g**compact space and g**compact modulo *I* space

Sr.Pauline Mary Helen, Associate Professor, Nirmala College, Coimbatore. Mrs.Ponnuthai Selvarani, Associate Professor, Nirmala College, Coimbatore. Mrs.Veronica Vijayan,Aassociate Professor, Nirmala College, Coimbatore. Mrs.Punitha Tharani, Associate Professor,St.Mary's College, Tuticorin

Abstract: In this paper, g^{**} -isolated point, g^{**} -compact, g^{**} -locally compact, g^{**} -compact modulo *I*, g^{**-} sequentially compact, g^{**-} countably compact, g^{**-} countably compact modulo *I* spaces are introduced and the relationship between these concepts are studied.

Key words: g^{**} -isolated point, g^{**} -compact, g^{**} -locally compact, g^{**} -compact modulo *I*, g^{**} -sequentially compact, g^{**} -countably compact, g^{**} -countably compact, g^{**} -countably compact modulo *I*.

1. Introduction

Levine [1] introduced the class of g-closed sets in 1970 and M.K.R.S. Veerakumar[5] introduced

g*-closed sets in 1991. Ideal topological spaces have been first introduced by K. Kuratowski [2] in

1930. In this paper g**-compact spaces, g**-locally compact spaces, g**-compact modulo I

spaces, g**- sequentially compact spaces, g**- sequentially compact modulo I spaces, g**-

countably compact spaces, g^{**} -countably compact modulo I spaces are defined and their

properties are investigated.

2. Preliminaries

Definition 2.1: A subset A of a topological space(X, τ) is called

- generalized closed (briefly g-closed)[1] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).
- generalized star closed (briefly g*-closed)[7] if cl(A) ⊆ U whenever A ⊆ U and U is gopen in (X, τ).

generalized star star closed (briefly g**-closed)[4] if cl(A) ⊆ U whenever A ⊆ U and U is g*- open in (X, τ).

Definition 2.2: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

- g**-irresolute [4] if f⁻¹(V) is a g**-closed set of (X, τ) for every g**-closed set V of (Y, σ).
- g**-continuous [4] if f⁻¹(V) is a g**-closed set of (X,τ) for every closed set V of (Y,σ).
- 3) g^{**} -resolute [6] if f(U) is g^{**} -open in Y whenever U is g^{**} -open in X.

Definition 2.3: An ideal[2] I on a non empty set X is a collection of subsets of X which satisfies the following properties.(i) $A \in I$, $B \in I \Rightarrow A \cup B \in I$ (ii) $A \in I$, $B \subset A \Rightarrow B \in I$.A topological space (X, τ) with an ideal I on X is called an ideal topological space and is denoted by (X, τ, I) .

Definition 2.4:[6] Let (X, τ) be a topological space and $x \in X$. Every $g^{**}-open$ set containing x is said to be a $g^{**}-neighbourhood$ of x.

Definition 2.5:[6] Let A be a subset of X. A point $x \in X$ is said to be a g^{**} – limit point of A if every g^{**} – *neighbourhood* of x contains a point of A other than x.

Definition 2.6:[6] Let A be a subset of a topological space (X,τ) . $g^{**}cl(A)$ is defined to be the intersection of all $g^{**}-closed$ sets containing A.

Note: [6] g **cl(A) need not be g **-closed, since intersection of g **-closed sets need not be g **-closed. But if A is g **-closed then g **cl(A) = A.

Definition 2.8:[6] A topological space (X, τ) is said to be g^{**} -multiplicative if arbitrary intersection of g^{**} -closed sets is g^{**} -closed. Equivalently arbitrary union of g^{**} -open sets is g^{**} -open.

Note: If (X,τ) is g^{**} -multiplicative then $A = g^{**}cl(A)$ if and only if A is g^{**} -closed.

Definition 2.9:[2] A collection \mathbb{C} of subsets of X is said to have finite intersection property if for every sub collection $\{C_1, C_2, \dots, C_n\}$ of \mathbb{C} the intersection $C_1 \cap C_2 \cap \dots \cap C_n$ is non empty. **Definition 2.10:[5]** An ideal topological space (X, τ, I) is called $g^{**}I$ – *compact* if for every $g^{**}I$ – *open* cover $\{A_{\alpha} \mid \alpha \in \Omega\}$ in (X, τ, I) there exists a finite subset Ω_0 of Ω such that $X = \bigcup_{\alpha \in \Omega} A_{\alpha}$.

