
 

      Abstract 

In this paper, the well known concept of matching of graph theory has been 
discussed in the setting of semigraphs resulting in few new concepts like maximal vertex-
saturated matching, minimal edge-saturated matching and optimum matching which have 
no parallels in graphs. In this connection, we record a number of characterizations of 
maximum matching and other related terms of semigraphs developed here and also 
establish parallels of theorems due to Berge and König for graphs. A new concept on total 
adjacent domination in connection with adjacent domination in semigraph as studied by 
Kamath and Bhat [7] is introduced here and few results are developed that establish links 
between adjacent domination number and total adjacent domination number as well as 
between total adjacent domination number and minimal edge-saturated matching.    
 
 
Keywords: - Semigraph, Total adjacent domination, Matching, Maximum matching, 
Maximal vertex-saturated matching, Minimal edge-saturated matching, Optimum 
matching. 
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The matching is one of the most interesting and well-studied concept in Graph Theory and 
it has vast applications in real world situations. One of the most significant results about 
this concept is due to C. Berge [4], which gives the characterization of a maximum 
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1. Introduction 



matching. D. König [6] and P. Hall [5] established results on matching for a bipartite graph 
that assume much significance in graph theory.    
 
  Coming to the context of this paper it may be mentioned that there are two 
important generalizations of graphs, one of which is called a hypergraph, while another is 
called a semigraph. The former being a generalization by C. Berge [4] the latter is due to E. 
Sampathkumar [2].While both hypergraph and semigraph allow edges with more than two 
vertices, however, the vertices in any edge of a semigraph follow a particular order though 
the vertices in a hypergraph have no such order. The different modifications in edge 
structure of both the generalizations have widened the periphery of applications and 
interpretations of graphs to real situations in different perspectives. So far the semigraphs 
are concerned this fact has been justified by simple examples here.  

The pioneering works on “Semigraphs” by E. Sampathkumar [2] have already 
created much interest and enthusiasm among the graph theorists and the flow of 
development of this newly born idea is on the rising trend. In [7], S. S. Kamath and R. S. 
Bhat introduced three types of domination in semigraphs. Y. B. Venkatakrishnan and V. 
Swaminathan [8] introduced the domination and independence parameters for the bipartite 
semigraph. Xa-chromatic number, Xa-hyperindependent number and Xa-irredundant 
number are few other concepts in semigraph defined by them [8]. 
 
 

2. Preliminaries 
  
The terminology and notations used here are as in [1] and [2] unless otherwise specified. 
 

A Semigraph G is an ordered pair (V,X), where V is a non-empty set of points, 
called vertices of G and X is a set of n-tuples (n≥2) of distinct vertices of G, called edges  
satisfying the following conditions: 

 
(a) Any two edges have at most one vertex in common. 

 (b) Any two edges ( )nuuu ,...,, 21  and ( )mvvv ,...,, 21  are equal if and only if (i) m = n 

and (ii) either 
ii vu =  or iu = 1+−inv  for 1≤i≤n. 

 
For obvious reason, all vertices on an edge of a semigraph are considered to be 

adjacent to one another. Accordingly, the vertices are divided into four types namely end 
vertices, middle vertices, middle-end vertices and isolated vertices. Also the degree of a 
vertex in a semigraph has different forms in the context of semigraph depending upon its 
position on a particular edge or edges.  

 
 A semigraph G may be drawn as a figure in a plane using the set of points 
representing its vertices. An edge ( )nvvvE ,...,, 21= is represented by a simple open Jordan 

curve (which may be drawn as a straight line as far as possible) whose end points are the 
end vertices of E. The middle vertex i.e., m-vertex of E which is not an m-vertex of another 
edge of  G is denoted by a small circle placed on the curve in between its end vertices, in 
the order specified by E. The end vertex of an edge which is not an m-vertex of another 
edge is represented by a thick dot. If an m-vertex of an edge E is an end vertex of another 
edgeE′ , we draw a short tangent to the circle at the end of the edgeE′ (for illustration, 
refer to Fig.1). 
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The structure of an edge of a semigraph helps with emergence of new ideas like 
subedge and partial edge of edges.  A subedge of an edge E= ( )nvvv ,...,, 21  is a k-tuple 

