lpha **- CLOSED SETS IN TOPOLOGICAL SPACES

Veronica Vijayan

Associate Professor, Nirmala College for women, Coimbatore.

Sangeetha K S

PG student, Nirmala college for women, Coimbatore.

Abstract: In this paper, we introduce a new class of sets namely, α^{**} closed sets. Properties of

this set are investigated and we introduce new spaces namely $T_{\alpha}**$ spaces, $_{\alpha g}T_{\alpha}**$ spaces, $_{g}T_{\alpha}**$ spaces, $_{g}T_{\alpha}**$ spaces and $_{g}*T_{\alpha}**$ spaces.

Key words: α^{**} -closed set; $T_{\alpha}**$ spaces, $\alpha_g T_{\alpha}**$ spaces, $\alpha_g T_{\alpha}**$ spaces, $\alpha_g T_{\alpha}**$ spaces and $\alpha_g T_{\alpha}**$ spaces.

1.INTRODUCTION

Levine[7] introduced the class of g-closed set in 1970.maki.et.al[9] defined α g-closed sets in 1994.S.P.Arya and Tour [2] defined gs-closed sets in 1990.Dontchev [6] introduced gsp-closed sets .M.K.R.S Veerakumar [16] introduced and studied g^* -closed sets and g^* -continuity in topological spaces. The purpose of this paper is to introduce a new class of sets called α^{**} -closed sets and $T_{\alpha^{**}}$ spaces, $T_{\alpha^{**}}$ spaces, $T_{\alpha^{**}}$ spaces and $T_{\alpha^{**}}$ spaces and investigate some of their properties.

1. PRELIMINARIES

Throughout this paper (X, τ) represents a non-empty topological space on whichno separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , Cl(A), $\alpha Cl(A)$ and int(A) denote the closure, α closure and the interior of A respectively.

Definition: A subset A of a topology space (X, τ) is said to be

1.semi-closed[8] if $int(Cl(A)) \subseteq A$.

- 2.g-closed[7] if $Cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in X.
- 3. gs-closed[2] if $Scl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in X.

- 4. gp-closed[11] if $Pcl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in X.
- 5. α -closed[12] if Cl(int Cl(A)) \subseteq A.
- 6.semi-pre closed[1] if $int(Cl(int(A)) \subseteq A$.
- 7. $g\alpha$ -closed[10] if α Cl(A) \subseteq U whenever A \subseteq U and U is α open in X.
- 8. α g-closed[9] if α Cl(A) \subseteq U whenever A \subseteq U and U is open in X.
- 9.gsp-closed[6] if $Spcl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in X.
- $10.g^*$ -closed [16]if Cl(A) \subseteq U whenever A \subseteq U and U is g-open in X.
- 11.(g α)*-closed[3] if α Cl(A) \subseteq U whenever A \subseteq U and U is g α -open in X.
- 12. ω -closed[15] if Cl(A) \subseteq U whenever A \subseteq U and U is semi-open in X.
- 13. ω g-closed[13] if cl(int A) \subseteq U whenever A \subseteq U and U is open in X.
- 14. $\overline{\psi}$ -closed[18] ifCl(A) \subseteq U whenever A \subseteq U and U is sg-open in X.
- 15. $\overline{\psi}^*$ -closed[18] ifCl(A) \subseteq U whenever A \subseteq U and U is $\overline{\psi}$ -open in X.
- 16. α *-closed[17] ifCl(A)⊆ U whenever A⊆U and U is α -open in X.
- $17.g^{**}$ -closed[14] if Cl(A) \subseteq U whenever A \subseteq U and U is g^{*} -open in X.

Definition: A topological space (X, τ) is said to be a

- 1. $T_{1/2}$ space[7] if every g-closed set in it is closed.
- 2. T_b space[5] if every gs-closed set in it is closed.
- 3.T_a space[5] if every gs-closed set in it is g-closed.
- 4. $_{\alpha}^{T}$ T space[4] if every α g-closed set in it is g-closed.
- 5. T_b space[4] if every α g-closed set in it is closed.

3. Basic properties of α^{**} -closed sets

We introduce the following definition.