Definition 2.11:[6] A topological space (X, τ) is said to be a g^{**} - T_2 space if for every pair of distinct points x, y in X there exists disjoint g^{**} -open sets U and V in X such that $x \in U$ and $y \in V$.

3. g**-compact space

Definition 3.1: A collection $\{U_{\alpha}\}_{\alpha \in \Delta}$ of g^{**}-open sets in X is said to be g^{**}-open cover of X if

$$X=\underset{\alpha\in\Delta}{\cup}U_{\alpha}$$

Definition 3.2: A topological space (X, τ) is said to be g^{**} -compact if every g^{**} -open covering of X contains a finite sub collection that also covers X. A subset A of X is said to be g^{**} -compact if every g^{**} -open covering of A contains a finite sub collection that also covers A

Remark 3.3: An ideal topological space (X, τ, I) is

(1) g^{**I} - compact \Rightarrow g^{**} - compact \Rightarrow compact

Proof: Since every open set is g^{**} -open and every g^{**} -open set is g^{**I} -open.

(2) Any topological space having only finitely many points is necessarily $g^{**}I$ - compact, g^{**} - compact and compact.

The inverse implications of (1) of remark (3.3) are not true as seen in the following example.

Example 3.4: Let (X, τ) be an infinite indiscrete topological space. In this space all subsets are g**-open. Obviously it is compact. But $\{x\}_{x\in X}$ is a g**-open cover which has no finite sub cover. Hence it is not g**-compact and hence not g***I* compact.

Example 3.5: Let (X, τ) be an infinite cofinite topological space. Then $G^{**}IO(X) = \{\varphi, X, A/A^c$ is finite $\} = G^{**}O(X)$. Let $\{U_{\alpha}\}_{\alpha \in \Delta}$ be an arbitrary g^{**} -open cover for X. Let U_{α_0} be one g^{**} -open $(g^{**}I - open)$ set in the open cover $\{U_{\alpha}\}_{\alpha \in \Delta}$. Then $X - U_{\alpha_0}$ is finite, say $\{x_1, x_2, x_3, \dots, x_n\}$. Choose U_{α_i} such that $x_{\alpha_i} \in U_{\alpha_i}$ for $i = 1, 2, \dots, n$. Then $X = U_{\alpha_0} \cup U_{\alpha_1} \cup \dots \cup U_{\alpha_n}$. The space is g^{**} -compact ($g^{**}I$ -compact) and hence compact.

Theorem 3.6: A g**-closed subset of g**-compact space is g**-compact.

Proof: Let A be a g**-closed subset of a g**-compact space (X, τ) and $\{U_{\alpha}\}_{\alpha \in \Delta}$ be a g**-open cover for A. Then $\{\{U_{\alpha}\}_{\alpha \in \Delta}, (X - A)\}$ is a g**-open cover for X. Since X is g**-compact, there exists $\alpha_1, \alpha_2, \dots, \alpha_n \in \Delta$ such that $X = U_{\alpha_1} \cup \dots, \cup U_{\alpha_n} \cup (X - A)$. $\therefore A \subseteq U_{\alpha_1} \cup U_{\alpha_2} \cup \dots \cup U_{\alpha_n}$ which proves A is g**-compact.

Remark 3.7: The converse of the above theorem need not be true as seen in the following example.

Example 3.8: Let $X = \{a, b, c, d\}, \tau = \{\varphi, \{a\}, X\}$. Here $G^{**}O(X) = \{\varphi, \{a\}, X\}$. (X, τ) is g^{**-} compact. $Y = \{b, c\}$ is g^{**-} compact but not g^{**-} closed.

Theorem 3.9: Let (X, τ) be a g**-multiplicative g** T₂-space. Then every g**-compact subset of X is g**-closed.

Proof: Let Y be a g^{**} -compact subset of g^{**} T₂-space X. Let $x_0 \in X - Y$. For each point $y \in Y$, there exists disjoint g^{**} -open sets U_y and V_y containing y and x_0 respectively. $\therefore \{U_y / y \in Y\}$ is

a g**-open cover for Y. Now there exists $\{y_1, y_2, \dots, y_n\} \in Y$ such that $Y \subseteq \bigcup_{i=1}^n U_{y_i} = U(say)$. Let

 $V = \bigcap_{i=1}^{n} V_{y_i}$. Then V is g**-open. Since X is g**-multiplicative, U is g**-open. Obviously $U \cap Y = \varphi$. $\therefore V$ is a g**-neighbourhood of x_0 contained in X – Y. Therefore X – Y is g**-open and hence Y is g**-closed.