( )
kiii vvvE ,...,,

21
=′  where niii k ≤<<<≤ ...1 21  or niii kk ≤<<<≤ − 11 ...1  and a partial 

edge of E is a (j - i + 1)-tuple ( ) ( )jiiji vvvvvE ,...,,, 1+= , where 1 ≤ i< j≤ n (or a (i - j + 1)-

tuple ( ) ( )ijjij vvvvvE ,...,,, 1+= , where         1 ≤ j <i ≤ n ). From this definition it is clear that 

every edge is a subedge (partial edge) of itself and a proper subedge is not an edge. For 
otherwise it would contradict the condition that two edges have at most one vertex in 
common. 

 
There are four types of degree for a vertex in a semigraph as defined in [2] viz., 

degree, edge degree, adjacent degree and consecutive adjacent degree. Here, we give 
definition for adjacent degree only. An adjacent degree of a vertex v denoted by degav is 
the number of vertices adjacent to v. 
 
Example 2.1 A semigraph is displayed in Fig.1, where the vertices 731 ,, vvv are end 

vertices, 654 ,, vvv are the middle vertices and the vertices 82,vv are middle-end vertices. 

),,( 653 vvv is a subedge of the edge ),,,,( 76543 vvvvv . But ),,( 654 vvv represents a partial 

edge of the edge ),,,,( 76543 vvvvv . Also, 6deg 3 =va  and 3deg 2 =va . 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Fig.1 
  

 
Similar to the concept of subgraph of a graph, we define subsemigraph of a 

semigraph depending on the concept of subedges of a semigraph. Thus, a semigraph 
),( EVG ′′=′  is a subsemigraph of a semigraph ),( EVG =  if VV ⊆′  and the edges in 

G′  are subedges of edges of G and it is called a spanning subsemigraph if, VV ′= .  
 
A spanning subsemigraph is called saturated spanning subsemigraph [3] of a 

semigraph if its edges are the same as the edges of the original semigraph. We illustrate 
this by an example given below. 
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Example 2.2 Let G = (V, X) be a semigraph where  },,,,,,{ 7654321 vvvvvvvV =  and 

)},,(),,(),,,(),,,{( 76563541321 vvvvvvvvvvvX = as shown in the Fig.2 given below. 

                          

 

 

 

 

 

Fig.2 

     A saturated spanning subsemigraph of the above semigraph G is displayed below 
(Fig.3).  

         

 

 

 

 

 

       Fig.3 

 
In [2], E. Sampathkumar defined adjacency graph associated with a semigraph. The 

adjacency graph aG  associated with a semigraph G = (V, X) has the same vertex set V of 

G with two vertices in aG being adjacent if and only if they are adjacent in G. 

 
Example 2.3 The adjacency graph aG  associated with the semigraph given in Fig.2 is 

displayed below (Fig. 4). 
 

 
 
 
 
 
 
 
     Fig. 4 
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The concepts of subedge and partial edge of a semigraph G motivate us for defining 
two different types of path. A path P is said to be an s-path (strong path) if any two 
consecutive vertices on it are also consecutive vertices of an edge of G otherwise, it is said 
to be a w-path (weak path). Thus an s-path in a semigraph consists of edges and partial 
edges only. An s-path is an s-cycle (strong cycle) if its beginning and end vertices are 
same. A semigraph G is connected if there is a w-path or an s-path between any two 
vertices of G. However, we shall consider only s-paths here. 
 
Example 2.4 The Fig.5 displays a 91 vv −  s-path viz., 9710963311 vEvEvEvEv  of a semigraph, 

where ),,( 3211 vvvE = , ),,,( 65431 vvvvE = , ),( 1069 vvE =  and ),( 9107 vvE = . This path can be 

written as 910654321 vvvvvvvv . But 9106431 vvvvvv  is a 91 vv −  w-path because it involves the 

subedges ),( 31 vv and ),,( 643 vvv .  
  
