
International Journal of Computer Application (2250-1797)

Volume 7– No.1, January– February 2017

21

Data aware Caching using Map reduce Framework

K. Jaya Jones
1
, A. Madhavi

2

1
PG Student, CSE Department, VNR Vignana Jyothi Institute of Engineering and Technology,

Hyderabad, Telangana, 500072, India. E-mail: jayajones162@gmail.com

2
Assistant Professor, CSE Department, VNR Vignana Jyothi Institute of Engineering and Technology,

Hyderabad, Telangana, 500072, India . E-mail: madhavi_a@vnrvjiet.in

Abstract – The big data is the large spectrum of data also can be referred as discrete data. It usually

operates on large amounts of data. The two core concepts of the Hadoop are Hadoop Distributed File

System(HDFS), the storage mechanism and Map Reduce which is the programming language. The

study of the Map Reduce framework is that it generates a large amount of intermediate data. Such

information is discarded after the task is done. Big data open-source implementation deals with

extensively large amount of data where the data can either be structured or unstructured for big-data

applications. Data-aware cache framework is meant for large data applications. In Dache, tasks submit

their intermediate results to the cache manager and queries the cache manager before executing the

actual computing work. We implement Dache by extending the relevant components of the Hadoop

project.

Keywords: Hadoop Distribute File System, Dache, Mapreduce Framework

1. INTRODUCTION

The main reason for big data to come into

existence is when the traditional relational

databases management systems were unable to

process the unstructured data . Usually big data is

measured in Zeta bytes and Terabytes. There are

several challenges in Big data which includes

sharing, storage, visualization, analysis, privacy

and security. Big data analytics has become all

the rage. The Hadoop Map Reduce is an open

source software framework developed by Apache

which assists in distributed processing of larger

data sets across clusters of commodity servers.

The three main components of Apache Hadoop

are Hadoop Distributed File System, another

Resource Negotiator and a Map Reduce

framework. The Map Reduce is a used for

processing large amount of data sets, Hadoop

Map Reduce is a software framework for

processing applications which possesses very

large amounts of data.

A Map Reduce job usually splits the input

data into independent parts of data which are

International Journal of Computer Application (2250-1797)

Volume 7– No.1, January– February 2017

22

processed by the map reduce in a parallel

manner. The framework looks after scheduling

tasks, re-executes the unsuccessful tasks and also

monitors them.

Google Map Reduce is a programming model

and also a software framework for Big -scale

distributed Computing on large amounts of data.

Figure (i) shows the high level work flow of any

task. Application developers depict the

computation in terms of reduce function and the

underlying Map Reduce Task scheduling system

automatically parallelizes the computation across

the cluster of machines.

In Big and Distributed data application, large

amount of input data is presented and is split in

the Task Tracker. All data files are termed as

“Records”. In the Map Reduce phase all input

data is distributed to the Task Tracker. After

Mapping, sorting and rearranging is done by

using intermediate file which is created by the

Task Tracker. Again it is submitted to the Task

Tracker for the Reducing phase. Finally by using

Map Reduce, the Reduced output is generated in

the disk.

However, there is a restriction in the system,

i.e., the inefficiency of incremental processing.

Incremental processing means the applications

which incrementally grow the input data and

continuously apply computations on the input to

produce output. There are duplicate computations

and operations that are being performed in this

process. However, Map Reduce does not have

the any specified technique to identify such

duplicate computations and speed up the

execution. Inspired by this observation, in this

paper we propose, a data-aware cache system

using the Map Reduce framework, which aims at

extending the Map Reduce framework and using

a cache layer for efficiently identifying and

accessing cache items in a Map Reduce job.

2. RELATED WORK / LITERATURE

REVIEW

Daniel Peng et al. proposed, a system for

incrementally processing updates to a large data

set, and deployed it to create the Google web

search index. By replacing a batch based

indexing system with an indexing system based

on incremental processing using Percolator,

Auther process the same number of documents

per day

Weikuan Yu et al. proposed, Hadoop-A, an

acceleration framework that optimizes Hadoop

with plugin components for fast data movement,

overcoming the existing limitations. A novel

network-levitated merge algorithm is introduced

to merge data withoutrepetition and disk access.