Note: The converse of theorem (3.9) is true if (X, τ) is g^{**} -multiplicative and $g^{**} T_2$.

Remark 3.10:

(1) In theorem (3.9), the condition $g^{**}-T_2$ is necessary. An infinite cofinite topological space is g^{**} -multiplicative but not $g^{**}-T_2$. In this space all subsets are g^{**} -compact but only finite sets are g^{**} -closed.

Theorem 3.11: Let Y be a g^{**} -compact subset of a g^{**} T₂-space X and $x_0 \notin Y$. Then there exists disjoint g^{**} -open sets U and V of X containing x_0 and Y respectively.

Proof: The g^{**} -open sets U and V discussed in the proof of theorem (3.9) are disjoint g^{**} -open sets containing Y and x_0 respectively.

Theorem 3.12: Let (X,τ) and (Y,σ) be two topological spaces and $f:(X,\tau) \to (Y,\sigma)$ be a function. Then

1. *f* is g^{**}-irresolute and A is a g^{**}-compact subset of $X \Rightarrow f(A)$ is a g^{**}-compact subset of Y.

2. *f* is one to one,g^{**}-resolute and B is a g^{**}-compact subset of $Y \Rightarrow f^{-1}(B)$ is a g^{**}-compact subset of X.

- f is g**-irresolute, X is g**-compact, Y is g**-multiplicative and g**-T₂ ⇒ f is a g**- resolute function.
- f is g**-resolute and Y is g**-compact and X is g**-multiplicative and g**-T₂ ⇒ f is a g**- irresolute function.
- **Proof:** (1) & (2) Obvious from the definitions.
- (3) Proof follows from (1) and theorem (3.9).
- (4) Proof follows from (2) and theorem (3.9).

Theorem 3.13: A topological space (X, τ) is g^{**} -compact if and only if for every collection \mathcal{T} of g^{**} -closed sets in X having finite intersection property, $\bigcap_{C \in C} C$ of all elements of \mathcal{T} is non-empty.

Proof: Let (X, τ) be g^{**} -compact and \mathcal{T} be a collection of g^{**} -closed sets with finite intersection property. Suppose $\bigcap_{C \in C} C = \varphi$ then $\bigcap_{C \in C} (X - C) = X \dots \{X - C\}_{C \in C}$ is a g^{**} -open cover for X. Then there exists $C_1, C_2, \dots, C_n \in \mathcal{T}$ such that $\bigcup_{i=1}^n (X - C_i) = X \dots \bigcap_{i=1}^n C_i = \varphi$ which is a contradiction. $\therefore \bigcap_{C \in C} C \neq \varphi$. Conversely, assume the hypothesis given in the statement. To prove X is g^{**} -compact. Let $\{U_{\alpha}\}_{\alpha \in \Delta}$ be a g^{**} -open cover for X. Then $\bigcup_{\alpha \in \Delta} U_{\alpha} = X \Rightarrow \bigcap_{\alpha \in \Delta} (X - U_{\alpha}) = \varphi$. By the hypothesis there exists $\alpha_1, \alpha_2, \dots, \alpha_n$ such that $\bigcap_{i=1}^n X - U_{\alpha_i} = \varphi$. $\therefore \bigcup_{i=1}^n U_{\alpha_i} = X \dots X$ is g^{**} -compact. **Corollary 3.14:** Let (X, τ) be a g^{**} -compact space and let $C_1 \supseteq C_2 \supseteq \dots \supseteq C_n \supseteq C_{n+1} \supseteq \dots$ be a nested sequence of non-empty g^{**} -closed sets in X. Then $\bigcap_{n \to T^*} C_n$ is non-empty.

Proof: Obviously $\{C_n\}_{n \in Z^+}$ has finite intersection property. \therefore By theorem (3.13) $\bigcap_{n \in Z^+} C_n$ is non-empty.

Theorem 3.15: Let $f: (X, \tau) \to (Y, \sigma)$ be a function, then

- (1) f is g**-continuous, onto and X is g**-compact \Rightarrow Y is compact.
- (2) *f* is continuous, onto and X is g^{**} -compact \Rightarrow Y is compact.
- (3) *f* is g^{**}-irresolute, onto and X is g^{**}-compact \Rightarrow Y is g^{**}-compact.
- (4) f is strongly g**-irresolute, onto and X is compact \Rightarrow Y is g**-compact.
- (5) f is g**-open, bijection and Y is g**-compact \Rightarrow X is compact.
- (6) f is open, bijection and Y is g^{**} -compact \Rightarrow X is compact.
- (7) *f* is g^{**} -resolute, bijection and Y is g^{**} -compact \Rightarrow X is g^{**} -compact.