 
 
 
 
 
 
 
 
 
 
 
 
     Fig.5 
 
In [7], S.S. Kamath and R.S. Bhat defined adjacent neighbour set and consecutive 

neighbour set in a semigraph. For any vertex v in a semigraph G = (V, X), the set ( ) =vNa  

{ x∈V | x is adjacent to v} is called an adjacent neighbour set of the vertex v and the set 
( ) =vNca  {x∈V | x is consecutive adjacent to v} is called a consecutive adjacent 

neighbour set of the vertex v. If VS⊆ , then )()( vNSN aSva ∈∪= . The set )(SNa  is 

called the neighbourhood of the set S in G. 
 
In a semigraph G, a vertex v and an edge E are said to cover each other if Ev∈ . A 

set S of vertices that covers all edges of a semigraph G is said to be a vertex cover for G. 
The vertex covering number )(00 Gαα = is the minimum cardinality of a vertex cover for 

G. An edge cover for a semigraph G is a subset of X=X(G) that covers all vertices of the 
semigraph G = (V, X) and the minimum cardinality of such a subset is called the edge 
covering number of G. It is denoted by )(1 Gα .  

 
A set S of vertices of a semigraph G is said to be independent if no edge is a subset 

of S. The maximum cardinality of such a set is the vertex independence number of G and 
it is denoted by )(00 Gββ = . Similarly, a set L of edges of a semigraph G is said to be 

independent if no two of the edges in L are adjacent. The edge independence number 
)(11 Gββ =  of G is the maximum cardinality of L. 
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The removal of a vertexiv , )3(1 ≥≤≤ nni  from an edge 

),...,,,,...,,( 1121 niii vvvvvvE +−=  of a semigraph G = (V, X) results in a subedge 

),...,,,...,,( 1121 nii vvvvvE +−=′ . If we remove a vertex v from G then we obtain a semigraph 

G – v = (V ', X') where }{ vVV −=′ and the edge in X ′  are defined as follows: 
If XE∈ and E does not contain v then XE ′∈ . 
If XE∈ and E contains v then XvE ′∈−  if and only if 3|| ≥E . 
 
The removal of an edge E from G results in a semigraph ),( XVG ′′=′  where 

VV ′=  and EXX −=′ . 
 
A cut vertex in a semigraph G is the vertex whose removal increases the number of 

components of G and a bridge is an edge whose removal increases the number of 
components of G. If there is a bridge in a semigraph then, there exist two cut vertices 
incident with the bridge. A non-separable semigraph is the one which is connected, 
nontrivial and has no cut vertices.  

 
Example 2.5 In the semigraph shown in Fig. 6 below, the vertex 1v  is a cut vertex whereas 

2v  is not a cut vertex. The edge ),,( 3211 vvvE =  is a bridge but ),,( 5422 vvvE =   is not a 

bridge. 
 

 
 
 
 
 
 
 
 
   
   
     Fig. 6 
 
Let G = (V, X) be a semigraph. A set VD ⊆  is called adjacent dominating set 

(ad-set) if for every DVv −∈  there exist a Du∈ such that u is adjacent to v in G. The 
adjacency domination number is the minimum cardinality of an adjacent dominating set 
of G. It is denoted by )(Gaa γγ = . [7] 

 
An edge bipartite semigraph is a semigraph which has no any odd s-cycles. 
 
A dendroid is a connected semigraph without s-cycle. A dendroid is an edge 

bipartite semigraph and in fact, it is a generalization of a tree. The example of a dendroid is 
shown in the Fig. 7. 
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      Fig. 7 
   
 
Proposition 2.1 [2] If T = (V, X) is a dendroid, then )()( 10 TT βα = . 

 
 For details on preliminaries about semigraphs we refer to [2].  

 
 
 
3. The Matching in Semigraphs 
  

In case of graphs, two edges are adjacent to each other if they have a common 
point. But in semigraphs there are different types of adjacency of edges, because the edges 
are n-tuple, which are defined as follows: Two edges in semigraph are said to be (i) me-
adjacent if the common vertex is a middle vertex of one and an end vertex of the other, (ii) 
mm-adjacent if the common vertex is a middle vertex of both of the edges and (iii) ee-
adjacent if the common vertex is an end vertex of both of the edges [2]. 

 
Two distinct edges E1 and E2 in a semigraph are said to be disjoint or adjacent 

according as 021 =∩ EE or 121 =∩ EE .  