Definition 3.1:A subset A of a topology space (X, τ) is said to be α^{**} -closed if $Cl(A)\subseteq U$ whenever $A\subseteq U$ and U is α^{*} -open.

Proposition 3.2: Every closed set is α^{**} -closed.

Proof follows from the definition.

The converse of the above proposition need not true in general as seen in the following example.

Example 3.3: Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{a\}\}$. Then $A = \{a,c\}$ is α^{**} -closed but not closed in (X,τ) .

Proposition 3.4: Every α^{**} -closed set is a g-closed set.

Proof: Let A be α^{**} -closed set. Let A \subseteq U where U is open. Then U is α^{*} -open.

ThereforeCl(A) \subseteq U, since A is α^{**} -closed. Hence A is a g-closed set.

The converse of the above proposition need not true in general as seen in the following example.

Example 3.5:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\},\{b,c\}\}$. Then $A=\{a,b\}$ is g-closed but not α^{**} -closed in (X,τ) .

Proposition 3.6: Every α^{**} -closed set is a gs-closed set.

Proof:Let A be a α^{**} -closed set. Let A \subseteq U where U is open. Then U is α^{*} -open and Cl(A) \subseteq U, since A is α^{**} -closed. Scl(A) \subseteq Cl(A). Therefore Scl (A) \subseteq U, whenever A \subseteq U & U is open. Therefore A is a gs-closed set

The following example supports that a gs-closed set need not be $lpha^{**}$ -closed in general.

Example 3.7:Let $X=\{a,b,c\}$, $\tau=\{(\Phi,X,\{a\},\{b,c\}\}\}$. Then $A=\{c\}$ is a gs-closed set but not α^{**} -closed in (X,τ) .

Proposition 3.8: Every α^{**} - closed set is a gp-closed set.

Proof: Let A be a α^{**} - closed set. Let A \subseteq U where U is open. since U is open, U is α^{**} -open. HenceCl(A) \subseteq U ,since A is α^{**} -closed set. Pcl(A) \subseteq Cl(A). Therefore Pcl(A) \subseteq U, whenever A \subseteq U & U is open and hence A is a gp-closed set.

The converse of the above proposition need not true in general as seen in the following example.

Example 3.9:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\},\{b,c\}\}$. Then $A=\{c\}$ is gp-closed but not α^{**} -closed in (X,τ) .

Proposition 3.10: Every α^{**} -closed set is α g-closed.

Proof: Let A be a α^{**} - closed set. Let A \subseteq U, where U is open. since U is open, U is α^{*} open. Hence $Cl(A) \subseteq U$, since A is α^{**} -closed set. α $Cl(A) \subseteq Cl(A)$ and hence A is a α g-closed set.

The following example support that a α g-closed set need not be α^{**} -closed set in general.

Example 3.11:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\},\{b,c\}\}$. Then $A=\{c\}$ is a α g-closed but not α^{**} -closed in (X,τ) .

Proposition 3.12:Every α^{**} -closed set is a gsp-closed set.

Proof follows from the definitions.

The converse of the above proposition need not true in general as seen in the following example.

Example 3.13: Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\},\{b,c\}\}$. Then $A=\{a,b\}$ is a gsp-closed but not α^{**} -closed in (X,τ) .

Proposition 3.14:Every α^{**} closed set is a ω g-closed set.

Proof: Let A be a α^{**} - closed set.Let $A \subseteq U$ and U be open.Since U is open, U is α^{*} open. HenceCl(A) \subseteq U, since A is α^{**} -closed set Cl(int(A)) \subseteq Cl(A) \subseteq U & hence cl(int(A)) \subseteq U, whenever $A \subseteq U$ & U is open. \therefore A is a ω g-closed set.

The converse of the above proposition need not true in general as seen in the following example.

Example 3.15: Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\},\{b,c\}\}$. Then $A=\{c\}$ is a ω g-closed but not α **closed in (X,τ) .

Proposition 3.16: Every g^* -closed set is a α^{**} closed set.

proof follows from the definitions.

The converse of the above need not be true.

Example 3.17:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\}\}$. Then $A=\{b\}$ is a α^{**} closed but not g^* -closed in (X,τ) .