Proof:(1): Let $\{U_{\alpha}\}_{\alpha \in \Delta}$ be an open cover for Y. Then $\{f^{-1}(U_{\alpha})\}_{\alpha \in \Delta}$ is a g**-open cover for X. Since X is g**-compact, there exists $\alpha_1, \alpha_2, \dots, \alpha_n$ such that

$$X \subseteq \bigcup_{i=1}^{n} f^{-1}(U_{\alpha_i}) \therefore Y = f(X) \subseteq \bigcup_{i=1}^{n} U_{\alpha_i}$$
. Therefore Y is compact.

Proof for (2) to (7) are similar to the above.

4. g**-countably compact space

Definition 4.1: A subset A of a topological space (X, τ) is said to be g**-countably compact if every countable g**-open covering of A has a finite sub cover.

Example 4.2: An infinite cofinite topological space is g**-countably compact.

Example 4.3: A countably infinite indiscrete topological space is not g**-countably compact.

Remark 4.4: Every g**-compact space is g**-countably compact.

Theorem 4.5: In a g**-countably compact topological space every infinite subset has a g**-limit point.

Proof: Let (X, τ) be g**-countably compact. Suppose that there exists an infinite subset which has no g**-limit point. Let $B = \{a_n / n \in N\}$ be a countable subset of A. Since B has no g**-limit point of B, there exists a g**-neighbourhood U_n of a_n such that $B \cap U_n = \{a_n\}$. Now $\{U_n\}$ is a g**-open cover for B. Since B^c is g**-open, $\{B^c, \{U_n\}_{n \in Z^+}\}$ is a countable g**-open cover for X. But it has no finite sub cover which is a contradiction, since X is g**-countably compact. Therefore every infinite subset of X has a g**-limit point.

Corollary 4.6: In a g**-compact topological space every infinite subset has a g**-limit point. Proof follows from theorem (4.5), since every g**-compact space is g**-countably compact.

Theorem 4.7: A g**-closed subset of g**-countably compact space is g**-countably compact. Proof is similar to theorem (3.6)

Definition 4.8: In a topological space (X, τ) a point $x \in X$ is said to be a g^{**} -isolated point of A if every g^{**} -open set containing *x* contains no point of A other than *x*.

Theorem 4.9: Let X be a non empty g^{**} -compact g^{**} - T_2 space. If X has no g^{**} -isolated points then X is uncountable.

Note: The converse of Theorem 4.5 is true in a g^{**} -T₁ space.

Theorem 4.10: In a g^{**} -T₁ space X , if every infinite subset has a g^{**} -limit point then X is g^{**} -countably compact .

Proof: Let every infinite subset has a g^{**} -limit point. To prove X is g^{**} -countably compact. If not there exists a countable g^{**} -open cover $\{U_n\}$ such that it has no finite sub cover .Since $U_1 \neq X$. there exists $x_1 \notin U_1$; *Since* $X \neq U_1 \cup U_2$. there exists $x_2 \notin U_1 \cup U_2$. Proceeding like this there exists $x_n \notin U_1 \cup U_2 \cup \dots \cup U_n$ for all n. $A = \{x_n\}$ is an infinite set. If $x \in X$ then $x \in U_n$ for some n. But $x_k \notin U_n$ for all $k \ge n$. $U_n - \{x_1, x_2, \dots, x_{n-1}\}$ is a g^{**} -open set (since X is g^{**} -T₁) containing x which does not have a point of A other than x.Therefore x is not a limit point of A which is a contradiction.

Theorem 4.11: A topological space (X, τ) is g^{**} - countably compact if and only if for every countable collection \mathcal{T} of g^{**} -closed sets in X having finite intersection property, $\bigcap_{C \in C} C$ of all elements of \mathcal{T} is non-empty.

Proof: Similar to the proof of Theorem 3.13

Corollary 4.12: X is g^{**} -countably compact if and only if every nested sequence of g^{**} -closed non empty sets $C_1 \supset C_2 \supset \dots$ has a non empty intersection.