 
Definition3.1 A matching M in a semigraph   G = (V, X) is the set of pair wise disjoint 
edges. 
 
Definition 3.2 A vertex v of a semigraph G = (V, X) is said to be saturated, if there exists a 
matching M such that Ev∈  for some ME∈    

 
Definition 3.3 An edge E is said to be saturated by a matching M if ME∈ . 

Definition 3.4 A matching that saturates all the vertices is called a perfect matching.  

Clearly, a perfect matching and a 1e-factor of a semigraph are one and the same 
thing [3].   

Definition 3.5 A matching M saturating the maximum number of edges of a semigraph G 
is called a maximum matching.  

A set consisting of )(1 Gβ  independent edges in G is a maximum matching of G.  
 
We now illustrate some examples of matching and perfect matching. 
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Example 3.1 There is a set of groups of workers },...,,{ 21 qWWW  such that in each group 

there exist at least two workers and between any two groups there is at most one worker in 
common. Provided that each of these groups is formed according to the experience of its 
members the issue of determining the maximum number of groups to be involved in a 
certain number of works so that no worker is attached to more than two works at a time or 
the number of groups of workers to be involved in certain number of works so that all 
workers are involved in the groups with the obvious condition that no worker can do more 
than two works at a time reflects the example of a maximum matching or a perfect 
matching. 
 
Example 3.2 There are p number of cities   (or stations) and q number of passenger train 
routes (a route may be used to imply the passage of a train touching all the stations on its 
way or those stations on its way at which it has stoppages) through these cities such that 
between any two routes there exists at most one city in common and in any route there 
exist more than or equal to two cities. Such a network is clearly capable of describing 
various types of matchings of semigraphs. 

 
C. Berge [4] gives a characterization of maximum matching in graph and 

hypergraph. We give a similar result in semigraph. Before going to characterize the 
maximum matching we incorporate a definition followed by a theorem. 
 
Definition 3.6 A collection { }nEEEE ,...,,, 321   of edges of a semigraph G = (V, X) is said 

to be a chain if (i) 11 =∩ +ii EE and (ii) 0=∩ ji EE , for every 1, +≠≠ ijji , i.e. no 

edges are adjacent except the consecutive ones. 
  

The length of a chain is odd (respectively, even) if the number of edges involved in 
it is odd (respectively, even). 
  
Definition 3.7 An M-alternating chain is a chain with respect to a matching M that 
alternates edges between those in M and those not in M. An M-alternating chain is M-
augmented with respect to a matching M, if both the starting and ending edges are M-
unsaturated edges.  

 
Clearly, the length of an M-augmenting chain relative to a matching M is always 

odd. It is always possible to obtain an s-path from a chain. 
          
Proposition 3.1 Let )()( 122121 MMMMMM −∪−=∆  be the symmetric difference of two 

matchings of semigraph G and H be the subsemigraph of G induced by 21 MM ∆ . Then the 
components of H either contain an s-cycle or an s-path with edges (or partial edges) 
alternately in 1M  and 2M  such that the starting and the ending vertices of this s-cycle or 

s-path are unsaturated in 1M or 2M . 
 
Proof: 

Let v be any vertex in H. Since 1M  and 2M  are matchings in G, there is at most 

one edge in 1M or there is at most one edge in  1M and at most one edge in 2M  incident  
with v. Hence the edge degree of v in H is either 1 or 2. So, every components of H is an s-
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cycle or an s-path with edges (or partial edges) alternately in 1M  and 2M . Also the starting 

and ending vertices of this s-cycle or s-path are clearly unsaturated either in1M  or 2M . ■ 
 
 We now obtain a characterization of semigraph to have maximum matching. 
 
Proposition 3.2 A matching M in a semigraph G = (V, X) is a maximum matching if and 
only if G contains no M-augmenting chain. 
 
 
Proof: 

Let M be a maximum matching in a semigraph G = (V, X) and let{ }nEEEE ,...,,, 321

be an      M-augmenting chain in G. Then by definition, this chain is of odd length and the 
edges nEEE ,...,, 31  are not in M whereas the edges 142 ,...,, −nEEE are in M. Also the edges 

nEEE ,...,, 31  form a matching for G, whose length is |M|+1, |M| being the number of edges 

in M. This contradicts the maximum nature of M. Hence G has no M-augmenting chain. 
 