In addition, a full pipeline is designed to overlap

the shuffle, merge and reduce phases. Our

experimental results show us that Hadoop-A

significantly speeds up data movement in

MapReduce and doubles the throughput of

Hadoop.

Jiong Xie et al. proposed that ignoring the

data locality issue in heterogeneous

environments can noticeably reduce the

MapReduce performance. In this paper, author

addresses the problem of how to place data

across nodes in a way that each node has a

balanced data processing load. Given a data

intensive application running on a Hadoop

MapReduce cluster, our data placement scheme

adaptively balances the amount of data stored in

each node to achieve improved data-processing

performance. Experimental results on two real

data-intensive applications show that our data

placement strategy can always improve the

MapReduce performance by rebalancing data

across nodes before performing a data-intensive

application in a heterogeneous Hadoop cluster.

International Journal of Computer Application (2250-1797)

Volume 7– No.1, January– February 2017

23

3. PROBLEM STATEMENT

In current Hadoop Map Reduce framework

is that the framework generates a large flow of

intermediate data. Map Reduce is unable to save

that such data so they are deleted after used. But

in our system we introducing the cache memory

that holds the intermediate results in it, because

of that the data processing, means job executing

processing is faster than old system, So that

system is a time consuming, repetition of data

processing are reduced.

4. CACHE DESCRIPTION ON BIG DATA

ENVIRONMENT

Cache refers to the intermediate data which

is produced by the worker nodes/processes

during the execution of any Map Reduce task. A

part of cached data is stored in a Distributed File

System (DFS). The content of the cache item is

described by the original data and the operations

applied. Formally, a cache item is described by a

2-tuple: Origin, Operation. Origin is the name of

the file in the DFS. Operation is a linear list of

available operations performed on the Origin

file. For instance, in the word count application,

each mapper node/process emits a list of word,

count tuples that record the count of each word

in the file that the mapper processes. Dache

stores this list to a file which becomes a cache

item. Given an original input data file, word list

abc.txt, the cache item is described by word list

abc.txt, item count. Here, the item refers to the

white-space-separated character strings. Note

that the new line character is also considered as

one of the white spaces, so item precisely

captures the word in a text file and item count

directly corresponds to the word count operation

performed on the data file. The exact format of

the cache description of different applications

varies according to their specific semantic

contexts. This can be designed and implemented

by application developers who are responsible

for implementing their MapReduce tasks. In our

prototype, we present several supported

operations such as:

Item Count: The count of all the occurrences of

each item in a text file. The items are separated

by a user defined separator.

Sort: This operation sorts the records of the file.

The comparison operator is defined on two

items and returns the order of precedence.

Selection: This operation selects an item that

meets a given criterion. It could be an order in

the list of items. A special selection operation

involves selecting the median of a linear list of

items.

Transform: This operation transforms each item

in the input file into a different item. The

transformation is described further by the other

information in the operation descriptions. This

can only be specified by the application

developers.

Classification: This operation classifies the

items in the input file into multiple groups. This

could be an exact classification, where a

deterministic classification criterion is applied

sequentially on each item, or an approximate

classification, where an iterative classification

process is applied and the iteration count should

be recorded.

5. PROTOCOL

Dache has classified the cache items into

two types, map cache and reduce cache. These

two types interact with each other in different

cases and there are some complexities when it

comes to sharing. In map cache, sharing

becomes a effortless task since the operations

enforced are transparent but in reduce phase

sharing becomes a complex one.

International Journal of Computer Application (2250-1797)

Volume 7– No.1, January– February 2017

24

Cache request and reply: The cache request

and reply takes place in both map cache and

reduce cache.

Map Cache: Before commencing the file

splitting phase, the job tracker is responsible for

sending out cache requests to the cache

manager. In return, the cache manager responses

with a list of cache descriptions.