Remark 3.18: α^{**} - closedness is independent of g α –closedness.

Example 3.19:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\},\{b,c\}\}$. Then $A=\{c\}$ is $g\alpha$ - closed but not α **closed in (X,τ) .

Example 3.20:Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{b\},\{b,c\}\}$. Then $A = \{a,b\}$ is α^{**} -closed set but not $g\alpha$ -closed in (X,τ) .

Hence α^{**} - closedness is independent of g α -closedness.

Remark 3.21: ω closedness is independent of α^{**} closedness.

Example 3.22:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\},\{b,c\}\}$. Then $A=\{b\}$ is a ω -closed set but not α^{**} closed in (X,τ) .

Example 3.23:Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{a\}\}$. Then $B = \{b\}$ is α^{**} -closed but not ω -closed in (X,τ) .

 $\therefore \omega$ closedness is independent of α^{**} closedness.

Remark 3.24: α closedness is independent of α ** closedness.

Example 3.25:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\}\}$. Then $A=\{a,b\}$ is α^{**} closed but not α -closed in(X,τ).

Example 3.26:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\},\{a,c\}\}$. Then $B=\{c\}$ is α -closed but not α^{**} -closed in (X,τ) .

 α closedness is independent of α^{**} closedness.

Remark 3.27: α^* closedness is independent of α^{**} closedness.

Example 3.28:Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{a\}\}$. Then $A = \{a,b\}$ is α^{**} -closed but not α^{*} closed in (X,τ) .

Example 3.29: Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{a\},\{b,c\}\}\}$. Then $B = \{b\}$ is α^* -closed set but not α^* closed in (X,τ) .

Hence α^* closedness is independent of α^{**} closedness.

Proposition 3.30: Every $\overline{\psi}$ -closed set is α^* closed.

Proof follows from the definitions.

The converse of the above proposition need not true in general as seen in the following example.

Example 3.31:Let X={a,b,c}, $\tau = \{\Phi, X, \{a\}, \{b,c\}\}$. Then A={b} is α^* -closed but not $\overline{\psi}$ -closed in (X, τ) . **Proposition 3.32:**Every α^{**} -closed set is $\overline{\psi}$ -closed.

Proof follows from the definitions.

The converse of the above proposition need not true in general as seen in the following example.

Example 3.33:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\},\{b,c\}\}$. Then $A=\{b\}$ is a $\overline{\psi}^*$ - closed but not α^{**} closed in (X,τ) .

Remark 3.34: $(g\alpha)^*$ closedness is independent of α^{**} closedness.

Example 3.35:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\}\}$. Then $A=\{a,b\}$ is α^{**} -closed but not $(g\alpha)^*$ -closed in (X,τ) .

Example 3.36:Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{c\},\{a,c\}\}$. Then $B = \{a\}$ is $(g\alpha)^*$ -closed but not α^* -closed in (X,τ) .

Hence $(g\alpha)^*$ closedness is independent of α^{**} closedness.

Proposition 3.37:If A is both α^* -open and α^{**} -closed set of (X, τ) then A is a closed set.

Proposition 3.38: A is α^{**} -closed set of (X, τ) if and only if $Cl(A)\setminus A$ does not contain any non-empty α^{*} -closed set.

Proof: Necessity: Let F be a α^* -closed set of (X, τ) such that $F \subseteq Cl(A) \setminus A$. Then $A \subseteq X \setminus F$. A is an α^{**} -closed set and $X \setminus F$ is α^* -open, such that $A \subseteq X \setminus F$. Then $Cl(A) \subseteq X \setminus F$, since A is α^{**} -closed. $F \subseteq X \setminus Cl(A)$. Hence $F \subseteq ((X \setminus Cl(A)) \cap ((Cl(A) \setminus A) = \Phi$. Therefore $F = \Phi$.