 Conversely suppose that G is without any M-augmenting chain. Let M ′ be another 
matching in G larger than M. Let MMH ′∆=  . Then, by proposition 3.1, we have an 
alternating chain which is an s-cycle or an s-path with more edges (or partial edges) in M ′  
than edges in M. This chain can be an s-path only which starts and ends with edges in M ′
and so it is an M-augmenting chain in G.  ■ 
 

We now derive a result relating a matching with a vertex cover of a semigraph. 
 

Proposition 3.3 Let M be a matching and C be a vertex cover of a semigraph G. Then    
|C| ≥ |M|. 
 
 
Proof: 

The set C covers every edges of the semigraph G whereas the set M contains only 
the disjoint edges of G. Therefore, we have    |C| ≥ |M|.   ■ 

 From the preceding result it follows immediately that )()( 10 GG βα ≥ , for any 

semigraph G. We now focus on a result for an edge bipartite semigraph G, analogue of 
which is the well known König’s [6] theorem of graph theory.  
 
Proposition 3.4 Let G be any edge bipartite semigraph. Then the maximum size of a 
matching in G equals the minimum size of its vertex cover. 
 
Proof: 
 We prove the theorem by considering various possible cases of semigraphs as 
follows: 

Case I: Suppose G is a connected semigraph without a cut vertex i.e. G is non-separable. 

Every s-cycle in G must be even. We consider a longest s-cycle                           

11321 ... +−= nnn EEEEEEC  (n is an odd positive integer) in G. From this s-cycle, it is 

possible to find a longest s-path P = nn EEEEE 1321 ... −   in G of odd length from which we 
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have a matching M. We construct the matching M by choosing the edges 

nn EEEEE ,,...,,, 2531 − from the s-path P. This   s-path P is not M-augmented, as it starts and 

ends with the M-saturated edges (or partial edges). Therefore M is a maximum matching in 

G and 
2

1
||

+= n
M . Consequently, 

2

1
)(1

+= n
Gβ . 

We now obtain a vertex covering set S from the s-cycle C, by choosing the 
common vertex from every pair ),( 1+ii EE  (i = 1,3,…,n) of  the s-cycle. The cardinality of 

the set S is
2

1+n
 where S is the minimum vertex cover set for the edges of the s-cycle C. 

Therefore
2

1
1

+== n
S β  and thus follows the proposition. 

 
Case II: Suppose the semigraph G is disconnected so that G has at least two components. 
Applying Case I for each component of G we have the required result.   

Case III: Suppose the semigraph G has a cut vertex v.  

 Let 1G  and 2G be the two components of G, which are clearly edge bipartite 

semigraphs. Applying the Case I for each of them we obtain, )()( 1011 GG αβ =  and 

)()( 2021 GG αβ = . If S is a minimum vertex cover set of G, 

}{)()()( 20100 vGGSG ++== ααα ,  (1) 

  where, v is the cut vertex of G. 

If M is the maximum matching of G,  

1)()()( 21111 ++== GGMG βββ   (2) 

 
 1 in (2) above corresponds to the edge considered for the matching of G. 
 
Hence from (1) and (2), we have )()( 10 GG βα = . 

Case IV: Suppose the semigraph G has a bridge E. 

 Then we obtain at least one cut vertex in G.  Applying the Case III we obtain the 
required result. 

Case V: Suppose the semigraph G is a dendroid. 

Then the result follows from the Proposition 2.1■ 
 
 In graphs two maximum matchings have the same number of vertices. But the same 
is not true in case of semigraphs. However, in this connection, we have the following 
definition. 
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Definition 3.8 A maximum matching M of a semigraph G is said to be maximal vertex-
saturated, if it saturates maximum number of vertices of G among all the maximum 

matchings in G. We denote it bymvsM  and the number of vertices saturated by mvsM is 

called the power of mvsM , denoted by )( mvsMp . 

