerdtie matching o6.
Hence from (1) and (2), we hawg (G) = 8,(G . )

Case | V: Suppose the semigrahhas a bridgé&.

Then we obtain at least one cut vertexGin Applying the Case Ill we obtain the
required result.

Case V: Suppose the semigraghis a dendroid.

Then the result follows from the Proposition®.1

In graphs two maximum matchings have the same puwibvertices. But the same
is not true in case of semigraphs. However, in twanection, we have the following
definition.
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Definition 3.8 A maximum matching M of a semigraph G is said tonbeimal vertex-
saturated, if it saturates maximum number of vertices of G rgnall the maximum

matchings in G. We denote it B, and the number of vertices saturated M;,,dis
called the power oM ., denoted byP(M.,.J) .

This is illustrated by the example given below (B)gThe edges of the semigraph
shown in the Fig.8 at, =(v,,v,,v,), E, =(v;,v.,V,), E, =(v,,v,), E, =(v,,vs) and
E, =(v,v,). The matching M, ={E,E.} and M, ={E, E.}are both maximum
matchings. But the number of vertices saturatedvlyis more than those saturatedNby

Vl a V2 V3 E2 V6 V7
° —O— ® O— ®
E, =
E4
®
V, ¢ Vg
Fig.8

The three immediate results in this connectionpaoeluced below.

Proposition 3.5 In a semigraph G = (V, X), let M be a maximal versaturated
matching. If p(M ,...) =V | then the matching M is the perfect matching of G.

Proof:
The proof is trivial since for a maximal vertextsated matchingM with

P(M ) =V |the matchingv saturates all the vertices @fand therefore it is clearly a
perfect matching if. m

Proposition 3.6 Let M be a maximum matching in a semigraph G. TWes a maximal
vertex-saturated matching if and only if

D INL(W)[> DN (V)
VOIM VOM’
for any maximum matchin§l' other than Min G.

Proof:

SupposeM is a maximal vertex-saturated matching and is any other maximum
matching of the semigrapB. Then there is at least ond’' —unsaturated vertex i
which is saturated byl. So we have,
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2 INLW)[> D [N, (V)

viM vOM'

Conversely, suppose
2N ()] > 2, N (V)
vOM VM’

for any two maximum matchingl and M’ in G.

We are to show tha#l isM .. Let us assume the contrary i.e.,NMebe notM

But the number of vertices saturated Myand M’ is same. Thus, for subsemigraphs
induced by the vertices which are saturatetflgnd M ' respectively we shall have,

2N (W)= 2 [N (v)]

which contradicts our assumption. Hence followsrdseilt.m

Proposition 3.7 Let M be a maximum matching in a semigraph G. THeis maximal
vertex-saturated matching if and only if

2N (W) > D[N (V)

VM VOM’
for any maximum matchin§l’ other than Min G.

Pr oof:
Trivial.m

While studying the maximum matchings and maximatesesaturated matchings
for semigraphs we attempted to characterize thenfpfoq) complete semigraphs, though
without success. Particularly, it remains open fitod the maximal vertex-saturated

matching on a (p, q) complete semigraph G andoitgepP(M |..c) .

Similar results can be obtained in connection i concept of perfect matching
of semigraphs. We observe that, contrary to thesa$ graphs, there are examples of
perfect matchings (which are clearyfactors [3]) of semigraphs having distinct number
of edges. To confirm our assertion, we requireftllewing definition of minimal edge
saturated matching for semigraphs.

Definition 3.9 A perfect matching M of a semigraph G is said tonti@imal edge-
saturated, if it saturates the minimum number of edges ahtdng all perfect matchings of

G and it is denoted bM mes - The number of edges saturated Mmesis called the

power ofVl es which we denote bp(M mes) .
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We demonstrate the situation with the help of aangxe as shown in Fig. 9 below
where, we have two perfect matchingsM ={(v,V,,\,V,),0:,V,V,,,)} and
M ={(v;, V), (V5,V;),(V5,V),(V,,V)} out of which the matchingM is minimal edge-
saturated.