Reduce Cache: The requested cache item is

compared with the cached items in the cache

manager’s database. Cache manager identifies

the overlaps of the original input files of the

requested cache and stored cache and for this

purpose linear scan method is used.

6. CONCLUSION

Hadoop is the tool which is used to manage

and process the big data contents, which is the

biggest challenge in the recent years. By using

Hadoop distributed file system and map reduce

concepts in hadoop we can process any big data

contents within short period of time. HDFS acts

as the storage mechanism in the hadoop and map

reduce is used as the programming language in

order to process the contents. Map reduce is

operated with the help of two functions, mapper

function and the reducer function.

7. FUTURE WORKS

Hadoop is used mainly used for strategic

oriented decision making in the big data

applications. It has many number of applications

of which fraud detection, content optimizing,

pattern recognition marketing analysis, large

data transformations etc. are some of them.

Hadoop framework can be used to make

informed decisions in order to perform the

freight audit. By doing freight audit one can

prevent organizations from overpaying for the

services of freight forwarders, which are not

used.

8. REFERENCES

[1] J. Dean and S. Ghemawat, Mapreduce:

Simplified data processing on large clusters,

Commun. of ACM, vol. 51, no. 1, pp. 107-113,

2008.

[2] Hadoop, http://hadoop.apache.org/, 2013.

[3] Java programming language,

http://www.java.com/, 2013.

[4] P. Th. Eugster, P. A. Felber, R. Guerraoui,

and A.-M. Kermarrec, The many faces of

publish/subscribe, ACM Comput. Surv., vol. 35,

no. 2, pp. 114-131, 2003.

[5] Cache algorithms,

http://en.wikipedia.org/wiki/Cache algorithms,

2013.

[6] Amazon web services,

http://aws.amazon.com/, 2013.

[7] Google compute engine,

http://cloud.google.com/products/computeengin

e.html, 2013.

[8] G. Ramalingam and T. Reps. A categorized

bibliography on incremental computation, in

Proc. of POPL ’93, New York, NY, USA, 1993.

[9] F. Chang, J. Dean, S. Ghemawat, W. C.

Hsieh, D. A. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R. Gruber. Bigtable: A distributed

storage system for structured data, in Proc. Of

OSDI’2006, Berkeley, CA, USA, 2006.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung,

The google file system, SIGOPS Oper. Syst.

Rev., vol. 37, no. 5, pp. 29-43, 2003.

[11] D. Peng and F. Dabek, Largescale

incremental processing using distributed

transactions and notifications, in Proc. Of OSDI’

2010, Berkeley, CA, USA, 2010.

[12] J. Ousterhout, P. Agrawal, D. Erickson, C.

Kozyrakis, J. Leverich, D. Mazi‘eres, S. Mitra,

A. Narayanan, D. Ongaro, G. Parulkar, M.

Rosenblum, S. M. Rumble, Stratmann, and R.

Stutsman, The case for ramcloud, Commun. of

ACM, vol. 54, no. 7, pp. 121-130, 2011.

International Journal of Computer Application (2250-1797)

Volume 7– No.1, January– February 2017

25

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and

D. Fetterly, Dryad: Distributed data-parallel

programs from sequential building blocks,

SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 59-

72, 2007.

[14] L. Popa, M. Budiu, Y. Yu, and M. Isard,

Dryadinc: Reusing work in large-scale

computations, in Proc. Of HotCloud’09,

Berkeley, CA, USA, 2009.

[15] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y.

Han, M. Larsson, A. Neumann, V. B. N. Rao, V.

Sankarasubramanian, S. Seth, C. Tian, T.

ZiCornell, and X. Wang, Nova: Continuous

pig/hadoop workflows, in Proc. of

SIGMOD’2011, New York, NY, USA, 2011.

[16] C. Olston, B. Reed, U. Srivastava, R.

Kumar, and A. Tomkins, Pig latin: A not-so-

foreign language for data processing, in Proc. of

SIGMOD’2008, New York, NY,USA, 2008.

