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Abstract: In this paper, g**-isolated point, g**-compact, g**-locally compact, g**-compact 

modulo I, g**- sequentially compact, g**- sequentially compact modulo I, g**-countably 

compact, g**-countably compact modulo I spaces are introduced and the relationship between 

these concepts are studied. 
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______________________________________________________________________________ 

1. Introduction 

Levine [1] introduced the class of g-closed sets in 1970 and M.K.R.S. Veerakumar[5] introduced 

g*-closed sets in 1991. Ideal topological spaces have been first introduced by K. Kuratowski [2] in 

1930. In this paper g**-compact spaces, g**-locally compact spaces, g**-compact modulo I 

spaces, g**- sequentially compact spaces, g**- sequentially compact modulo I spaces, g**-

countably compact spaces, g**-countably compact modulo I spaces are defined and their 

properties are investigated. 

2. Preliminaries 

Definition 2.1: A subset A of a topological space(X, τ) is called 

1) generalized closed (briefly g-closed)[1] if cl(A)  U whenever A  U  and U is open in 

(X, τ). 

2)  generalized star closed (briefly g*-closed)[7] if cl(A)  U whenever A  U  and U is g- 

open in (X, τ).  
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3) generalized star star closed (briefly g**-closed)[4] if cl(A)  U whenever A  U  and U 

is g*- open in (X, τ). 

Definition 2.2: A function f : (X, τ) → (Y, σ) is called  

1)  g**-irresolute [4] if )(1 Vf   is a g**-closed set of (X, τ) for every g**-closed set  V of 

(Y, σ).  

2) g**-continuous [4] if )(1 Vf   is a g**-closed set of ),( X for every closed set V of 

),( Y . 

3) g**-resolute [6] if )(Uf is g**-open in Y whenever U is g**-open in X. 

Definition 2.3: An ideal[2] I  on a non empty set X  is a collection of subsets of X  which 

satisfies the following properties.(i) IA , IB    IBA   (ii) IA , AB     IB

.A topological space ),( X  with an ideal I  on X  is called an ideal topological space and is 

denoted by ),,( IX  . 

Definition 2.4:[6]  Let ),( X  be a topological space and Xx . Every  openg **  set 

containing x  is said to be a oodneighbourhg **  of x . 

Definition 2.5:[6]  Let A be a subset of X. A point Xx  is said to be a **g  limit point of A 

if every oodneighbourhg **  of x  contains a point of A other than x . 

Definition 2.6:[6] Let A be a subset of a topological space ),( X . )(** Aclg  is defined to be 

the intersection of all closedg **  sets containing A.  

Note: [6] )(** Aclg  need not be closedg ** , since intersection of closedg **  sets need not 

be closedg ** . But if A is closedg **  then AAclg )(** .  

Definition 2.8:[6] A topological space ),( X  is said to be  tivemultiplicag **  if arbitrary 

intersection of  closedg **  sets is closedg ** . Equivalently arbitrary union of  openg **  

sets is openg ** . 

Note: If ),( X  is tivemultiplicag **   then )(** AclgA   if and only if A is closedg ** . 
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Definition 2.9:[2] A collection C of subsets of X is said to have finite intersection property if for 

every sub collection },........,{ 21 nCCC of C  the intersection nCCC  .........21  is non empty. 

Definition 2.10:[5] An ideal topological space ),,( IX   is called compactIg **

  if for every  

openIg **

  cover   /A   in ),,( IX    there exists a finite subset 0   of   such that 




AX


  . 

Definition 2.11:[6] A topological space ),( X  is said to be a g**- T2 space if for every pair of 

distinct points yx, in X there exists disjoint g**-open sets U and V in X such that Ux   and 

.Vy  

3. g**-compact space 

Definition 3.1: A collection }{U  of g**-open sets in X is said to be g**-open cover of X if 




UX


  

Definition 3.2: A topological space ),( X  is said to be g**-compact if every g**-open covering 

of X contains a finite sub collection that also covers X.  A subset A of X is said to be g**-

compact if every g**-open covering of A contains a finite sub collection that also covers A 

Remark 3.3: An ideal topological space ),,( IX   is 

 (1) compactcompactgcompactIg  ****  

Proof: Since every open set is g**-open and every g**-open set is Ig ** -open. 