Sufficiency:Let A be a subset of (X, τ) such that $Cl(A)\setminus A$ does not contain any non-empty α^* -closed set. Let U be a α^* -open set of (X, τ) such that $A\subseteq U.IfCl(A)\nsubseteq U$, then $Cl(A)\cap U^c\neq \Phi$ and $Cl(A)\cap U^c$ is α^* -closed set. Therefore $\Phi\neq Cl(A)\cap U^c\subseteq Cl(A)\setminus A$. Therefore $Cl(A)\setminus A$ contains a non-empty α^* -closed set which is a contradiction. Therefore $Cl(A)\subseteq U$ and hence A is α^{**} -closed.

Proposition 3.39:If A is an α^{**} -closed set (X, τ) such that $A \subseteq B \subseteq Cl(A)$, then B is an α^{**} -closed set of (X, τ) .

Remark 3.40: Thus we have the following diagram.

Where A \longrightarrow B (res. A \longleftarrow B) represents A implies B but not conversely (resp.A and B are independent).

4. Applications of lpha **-closed sets

In this section we introduce five new spaces namely ; $T_{\alpha}**_{\alpha}T_{\alpha}**_{\beta}T_{\alpha}**_{\beta}T_{\alpha}**$ and $T_{\alpha}**$.

Definition 4.1: A space (X, τ) is called a $T_{\alpha}**$ space if every α^{**} -closed set is closed.

Theorem 4.2:Every $T_{1/2}$ space is a T_{α} **space.

Proof follows from the definitions.

The converse of the above theorem need not true in general as seen in the following example.

Example 4.3:Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{a\},\{b,c\}\}$. Then (X,τ) is $aT_{\alpha}**space$. $A = \{a,b\}$ is g-closed but not a closed set. Therefore (X,τ) is not a $T_{\alpha}**space$.

Theorem 4.4:Every T_b space is a T_{α} **space.

Proof: Let (X, τ) be a T_b space.Let A be a α^{**} -closed set.Then A is gs-closed.since (X, τ) is a T_b space ,A is closed.Hence the space (X, τ) is a $T_{\alpha}**$ space.

The converse of the above theorem need not true in general as seen in the following example.

Example 4.5:Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{a\},\{b,c\}\}\}$. Then (X,τ) is $aT_{\alpha}**$ space. $A = \{c\}$ is gsclosed but not a closed set. Therefore (X,τ) is not a T_b space.

Theorem 4.6: A space which is both $T_{1/2}$ and T_d is $T_{\alpha}**space$.

Theorem 4.7: A space which is both ${}_{\alpha}T_{\alpha}$ and $T_{1/2}$ is a $T_{\alpha}**$ space.

Proof: Let A be a α^{**} -closed set. Then A is a α g-closed set. Since X is $a_{\alpha}T_{d}$ space, A is g-closed. Since the space is a $T_{1/2}$ space, A is closed. Hence (X, τ) is $aT_{\alpha}**$ space.

Theorem 4.8: Every ${}_{\alpha}T_{b}$ space is a T_{α} **space but not conversely.

Example 4.9:Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{a\},\{b,c\}\}\}$. Then (X,τ) is a $T_{\alpha}**space$. $A = \{c\}$ is α g-closed set but not a closed set. Therefore (X,τ) is not a ${}_{\alpha}T_{b}$ space.

We introduce the following definition.

Definition 4.10: A space (X, τ) is called a $_{gs}T_{\alpha}**$ space if every gs-closed set is a α^{**} -closed set.

Theorem 4.11:Every T_b space is a $_{gs}T_{tt}**$ space but not conversely.

Example 4.12:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\}\}$. Then (X,τ) is a $_{gs}T_{\alpha}**-space$. $A=\{b\}$ is a gsclosed set but not a closed set. Therefore (X,τ) is not a T_b -space.

Theorem 4.13: A space which is both $T_{\alpha} ** and g_s T_{\alpha} ** is a T_b$ - space.

Proof: Let A be a gs-closed set of (X, τ) . Then, since (X, τ) is a $_{gs}T_{\alpha}**-space$, A is α^{**} closed &Since (X, τ) is a $T_{\alpha}**-space$, A is closed. Therefore (X, τ) is a T_{b} -space.

Theorem 4.14:Every $_{gs}T_{\alpha}**space$ is a T_{α} space.

The converse of the above need not be true.