 
This is illustrated by the example given below (Fig.3). The edges of the semigraph 

shown in the Fig.8 are ( )3211 ,, vvvE = , ( )7632 ,, vvvE = , ( )423 ,vvE = , ( )544 ,vvE =  and 

( )655 ,vvE = . The matching { }511 ,EEM =  and { }532 ,EEM = are both maximum 

matchings. But the number of vertices saturated by 1M  is more than those saturated by2M  
.  
                                
 
 
 
 
 
 
 
 
 
 

Fig.8 
 

 
The three immediate results in this connection are produced below. 

 
Proposition 3.5 In a semigraph G = (V, X), let M be a maximal vertex-saturated 

matching. If ||)( VMp mvs =  then the matching M is the perfect matching of G. 

 
Proof:  

The proof is trivial since for a maximal vertex-saturated matching M with 
||)( VMp mvs = the matching M saturates all the vertices of G and therefore it is clearly a   

perfect matching in G. ■ 
 
Proposition 3.6 Let M be a maximum matching in a semigraph G. Then M is a maximal      
vertex-saturated matching if and only if  
 

              

∑∑
′∈∈

>
Mv

a
Mv

a vNvN )()(  

 for any maximum matching M ′  other than M in G. 

 
Proof: 

Suppose M is a maximal vertex-saturated matching and M ′  is any other maximum 
matching of the semigraph G. Then there is at least one −′M unsaturated vertex in G 
which is saturated by M. So we have, 
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∑∑
′∈∈

>
Mv

a
Mv

a vNvN )()( . 

  
Conversely, suppose  
 

∑∑
′∈∈

>
Mv

a
Mv

a vNvN )()(  

 
for any two maximum matching M and M ′   in G.  
 

We are to show that M is mvsM . Let us assume the contrary i.e., let M be not mvsM .  

But the number of vertices saturated by M and M ′  is same. Thus, for subsemigraphs 
induced by the vertices which are saturated by M and M ′  respectively we shall have, 

 

∑∑
′∈∈

=
Mv

a
Mv

a vNvN )()( ,  

which contradicts our assumption. Hence follows the result. ■ 
   
Proposition 3.7 Let M be a maximum matching in a semigraph G. Then M is maximal 
vertex-saturated matching if and only if  
 

∑∑
′∈∈

>
Mv

ca
Mv

ca vNvN )()(  

for any  maximum matching M ′  other than M  in G. 

 
Proof:  

Trivial.■   
 
 

While studying the maximum matchings and maximal vertex saturated matchings 
for semigraphs we attempted to characterize them for (p, q) complete semigraphs, though 
without success. Particularly, it remains open to find the maximal vertex-saturated 

matching on a (p, q) complete semigraph G and its power )( mvsMp .  

 
 Similar results can be obtained in connection with the concept of perfect matching 
of semigraphs. We observe that, contrary to the cases of graphs, there are examples of 
perfect matchings (which are clearly1e-factors [3]) of semigraphs having distinct number 
of edges. To confirm our assertion, we require the following definition of minimal edge 
saturated matching for semigraphs.  
 
Definition 3.9 A perfect matching M of a semigraph G is said to be minimal edge-
saturated, if it saturates the minimum number of edges of G among all perfect matchings of 

G and it is denoted by mesM  . The number of edges saturated by mesM is called the 

power of mesM  which we denote by )( mesMp . 
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We demonstrate the situation with the help of an example as shown in Fig. 9 below 
where, we have two perfect matchings )},,,(),,,,{( 87654321 vvvvvvvvM =  and 

)},(),,(),,(),,{( 54637281 vvvvvvvvM =′  out of which the matching M is minimal edge-

saturated. 
                                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 9 

 

Proposition 3.8 In a semigraph G, a perfect matching M is minimal edge-saturated if and 
only if, )()(1 mesMPMG ==α  where )(1 Gα  denotes the edge covering number of G. 

 
Proof: 

Suppose M is a minimal edge-saturated matching of a semigraph G. Then it is a 
perfect matching of G covering all of its vertices. Also it contains the least number of 
edges covering all vertices of G. Consequently, )()(1 mesMPMG ==α . 
 
 Conversely, suppose M is a perfect matching of G with )()(1 mesMPMG ==α . 