(2) Any topological space having only finitely many points is necessarily 

compactgcompactIg  **,**  and .compact  

The inverse implications of (1) of remark (3.3) are not true as seen in the following example. 

Example 3.4: Let ),( X be an infinite indiscrete topological space. In this space all subsets are 

g**-open. Obviously it is compact. But Xxx }{ is a g**-open cover which has no finite sub cover. 

Hence it is not g**-compact and hence not g**I compact. 

Example 3.5: Let ),( X be an infinite cofinite topological space. ThenG**IO(X) cAAX /,,{  

is finite} = G**O(X). Let }{U be an arbitrary g**-open cover for X. Let 
0

U be one g**-

open (g**I –open) set in the open cover }{U . Then 
0

UX  is finite, say 
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}.,........,,{ 321 nxxxx  Choose 
i

U such that 
ii

Ux   for .,.....2,1 ni   Then 

.........
10 n

UUUX   The space is g**-compact (g**I –compact) and hence compact. 

Theorem 3.6: A g**-closed subset of g**-compact space is g**-compact. 

Proof: Let A be a g**-closed subset of a g**-compact space ),( X and }{U be a g**-open 

cover for A. Then )}(,}{{ AXU  is a g**-open cover for X. Since X is g**-compact, there 

exists n .,........., 21 such that ).(........
1

AXUUX
n

 

n
UUUA   ....

21
which proves A is g**-compact. 

Remark 3.7: The converse of the above theorem need not be true as seen in the following 

example. 

Example 3.8: Let }.},{,{},,,,{ XadcbaX   Here }.},{,{)(** XaXOG  ),( X is g**-

compact. },{ cbY  is g**-compact but not g**-closed. 

Theorem 3.9: Let ),( X be a g**-multiplicative g** T2-space. Then every g**-compact subset 

of X is g**-closed. 

Proof: Let Y be a g**-compact subset of g** T2-space X. Let .0 YXx   For each point ,Yy

there exists disjoint g**-open sets yU and yV containing y and 0x respectively. }/{ YyU y  is 

a g**-open cover for Y. Now there exists Yyyy n },......,{ 21 such that ).(
1

sayUUY
iy

n

i



Let 

iy

n

i
VV

1
 . Then V is g**-open. Since X is g**-multiplicative, U is g**-open. Obviously 

.YU V is a g**-neighbourhood of 0x contained in X – Y. Therefore X – Y is g**-open 

and hence Y is g**-closed.  

Note: The converse of theorem (3.9) is true if ),( X is g**-multiplicative and g** T2. 

Remark 3.10:  

(1) In theorem (3.9), the condition g**-T2 is necessary. An infinite cofinite topological space is 

g**-multiplicative but not g**-T2. In this space all subsets are g**-compact but only finite sets 

are g**-closed. 

Theorem 3.11: Let Y be a g**-compact subset of a g** T2-space X and Yx 0 . Then there 

exists disjoint g**-open sets U and V of X containing 0x and Y respectively. 
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Proof: The g**-open sets U and V discussed in the proof of theorem (3.9) are disjoint g**-open 

sets containing Y and 0x respectively. 

Theorem 3.12: Let ),( X  and ),( Y  be two topological spaces and ),(),(:  YXf   be a 

function. Then 

1. f is g**-irresolute and A is a g**-compact subset of X  )(Af is a g**-compact subset of Y. 

2. f is one to one,g**-resolute and B is a g**-compact subset of Y  )(1 Bf  is a g**-compact 

subset of X. 

3. f is g**-irresolute , X is g**-compact,  Y is g**-multiplicative and g**-T2  f is a    

    g**- resolute function. 

4. f is g**-resolute and Y is g**-compact and X is g**-multiplicative and g**-T2  f is a    

    g**- irresolute function. 

Proof: (1) & (2) Obvious from the definitions.  

(3) Proof follows from (1) and theorem (3.9).  

(4) Proof follows from (2) and theorem (3.9). 