Proof: Obviously $\{C_n\}_{n\in\mathbb{Z}^+}$ has finite intersection property. \therefore By theorem (4.11) $\bigcap_{n\in\mathbb{Z}^+} C_n$ is non-empty.

5. Sequentially g**-compact space

Definition 5.1: A subset A of a topological space (X, τ) is said to be sequentially g^{**} - compact if every sequence in A contains a subsequence which g^{**} -converges to some point in A. **Example 5.2:** Any finite topological space is sequentially g^{**} -compact. **Example 5.3:** An infinite indiscrete topological space is not sequentially g^{**} -compact. **Theorem 5.4:** A finite subset A of a topological space (X, τ) is sequentially g^{**} -compact. **Proof:** Let $\{x_n\}$ be an arbitrary sequence in X. Since A is finite, at least one element of the sequence say x_0 must be repeated infinite number of times. So the constant subsequence x_0 , x_0 ,.....must g^{**} -converges to x_0 .

Remark 5.5: Sequentially g**-compactness implies sequentially compactness but the inverse implication is not true as seen in the following example.

Example 5.6: Any infinite indiscrete space is sequentially compact but not sequentially g**- compact.

Theorem 5.7: Every sequentially g**-compact space is g**-countably compact.

Proof: Let (X, τ) be sequentially g**-compact. Suppose X is not g**-countably compact. Then there exists countable g**-open cover $\{U_n\}_{n\in\mathbb{Z}^+}$ which has no finite sub cover. Then $X = \bigcup_{n\in\mathbb{Z}^+} U_n$.

Choose
$$x_1 \in U_1, x_2 \in U_2 - U_1, x_3 \in U_3 - \bigcup_{i=1,2} U_i \dots x_n \in U_n - \bigcup_{i=1}^{n-1} U_i$$
. This is possible since $\{U_n\}$

has no finite sub cover. Now $\{x_n\}$ is a sequence in X. Let $x \in X$ be arbitrary. Then $x \in U_k$ for some k. By our choice of $\{x_n\}$, $x_i \notin U_k$ for all *i* greater than *k*. Hence there is no subsequence of $\{x_n\}$ which can g**-converge to *x*. Since *x* is arbitrary the sequence $\{x_n\}$ has no convergent subsequence which is a contradiction. Therefore X is g**-countably compact.

Theorem 5.8: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function, then

- (1) f is g^{**} -resolute, bijection and Y is sequentially g^{**} -compact \Rightarrow X is sequentially g^{**} compact.
- (2) f is onto, g^{**} -irresolute and X is sequentially g^{**} -compact \Rightarrow Y sequentially g^{**} -compact.
- (3) f is onto, g**-irresolute and X is sequentially g**-compact ⇒Y is sequentially g**compact.
- (4) *f* is onto, continuous and X is sequentially g^{**} -compact \Rightarrow Y is sequentially compact.
- (5) f is onto, strongly g**-continuous and X is sequentially g**-compact \Rightarrow Y is sequentially g**- compact.

Proof: (1): Let $\{x_n\}$ be a sequence in X. Then $\{f(x_n)\}$ is a sequence in Y. It has a g**convergent subsequence $\{f(x_{n_k})\}$ such that $f(x_{n_k}) \xrightarrow{g^{**}} y_0$ in Y. Then there exists $x_0 \in X$ such that $f(x_0) = y_0$. Let U be a g**-open set containing x_0 . Then f(U) is a g**-open set containing y_0 . Then there exists N such that $f(x_{n_k}) \in f(U)$ for all $k \ge N$. $\therefore f^{-1} \circ f(x_{n_k}) \in f^{-1} \circ f(U)$. $\therefore x_{n_k} \in U$ for all $k \ge N$. This proves that X is sequentially g**compact.

Proof for (2) to (5) is similar to the above.

6. g**-locally compact space

Definition 6.1: A topological space (X, τ) is said to be g^{**} -locally compact if every point of x is contained in a g^{**} -neighbourhood whose g^{**} closure is g^{**} -compact.

Remark 6.2: Any g**-compact space is g**-locally compact but the converse need not be true as seen in the following example.

Example 6.3: Let (X, τ) be an infinite indiscrete topological space. It is not g**-compact. But for every $x \in X$, $\{x\}$ is a g**-neighbourhood and $\overline{\{x\}} = \{x\}$ is g**-compact. Therefore it is g**-locally compact.

Theorem 6.4: Let (X, τ) be g**-multiplicative g**-T₂ space. Then X is g**-locally compact if and only if each of its points is a g**-interior point of some g**-compact subset of X.