Example 4.15:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\},\{b,c\}\}$. Then (X,τ) is a T_d space. $A=\{b\}$ is gs closed set but not a α^{**} -closed set. Therefore (X,τ) is not $a_{gs}T_{\alpha}**space$.

Remark 4.16: T_{α} **ness is independent from g_s T_{α} **ness.

Example 4.17: Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\}\}$. Then (X,τ) is a $_{gs}T_{\alpha}**_space$. $A=\{b\}$ is α^{**} -closed but not closed. Hence (X,τ) is not a $T_{\alpha}**_space$.

Example 4.18: Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\},\{b,c\}\}$. Then (X,τ) is a $T_{\alpha}**$ -space . $B=\{b\}$ is gs-closed but not α^{**} -closed. Hence (X,τ) is not a ${}_{gs}T_{\alpha}**$ -space

 \therefore T α **ness is independent from $_{gs}T_{\alpha}$ **ness.

We introduce the following definition.

Definition 4.19:A space (X, τ) is called a $_{\alpha g}T_{\alpha}**space$ if every α g-closed set is a α^{**} -closed set.

Theorem 4.20: Every ${}_{\alpha}T_{b}$ space is a ${}_{\alpha g}T_{\Omega}**space$ but not conversely.

Example 4.21:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\}\}$. Then (X,τ) is $_{\alpha g}T_{\alpha}**space.A=\{b\}$ is α g-closed but not a closed . Therefore (X,τ) is not a $_{\alpha}T_{b}$ space.

Theorem 4.22: A space which is both $T_{\alpha} ** and {}_{\alpha g} T_{\alpha} ** is a {}_{\alpha} T_{b} space.$

Theorem 4.23: Every_{ag} T_{α} **is a ${}_{\alpha}T_{\alpha}$ space but not conversely.

Example 4.24: Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\},\{b,c\}\}$. Then (X,τ) is a ${}_{\alpha}T_{d}$ space. $A=\{b\}$ is α g closed but not α^{**} -closed. Hence (X,τ) is not a ${}_{\alpha g}T_{\alpha}**$ space.

Remark 4.25: T_{α} **ness is independent from ${}_{\alpha g}T_{\alpha}$ **ness.

Example 4.26: Let $X=\{a,b,c\}$, $\tau = \{\Phi,X,\{a\},\{b,c\}\}$. Then (X,τ) is a $T_{\alpha}**space$. $A = \{c\}$ is α g closed but not α^{**} -closed. Therefore (X,τ) is not $a_{\alpha}T_{\alpha}**space$.

Example 4.26: Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\}\}$. Then (X,τ) is a $_{\alpha g}T_{\alpha}**space$. $A=\{b\}$ is α^{**} -closed but not closed . Hence (X,τ) is not $aT_{\alpha}**space$.

 T_{α} **ness is independent from $\alpha_{g}T_{\alpha}$ **ness.

We now introduce the following definition.

Definition 4.28: A space (X, τ) is called a ${}_{g}T_{\alpha}**$ space if every g-closed set is a α^{**} -closed set.

Theorem 4.29:Every $T_{1/2}$ space is a ${}_{g}T_{\Omega}**$ space but not conversely.

Example 4.30:Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{a\}\}$. Then (X,τ) is ${}_{g}T_{\alpha}**space.A = \{b\}$ is g-closed but not a closed set. Therefore (X,τ) is not a $T_{1/2}$ space.

Theorem 4.31: A space which is both T_{α} **and ${}_{g}T_{\alpha}$ **is a $T_{1/2}$ space.

Theorem 4.32:Every $_{\alpha g}T_{\alpha}**space$ is a $_{g}T_{\alpha}**space$ but not conversely.

Example 4.33:Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{b\},\{b,c\}\}$. Then (X,τ) is a ${}_{g}T_{\alpha}**space.A=\{c\}$ is α g closed but not α^{**} -closed. Therefore (X,τ) is not a ${}_{\alpha g}T_{\alpha}**space$.

Remark 4.34: T_{α} **ness is independent from ${}_{g}T_{\alpha}$ **ness. .

Example 4.35: Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\},\{b,c\}\}$. Then (X,τ) is a $T_{\alpha}**$ space. $A=\{c\}$ is g-closed but not α^{**} -closed. Therefore (X,τ) is not $a_gT_{\alpha}**$ space.