Theorem 3.13: A topological space ),( X  is g**-compact if and only if for every collection C 

of g**-closed sets in X having finite intersection property, CCC of all elements of C  is non-

empty. 

Proof: Let ),( X  be g**-compact and C be a collection of g**-closed sets with finite 

intersection property. Suppose   CCC  then XCXCC   )( . CCCX  }{ is a g**-open 

cover for X. Then there exists nCCC ,........, 21  C such that .)(
1

XCX i

n

i






i

n

i
C

1
 which 

is a contradiction. .


C
CC

Conversely, assume the hypothesis given in the statement. To 

prove X is g**-compact. Let }{U be a g**-open cover for X. Then 

.)( 








UXXU  By the hypothesis there exists n ,........., 21  such that 

.
1

 
 i

UX
n

i
.

1
XU

i

n

i



 X is g**-compact. 
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Corollary 3.14: Let ),( X be a g**-compact space and let 

................. 121  nn CCCC be a nested sequence of non-empty g**-closed sets in X. 

Then 
n

Zn
C


  is non-empty. 

Proof: Obviously  ZnnC }{ has finite intersection property. By theorem (3.13) 
n

Zn
C


 is non-

empty. 

Theorem 3.15: Let ),(),(:  YXf  be a funtion, then 

(1) f is g**-continuous, onto and X is g**-compact Y is compact. 

(2) f is continuous, onto and X is g**-compact Y is compact. 

(3) f is g**-irresolute, onto and X is g**-compact Y is g**-compact. 

(4) f is strongly g**-irresolute, onto and X is compact Y is g**-compact. 

(5) f is g**-open, bijection and Y is g**-compact X is compact. 

(6) f is open, bijection and Y is g**-compact X is compact. 

(7) f is g**-resolute, bijection and Y is g**-compact X is g**-compact. 

Proof:(1): Let 


 }{U be an open cover for Y. Then 





 })({ 1 Uf is a g**-open cover for X. 

Since X is g**-compact, there exists n ,......, 21 such that 

.)().(
1

1

1 ii
UXfYUfX

n

i

n

i







 Therefore Y is compact.  

Proof for (2) to (7) are similar to the above. 

 

4. g**-countably compact space 

Definition 4.1: A subset A of a topological space ),( X  is said to be g**-countably compact if 

every countable g**-open covering of A has a finite sub cover. 

Example 4.2: An infinite cofinite topological space is g**-countably compact. 

Example 4.3: A countably infinite indiscrete topological space is not g**-countably compact. 

Remark 4.4: Every g**-compact space is g**-countably compact. 

Theorem 4.5: In a g**-countably compact topological space every infinite subset has a g**-limit 

point. 
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Proof: Let ),( X be g**-countably compact. Suppose that there exists an infinite subset which 

has no g**-limit point. Let }/{ NnaB n   be a countable subset of A. Since B has no g**-limit 

point of B, there exists a g**-neighbourhood Un of an such that }.{ nn aUB  Now {Un} is a 

g**-open cover for B. Since B
c
 is g**-open, }}{,{ Znn

c UB is a countable g**-open cover for X. 

But it has no finite sub cover which is a contradiction, since X is g**-countably compact. 

Therefore every infinite subset of X has a g**-limit point. 

Corollary 4.6: In a g**-compact topological space every infinite subset has a g**-limit point. 

Proof follows from theorem (4.5), since every g**-compact space is g**-countably compact. 

Theorem 4.7: A g**-closed subset of g**-countably compact space is g**-countably compact. 

Proof is similar to theorem (3.6) 

Definition 4.8: In a topological space ),( X a point Xx is said to be a g**-isolated point of A 

if every g**-open set containing x contains no point of A other than x . 

Theorem 4.9: Let X be a non empty g**-compact g**-T2 space. If X has no g**-isolated points 

then X is uncountable. 