S o Vs
V, O '®) \Z
V, Ot > Vg
ve VA

4

Fig. 9

Proposition 3.8 In a semigraph G, a perfect matching M is mininggesaturated if and
only if, @,(G) =|M| = P(M ..) wherea,(G) denotes the edge covering number of G.

Proof:
SupposeM is a minimal edge-saturated matching of a semig@pThen it is a
perfect matching of G covering all of its verticédso it contains the least number of

edges covering all vertices 6f Consequentlyg, (G) =|M|=P(M,,.J).

Conversely, supposé is a perfect matching d& with a,(G) :|M| =P(M .-

Thus, M is a perfect matching saturating minimum numberedfes ofG. Also, by
definition of minimal edge-saturated matchingsitclear thaiM is minimal edge-saturated
inG. m

In case of an ordinary graph a maximum matchirigrates largest number of its
vertices. However, the same is not always truesémnigraphs. In other words, a matching
in a semigraph may saturate largest number ofcesrtthough it may not be maximum
one. Therefore, it is not out of context to formalthis situation in the form of a definition
which may help characterization of distinguishirgpects of semigraphs. We like to
name such a matching as@stimum matching.
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Definition 3.10 A matching M of a semigraph G is called @gtimum matching if it has
the smallest number of edges saturating the langestber of vertices of G.

In the light of this definition, it follows that minimal edge saturated matching of a
semigraph is always an optimum matching.

The Fig.10 shows a semigraph in which the matchwg={E,,E,,E;} is a
maximum matching while the matchiniyl ={E,,E. is} not maximum. However, the

number of vertices saturated By is more than the number of vertices saturatet by
Thus, the matchiniyl is an optimum matching.

V6
E
iy, E v, v, ?
® O O O Vs
E, E
4 E5
Vg Vo
\Z
Fig.10

Application: The Example 3.2 mentioned above hints at scopeafiplications in
networking problems particularly, in railway netwsrof a country. Perhaps, we may
design a rail network to have maximum number ofually disjoint routes in which we
can provide trains to reach maximum number of gi(sations) running at the same time
(corresponding to a maximal vertex saturated matphor a rail network to have a
minimum number of routes reaching maximum numbestafions (corresponding to an
optimum matching of a semigraph).

We establish the following property of an optimomatching in semigraphs.

Proposition 3.9 Let M ,and M be a matching and maximum matching of ag@ph G
respectively. TheM , is an optimum matching of G if and only if

IN, (Mg ) BIN,(M)].
WhereN, (M) ={0ON,(vV)|[VOE,EOM} and N,(M) ={0ON, (v)|[vOE,EOM}

Proof:
Let M,,be an optimum matching @. Then there is at least one vertexGoivhich

is not saturated byl. So, we have,
N, (M) PIN,(M)].

If the maximum matchindl is also a perfect matching Gf we have
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N, (M) EIN,(M)].
Hence,[ N, (M ,,) BIN, (M )]

Conversely, letM ,andM be a matching and maximum matching of a semigraph
G respectively such thafN,(M,,)BIN,(M .)[Then from the definition of optimum
matching it is clear thai , is an optimum matching @. =

4. Relation between Domination and Matching in Semigraph

In this section, we introduce the concept of t@djacent domination and deduce some
relations between the adjacent domination anddtad adjacent domination in a particular
type of matching in semigraphs.

The concept of total domination in graph was intietl by Cockayne et al. [10].

Definition 4.1 A set of vertices in a semigraph G = (V, X ) isds@ be atotal adjacent
dominating set (tad-set) in G, if for every vertex of V is adjacent toextex in D. Theotal
adjacent domination number of a semigraph is the minimum cardinality of aatot
adjacent dominating set in G. It is denoted)y= .. (G).

In this case, we mention the following two results.

Theorem 4.1 [11] For every graph G with no isolated vertg¢G) < 5,(G) , wherey(G)
and S,(G) are the domination number and edge independenedauof G respectively.

Theorem 4.2 [12] For every k-regular graph G with=3, y,(G) < B,(G), where y,(G)

and S,(G) is the total domination number and edge indepecelenumber of G
respectively.

We now obtain the following results on total dontioa number of semigraphs.