Thus, M is a perfect matching saturating minimum number of edges of G. Also, by 
definition of minimal edge-saturated matching, it is clear that M is minimal edge-saturated       
in G. ■ 
 
 In case of an ordinary graph a maximum matching saturates largest number of its 
vertices. However, the same is not always true for semigraphs. In other words, a matching 
in a semigraph may saturate largest number of vertices though it may not be maximum 
one. Therefore, it is not out of context to formalize this situation in the form of a definition 
which may help characterization of distinguishing aspects of semigraphs.   We like to 
name such a matching as an optimum matching. 
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Definition 3.10 A matching M of a semigraph G is called an optimum matching if it has 
the smallest number of edges saturating the largest number of vertices of G.  
        

In the light of this definition, it follows that a minimal edge saturated matching of a 
semigraph is always an optimum matching. 

 
 The Fig.10 shows a semigraph in which the matching },,{ 532 EEEM =′  is a 

maximum matching while the matching },{ 51 EEM = is not maximum. However, the 

number of vertices saturated by M is more than the number of vertices saturated byM ′ . 
Thus, the matching M is an optimum matching.  

                                     
 
     
 
 
 
 
 
 
 
 
       Fig.10 
 
 
 
Application: The Example 3.2 mentioned above hints at scope for applications in 
networking problems particularly, in railway networks of a country. Perhaps, we may 
design a rail network to have maximum number of mutually disjoint routes in which we 
can provide trains to reach maximum number of cities (stations) running at the same time 
(corresponding to a maximal vertex saturated matching) or a rail network to have a 
minimum number of routes reaching maximum number of stations (corresponding to an 
optimum matching of a semigraph). 
  
 We establish the following property of an optimum matching in semigraphs. 
 

Proposition 3.9 Let opM and M be a matching and maximum matching of a semigraph G 

respectively. Then opM is an optimum matching of G if and only if 

|)(||)(| MNMN aopa ≥ . 

Where },|)({)( opaopa MEEvvNMN ∈∈∪=  and },|)({)( MEEvvNMN aa ∈∈∪=  

Proof: 
 Let opM be an optimum matching of G. Then there is at least one vertex of G which 

is not saturated by M. So, we have, 
|)(||)(| MNMN aopa > . 

 
If the maximum matching M is also a perfect matching of G, we have 
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|)(||)(| MNMN aopa = . 

Hence, |)(||)(| MNMN aopa ≥ . 

  
 Conversely, let opM and M be a matching and maximum matching of a semigraph 

G respectively such that |)(||)(| MNMN aopa ≥ . Then from the definition of optimum 

matching it is clear that opM is an optimum matching of G. ■ 

 
 

4. Relation between Domination and Matching in Semigraph 
 
In this section, we introduce the concept of total adjacent domination and deduce some 
relations between the adjacent domination and the total adjacent domination in a particular 
type of matching in semigraphs. 

The concept of total domination in graph was introduced by Cockayne et al. [10]. 
 

Definition 4.1 A set of vertices in a semigraph G = (V, X ) is said to be a total adjacent 
dominating set (tad-set) in G, if for every vertex of V is adjacent to a vertex in D. The total 
adjacent domination number of a semigraph is the minimum cardinality of a total 
adjacent dominating set in G. It is denoted by )(Gtata γγ = . 

 
In this case, we mention the following two results. 
 
Theorem 4.1 [11] For every graph G with no isolated vertex, )()( 1 GG βγ ≤ , where )(Gγ  

and )(1 Gβ  are the domination number and edge independence number of G respectively. 
 
Theorem 4.2 [12] For every k-regular graph G with 3≥k , )()( 1 GGt βγ ≤ , where )(Gtγ  

and )(1 Gβ  is the total domination number and edge independence number of G 
respectively. 
 
We now obtain the following results on total domination number of semigraphs. 
  
Proposition 4.1 For any semigraph G, )()( atta GG γγ = , where )( at Gγ is the total 

domination number of the adjacent graph aG of G. 

 
Proof: 
 Trivial. ■ 
 
 We now deduce the following proposition in connection with the set of maximum 
matching, adjacent domination number, total domination number and minimal edge-
saturated matching. 
 