Proof: Let  Xx 1 . Choose a point y of X different from x . This is possible since }{ 1x is not a 

g**-isolated point. Since X is g**-T2 , there exists g**-open sets 1U and 1V such that 

1111 ,; VyUxVU   . Therefore 1V is g**-open and ).(** 11 Vclgx  By repeating the same 

process with 1V in the place of X and 1x  in the place of y we get a point 1xx  and a g**-open set 

2V such that 2V is g**-open and ).(** 22 Vclgx  In general, given 1nV
 
which is  g**-open and 

non empty, choose nV to be a non empty g**-open set such that 1 nn VV and ).(** nn Vclgx 

Hence we get a nested sequence of g**-closed sets such that ...........)(**)(** 1  nn VclgVclg  

Since X is g**-compact .)(**  nVclg Therefore there exists ).(** nVclgx   But nxx  for 

every n, since )(** nn Vclgx  and )(** nVclgx . Define XZf : such that .)( nxnf 

Then Xx has no pre image. Therefore f is not onto and hence X is uncountable. 

Note:The converse of Theorem 4.5 is true in a g**-T1 space. 

Theorem 4.10: In a g**-T1 space X ,if every infinite subset has a g**-limit point then X is  

g**-countably compact . 
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Proof: Let every infinite  subset has a g**-limit point. To prove X is g**-countably compact. If not 

there exists a countable g**-open cover }{ nU  such that it has no finite sub cover .Since .1 XU   

there exists .; 2111 UUSinceXUx   there exists .212 UUx   Proceeding like this there exists 

nn UUUx  ......21 for all n. }{ nxA  is an infinite set. If Xx then nUx for some n. But 

nk Ux  for all .nk        Un –{x1,x2,….,xn-1} is a g**-open set (since X is g**-T1)   containing x 

which does not have a point of A other than x.Therefore x is not a limit point of A which is a 

contradiction. 

Theorem 4.11: A topological space ),( X  is g**- countably compact if and only if for every 

countable collection C of g**-closed sets in X having finite intersection property, CCC of all 

elements of C  is non-empty. 

Proof: Similar to the proof of Theorem 3.13 

 

Corollary 4.12: X is g**-countably compact if and only if every nested sequence of g**-closed 

non empty sets ..........21 CC has a non empty intersection. 

Proof: Obviously  ZnnC }{ has finite intersection property. By theorem (4.11) n
Zn

C


 is non-

empty. 

 

5. Sequentially g**-compact space  

Definition 5.1: A subset A of a topological space ),( X  is said to be sequentially g**- compact 

if every sequence in A contains a subsequence which g**-converges to some point in A. 

Example 5.2: Any finite topological space is sequentially g**-compact. 

Example 5.3: An infinite indiscrete  topological space is not sequentially g**-compact. 

Theorem 5.4: A finite subset A of a topological space ),( X is sequentially g**-compact. 

Proof: Let }{ nx be an arbitrary sequence in X. Since A is finite, at least one element of the 

sequence say 0x must be repeated infinite number of times. So the constant subsequence 0x , 0x

,…….must g**-converges to 0x . 

Remark 5.5: Sequentially g**-compactness implies sequentially compactness but the inverse 

implication is not true as seen in the following example. 
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Example 5.6: Any infinite indiscrete space is sequentially compact but not sequentially g**-

compact. 

Theorem 5.7: Every sequentially g**-compact space is g**-countably compact. 

Proof: Let ),( X be sequentially g**-compact. Suppose X is not g**-countably compact. Then 

there exists countable g**-open cover ZnnU }{ which has no finite sub cover.Then 
n

Zn
UX


  . 

Choose ............,,
1

12,1
3312211 i

n

i
nn

i
i UUxUUxUUxUx





 This is possible since }{ nU

has no finite sub cover.  Now }{ nx is a sequence in X. Let Xx be arbitrary. Then kUx for 

some k. By our choice of }{ nx , ki Ux  for all i  greater than .k Hence there is no subsequence of 

}{ nx which can g**-converge to .x Since x is arbitrary the sequence }{ nx has no convergent 

subsequence which is a contradiction. Therefore X is g**-countably compact. 

Theorem 5.8: Let ),(),(:  YXf  be a function, then 

(1) f is g**-resolute, bijection and Y is sequentially g**-compact X is sequentially g**- 

compact. 

(2) f is onto, g**-irresolute and X is sequentially g**-compact  Y sequentially g**- 

compact. 