Proposition 4.1 For any semigraph G, (G) =y,(G,), where y,(G,)is the total
domination number of the adjacent gra@ of G.

Pr oof:
Trivial. m

We now deduce the following proposition in coni@tiwith the set of maximum
matching, adjacent domination number, total donmathumber and minimal edge-
saturated matching.

Proposition 4.2 Let the semigraph G £V, X) without any isolated vertex and contain a
minimal edge-saturated matchind ... Theny,(G) < p(M,...), where p(M . denotes

the power of minimal edge-saturated matchvhg,.in G.

mes.
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Proof:

Let D be a minimal total adjacent dominating set®f (V, X). SinceG is a
semigraph having no isolated vertex, each verte® abvers at least one edge Gfand
therefore for any, U D we have,

C, ={E |v, OE,E OX}.

We now construct a st of edges ofs by taking one edgé&; from eachC, such
that the cardinality ofE;is maximum among all the edgesQp,v, 1D and satisfying

|E, nE; [=0 for i # j. Then the seM is clearly a matching i6. We now consider the
following cases.

Case 1. Let M is not a perfect matching @. SinceG contains a minimal edge-saturated
matching, therefore it is possible to obtain a @&trimatching fronM by adding one or
more edge td1. Thus we havg, (G) < p(M o) -

Case 2: Let M be a perfect matching such tiMtis a minimal edge-saturated matching.
Theny,, (G) < p(M ;).

Case 3. Let M be a perfect matching which is not a minimal edgerated matching. In
that caseG contains more than one perfect matching. Thes passible to find out a
minimal edge-saturated matching. Sg, (G) < p(M,.. . This completes the require
result.m

Proposition 4.3 For any semigraph G without isolated vertex contagnminimal edge-
saturated matchinM ..., V..(G) < B,(G).

Proof:
Since G has a minimal edge-saturated matcivhg,, M .(G) < £,(G). Also

from the above Proposition 4.2, we hgy€G) < p(M ... - Hence,y,.(G) < £,(G )m

In graph theory M. A. Henning et al. [12] succefigfwbtain the Theorem 4.2
which determines the relationship between total idation number and edge
independence number (maximum matching number). Westigate the relationship
between total adjacent domination number and eddependence number in semigraphs
and obtain the following results.

Proposition 4.4 Let G be a semigraph without isolated vertex hawangiinimal edge-
saturated matchinlyl Theny, (G) < B,(G) andy, (G) < p(M

mes* mes) :

Proof:
From the definition of adjacent domination andatadjacent domination in any
semigraphG with on isolated vertey, (G) < y,, (G .)Combining the resujt, (G) < B,(G )

(Proposition 4.3) with the above inequality we haygG) < S,(G).
Also,y,, (G) < p(M ...)(Proposition 4.2) and, (G) < y,,(G ) determines
¥.(G) < p(M ... . Hence the proof is completeasl.

R S. Publication (http://rspublication.com), rspublicationhouse@gmail.com Page 36



International Journal of Computer Application Issue 3, Volume 6 (November - December 2013)
Available online on http://www.rspublication.com/ijcalijca_index.htm ISSN: 2250-1797

Proposition 4.5 [7] For any semigraph G without isolated vertex contaanp number of
vertices,

5 1S @=P-50).

Where A, denotes the maximum adjacent degree of G (&) denotes the edge
independence number.

Corollary 4.1 If any semigraph G without isolated vertex contagnp number of vertices,
contains a minimal edge saturated matching theinae

PSP < p- B (G).

a

Proof:
Combining the Proposition 4.4 and Propositionwlesobtain the require resui.

Proposition 4.6 For every graph G which contains a perfect matchipgG) < S,(G).
Where y,(G) and f,(G) are the total domination number and edge indepeceleumber
of G.

Proof:
Every graph being also a semigraph, the resulloial immediately from
Proposition 4.3m

5. Conclusion
The results and examples discussed in this palearlg indicate wider scope of
applicability of semigraphs in real situations imieh the methods of ordinary graphs

cannot be applied owing to its particular struct@er future attempts will be to explore
possibilities of some more such results.
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