Proof: Let X be g^{**} -locally compact and $x \in X$. Then x has a g^{**} -neighbourhood N such that $g^{**}cl(N)$ is g^{**} -compact. Conversely, let every point $x \in X$ be a g^{**} - interior point of some $g^{**}compact$ subset of X. Given $x \in X$, there exists g^{**} -compact subset N such that $x \in g^{**}int(N)$. So, N is a g^{**} -neighbourhood of x. By the hypothesis and theorem (3.9), N is g^{**} - closed. Therefore X is g^{**} -locally compact.

7. g**-compact modulo I

Definition 7.1: An ideal topological space (X, τ, I) is said to be g^{**} -compact modulo I if for every g^{**} -open covering $\{U_{\alpha}\}_{\alpha \in \Delta}$ of X, there exists a finite subset Δ_0 of Δ such that $X - \bigcup_{\alpha \in \Delta_0} U_{\alpha} \in I.$

Remark 7.2: g^{**} -compactness implies g^{**} -compact modulo *I* for any ideal *I* but not conversely. **Example 7.3:** Let (X, τ, I) be an indiscrete infinite topological space where $I = \wp(X)$. Let $\{U_{\alpha}\}_{\alpha \in \Delta}$ be a g^{**} -open cover for X. Let $\alpha_0 \in \Delta$. Then $X - U_{\alpha_0} \in I$. Therefore (X, τ, I) is g^{**} compact modulo *I* but not g^{**} -compact.

Note: When $I = \{\varphi\}$ the concepts "g**-compact modulo I" and "g**-compact" coincide.

Remark 7.4: g^{**I} – compact modulo *I* implies g^{**} -compact modulo *I* and g^{**} -compact modulo *I* implies compact modulo *I*

Proof: Obvious, since $\tau \subseteq G^{**}O(X) \subseteq G^{**}IO(X)$.

Example 7.5: An indiscrete space $(X, \tau, \{\varphi\})$ is compact modulo *I* but not g**-compact modulo $\{\varphi\}$.

Theorem 7.6: If $I \subseteq J$, then (X, τ, I) is g**-compact modulo I implies (X, τ, J) is g**-compact modulo J.

Proof is obvious.

Theorem 7.7: Let I_F denote the ideal of all finite subsets of X. Then (X, τ) is compact if and only if (X, τ, I_F) is compact modulo I_F .

Proof: Necessity: Follows since $\{\varphi\} \in I_F$.

Sufficiency: Let $\{U_{\alpha}\}_{\alpha \in \Delta}$ be a g**-open cover for X. then there exists a finite subset Δ_0 of Δ such that $X - \bigcup_{\alpha \in \Delta_0} U_{\alpha} \in I_F$. $\therefore X - \bigcup_{\alpha \in \Delta_0} U_{\alpha} = \{x_1, x_2, \dots, x_n\}$. Choose α_i such that $x_i \in U_{\alpha_i}$ for i = 12.

1,2,....n. Then $X = \{\bigcup_{\alpha \in \Delta_0} U_{\alpha}\} \cup \{\bigcup_{i=1}^n U_{\alpha_i}\}$. Therefore X is g**-compact modulo I_F .

8. g**-countably compact modulo I

Definition 8.1: An ideal topological (X, τ, I) is said to be g^{**}-countably compact modulo *I* if for every countable g^{**}-open covering $\{U_{\alpha}\}_{\alpha\in\Delta}$ of X, there exists a finite subset Δ_0 of Δ such that

$$X-\underset{\alpha\in\Delta_{0}}{\cup}U_{\alpha}\in I.$$

All the results, from Remark (7.2) to theorem (7.7) are true in the case when (X, τ, I) is g^{**} countably compact modulo *I*.

References

- [1] N.Levine, Rend. Cire. Math. Palermo, 19 (1970), 89 96.
- [2] K.Kuratowski, Topologie, I. Warszawa, 1933
- [3] James R. Munkres, Topology, Ed.2., PHI Learning Pvt.Ltd. New Delhi, 2010.
- [4] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, g**-closed sets in topological spaces, IJM A 3(5), (2012),1-15.
- [5] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, g**1-continuous functions, IJM A .
- [6] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, Seperation axioms via g**-closed sets in topological spaces and in ideal topological spaces, IJCA
- [7] M.K.R.S. Veera Kumar, Mem. Fac. Sci.Kochi Univ. (Math.), 21 (2000), 1 19.