(3) f is onto, g**-irresolute and X is sequentially g**-compact Y is sequentially g**- 

compact. 

(4) f is onto, continuous and X is sequentially g**-compact Y is sequentially compact. 

(5) f is onto, strongly g**-continuous and X is sequentially g**-compact  Y is 

sequentially g**- compact. 

Proof: (1): Let }{ nx be a sequence in X. Then )}({ nxf is a sequence in Y. It has a g**convergent 

subsequence )}({
knxf such that 0

**)( yxf g

nk
 in Y. Then there exists Xx 0 such that 

.)( 00 yxf  Let U be a g**-open set containing 0x . Then )(Uf is a g**-open set containing 0y  . 

Then there exists N such that )()( Ufxf
kn  for all .Nk 

UxUffxff
kk nn   ).()( 11  for all .Nk  This proves that X is sequentially g**-

compact. 

Proof for (2) to (5) is similar to the above. 
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6. g**-locally compact space 

Definition 6.1: A topological space ),( X is said to be g**-locally compact if every point of x is 

contained in a g**-neighbourhood whose g**closure is g**-compact. 

Remark 6.2: Any g**-compact space is g**-locally compact but the converse need not be true 

as seen in the following example. 

Example 6.3: Let ),( X be an infinite indiscrete topological space. It is not g**-compact. But 

for every }{, xXx  is a g**-neighbourhood and }{}{ xx  is g**-compact. Therefore it is g**-

locally compact. 

Theorem 6.4: Let ),( X be g**-multiplicative g**-T2 space. Then X is g**-locally compact if 

and only if each of its points is a g**-interior point of some g**-compact subset of X. 

Proof: Let X be g**-locally compact and .Xx Then x  has a g**-neighbourhood N such that 

g**cl(N) is g**-compact. Conversely, let every point Xx be a g**- interior point of some 

g**compact subset of X. Given Xx , there exists g**-compact subset N such that x

g**int(N). So, N is a g**-neighbourhood of .x By the hypothesis and theorem (3.9), N is g**-

closed. Therefore X is g**-locally compact. 

7. g**-compact modulo I 

Definition 7.1: An ideal topological space ),,( IX  is said to be g**-compact modulo I if for 

every g**-open covering }{U of  X, there exists a finite subset 0 of  such that 

.
0

IUX 





 

Remark 7.2: g**-compactness implies g**-compact modulo I for any ideal I but not conversely. 

Example 7.3: Let ),,( IX  be an indiscrete infinite topological space where ).(XI   Let

}{U be a g**-open cover for X. Let .0    Then .
0

IUX   Therefore ),,( IX    is g**-

compact modulo I but not g**-compact. 

Note: When }{I  the concepts “g**-compact modulo I” and “g**-compact” coincide. 

Remark 7.4: Ig **  compact modulo I implies g**-compact modulo I and g**-compact 

modulo I  implies compact modulo I 

Proof: Obvious, since ).(**)(** XIOGXOG   

Example 7.5: An indiscrete space }){,,( X is compact modulo I but not g**-compact modulo 

{υ}. 
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Theorem 7.6: If ,JI  then ),,( IX  is g**-compact modulo I implies ),,( JX  is g**-compact 

modulo J. 

Proof is obvious. 

Theorem 7.7: Let FI denote the ideal of all finite subsets of X. Then ),( X is compact if and 

only if ),,( FIX  is compact modulo FI . 

Proof: Necessity: Follows since FI}{ . 

Sufficiency: Let }{U be a g**-open cover for X. then there exists a finite subset 0 of   

such that FIUX 



 0

. },......,{ 21
0

nxxxUX 





. Choose i such that 
i

Uxi  for i = 

1,2,……..n. Then }.{}{
10

i
UUX

n

i


 
 Therefore X is g**-compact modulo FI . 

8. g**-countably compact modulo I 

Definition 8.1: An ideal topological ),,( IX  is said to be g**-countably compact modulo I if for 

every countable g**-open covering }{U of  X, there exists a finite subset 0 of  such that 

.
0

IUX 





 

All the results, from Remark (7.2) to theorem (7.7) are true in the case when ),,( IX  is g**-

countably compact modulo I. 
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