Example 4.36: Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\}\}$. Then (X,τ) is $a_gT_{\alpha}**space.A=\{b\}$ is α^{**} -closed but not closed. Therefore (X,τ) is not $aT_{\alpha}**space.$

Theorem 4.37: Every $_{gs}T_{\alpha}**space$ is $_{g}T_{\alpha}**space$.

The converse of the above theorem need not true in general as seen in the following example.

Example 4.38:Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{b\},\{a,b\}\}$. Then (X,τ) is $a_gT_{\alpha}**space$. $A = \{a\}$ is a gs-closed set but not a α^{**} closed set. Therefore (X,τ) is not a $_{gs}T_{\alpha}**space$.

We now introduce the following definition.

Definition 4.39: A space (X, τ) is called a $g*T_{\alpha}**$ space if every α^{**} -closed set is g*-closed.

Theorem 4.40: Every T_b space is a ${}_{g^*}T_{\mathfrak{A}}**space$ but not conversely.

Remark 4.42: Thus we have the following diagram.

Reference:

are independent)

- [1]. Andrijevic .D semi-preopen sets, mat. vesnik 38(1) (1986), 24-32.
- [2].Arya S.P and nour.T ,characterization of s-normal spaces, Indian J.pure .Appl.,Math.,21(8) (1990),717-719.
- [3].Daffiny Swarna kumari.E, Veronica Vijayan,(g)*-closed sets in topological spaces, IJCA, Issue 3,volume 3(May-June 2013),ISSN:2250-1797.
- [4].Devi. R, Balachandran. K and Maki .H, generalized -closed maps and -generalized closed maps, Indian J.Pure, Appl.Math., 29(1998), 37-49.
- [5]. Devi. R, Balachandran. K and Maki .H, semi-generalized closed maps and generalized closed maps, Mem .Fac. sci. kochi univ.ser.A.Math.,,14(1993) 41-54..
- [6].Dontchev.J, on generalized semi-pre open sets, Mem. Fac.sci. kochi .univ. ser .A.Math,17(1995),35-48.
- [7].Levine.N, generalized closed sets in topology, Rend circ. math.,palermo19(2)(1970),89-96.
- [8].Levine. semi-open sets and semi continuity in topology spaces Amer.Math.Monthly,70(1963)36-41.
- [9]. Maki.H, Devi.R and K. Balachandran Associated topologies of generalized -closed maps and generalized closed sets ,Mem .Fac.sci.kochi.univ.ser.A.Math.,15(1994), 51-63 .
- [10].Maki.H, Devi.R and K.Balachandran generalized -closed sets in topology, Bull. Fukuka univ. Ed part (111),42(1993),13-21.
- [11].Maki.H,J.umehara and T.noiri, Every topological space is pre T1/2, Mem.fac. soi. Kochi, univ-ser. A, Math.,17(1996),33-42.
- [12].Mashhour, I.A.Hasanein and S.N.el. Deep, -continuous and open mapping. ,Acta Math.Hung.,41(3-4)(1983),213-218.

thesis, Bharathiar university, Coimbatore, 1999.

- [13] Nagaveni, studies on generalization of homeomorphisms in topological spaces.ph.D
- [14].Pauline mary Helen M, Veronica Vijayan, Ponnuthai Selvarani, g**-closed sets in topological spaces IJM A 3(5),(2012),1-15.
- [15].Sundaram.P, & Sheik John .M(1995) Weakly closed sets and Weak continuous maps in topological spaces Proc.82nd Indian Sci.Cong.49.(50-58).
- [16]. Veerakumar. M.K.R.S. between closed sets and g-closed sets, Mem. Fac . Sci.kochi.univ.ser. A, Math., 17(1996), 33-42.
- [17]. Veronica Vijayan, Priya.F, *closed sets in topological spaces IJCA Issue 3,volume 4(July-August 2013)ISSN-(2250-1797),49-60.
- [18]. Veronica Vijayan, K. Selvapriya, -closed, -closed in topological space, IJCA, Issue 3, volume (April-2013), ISSN:2250-1797.