Proposition 4.2 Let the semigraph G = (V, X) without any isolated vertex and contain a 
minimal edge-saturated matching mesM . Then )()( mesta MpG ≤γ , where )( mesMp denotes 

the power of minimal edge-saturated matchingmesM in G.  
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Proof: 
 Let D be a minimal total adjacent dominating set of G = (V, X). Since G is a 
semigraph having no isolated vertex, each vertex of G covers at least one edge of G and 
therefore for any Dvi ∈ we have, 

    },|{ XEEvEC iiiivi
∈∈= . 

 
 We now construct a set M of edges of G by taking one edge iE from each 

ivC such 

that the cardinality of iE is maximum among all the edges in
ivC , Dvi ∈ and satisfying 

0|| =∩ ji EE  for ji ≠ . Then the set M is clearly a matching in G. We now consider the 

following cases. 
 
Case 1: Let M is not a perfect matching of G. Since G contains a minimal edge-saturated 
matching, therefore it is possible to obtain a perfect matching from M by adding one or 
more edge to M. Thus we have )()( mesta MpG ≤γ . 

Case 2: Let M be a perfect matching such that M is a minimal edge-saturated matching. 
Then )()( mesta MpG ≤γ . 

Case 3: Let M be a perfect matching which is not a minimal edge-saturated matching. In 
that case, G contains more than one perfect matching. Then it is possible to find out a 
minimal edge-saturated matching. So, )()( mesta MpG ≤γ . This completes the require 

result. ■ 
 
Proposition 4.3 For any semigraph G without isolated vertex containing minimal edge-
saturated matching mesM , )()( 1 GGta βγ ≤ .  

 
Proof: 
 Since G has a minimal edge-saturated matchingmesM , )()( 1 GGM mes β≤ . Also 

from the above Proposition 4.2, we have )()( mesta MpG ≤γ . Hence, )()( 1 GGta βγ ≤ .■ 

 
In graph theory M. A. Henning et al. [12] successfully obtain the Theorem 4.2 

which determines the relationship between total domination number and edge 
independence number (maximum matching number). We investigate the relationship 
between total adjacent domination number and edge independence number in semigraphs 
and obtain the following results. 

 
Proposition 4.4 Let G be a semigraph without isolated vertex having a minimal edge-
saturated matching mesM . Then, )()( 1 GGa βγ ≤ and )()( mesa MpG ≤γ .  

 
Proof: 
 From the definition of adjacent domination and total adjacent domination in any 
semigraph G with on isolated vertex )()( GG taa γγ ≤ . Combining the result )()( 1 GGta βγ ≤  

(Proposition 4.3) with the above inequality we have, )()( 1 GGa βγ ≤ . 

 Also, )()( mesta MpG ≤γ (Proposition 4.2) and )()( GG taa γγ ≤  determines 

)()( mesa MpG ≤γ . Hence the proof is completed. ■ 
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Proposition 4.5 [7] For any semigraph G without isolated vertex containing p number of 
vertices, 

    )()(
1 0 GpG

p
a

a

βγ −≤≤
+∆

. 

Where a∆ denotes the maximum adjacent degree of G and )(0 Gβ denotes the edge 

independence number.  
 

Corollary 4.1 If any semigraph G without isolated vertex containing p number of vertices, 
contains a minimal edge saturated matching then we have 

)()(
1 0 GpMp

p
mes

a

β−≤≤
+∆

. 

Proof: 
 Combining the Proposition 4.4 and Proposition 4.5 we obtain the require result. ■ 
 
 
Proposition 4.6 For every graph G which contains a perfect matching, )()( 1 GGt βγ ≤ . 

Where )(Gtγ  and )(1 Gβ are the total domination number and edge independence number 

of G. 
 
Proof: 
 Every graph being also a semigraph, the result follows immediately from            
Proposition 4.3. ■ 
 
5. Conclusion 
 
 The results and examples discussed in this paper clearly indicate wider scope of 
applicability of semigraphs in real situations in which the methods of ordinary graphs 
cannot be applied owing to its particular structure. Our future attempts will be to explore 
possibilities of some more such results.  
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