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Abstract: In this paper, we introduce g**-neighbourhood, g**-limit point, ),(** Aclg  

,** tivemultiplicag  **g interior point, ),int(** Ag  g**-resolute, g**-additive, g**-

discrete, g**convergence. The separation axioms via g**-open sets are discussed in 

topological spaces and ideal topological spaces. 
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1. Introduction 

Levine [1] introduced the class of g-closed sets in 1970 and M.K.R.S. Veerakumar[5] 

introduced g*-closed sets in 1991. Ideal topological spaces have been first introduced by K. 

Kuratowski [2] in 1930. In this paper we generalize the traditional separation axioms via g**-

open sets. 

2. Preliminaries 

Definition 2.1: A subset A of a topological space(X, τ) is called 

1) generalized closed (briefly g-closed)[1] if cl(A)  U whenever A  U  and U is open 

in (X, τ). 

2)  generalized star closed (briefly g*-closed)[5] if cl(A)  U whenever A  U  and U is 

g- open in  (X, τ).  
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3) generalized star star closed (briefly g**-closed)[4] if cl(A)  U whenever A  U  and 

U is g*- open in (X, τ). 

Definition 2.2: A function f : (X, τ) → (Y, σ) is called  

1)  g**-irresolute [4] if )(1 Vf   is a g**-closed set of (X, τ) for every g**-closed set  V 

of (Y, σ).  

2) g**-continuous [4] if )(1 Vf   is a g**-closed set of ),( X for every closed set V of 

),( Y . 

Definition 2.3: An ideal[2] I  on a non empty set X  is a collection of subsets of X  which 

satisfies the following properties.(i) IA , IB    IBA   (ii) IA , AB     

IB .A topological space ),( X  with an ideal I  on X  is called an ideal topological space 

and is denoted by ),,( IX  . 

3.g**cl(A) and g**int(A) 

Definition 3.1:  Let ),( X  be a topological space and Xx . Every  openg **  set 

containing x  is said to be a oodneighbourhg **  of x . 

Definition 3.2:  Let A be a subset of .x  A point Xx  is said to be a **g  limit point of A 

if every oodneighbourhg **  of x  contains a point of A other than x . 

The set of all **g  limit points of A is denoted by the symbol A . 

Definition 3.3: Let A be a subset of a topological space ),( X . )(** Aclg  is defined to be 

the intersection of all closedg **  sets containing A.  

Note: [3] )(** Aclg  need not be closedg ** , since intersection of closedg **  sets need 

not be closedg ** . But if A is closedg **  then AAclg )(** .  

Definition 3.4: A topological space ),( X  is said to be  tivemultiplicag **  if arbitrary 

intersection of  closedg **  sets is closedg ** . Equivalently arbitrary union of  

openg **  sets is openg ** . 
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Note: If ),( X  is tivemultiplicag **   then )(** AclgA   if and only if A is 

closedg ** . 

Theorem 3.5: Let A be a subset of a topological space ),( X . Then AAAclg )(** . 

Proof: )(** Aclg  intersection of all closedg **  sets containing A. Therefore 

)(** AclgA . Let Ax  and suppose )(** Aclgx , then there exists closedg **  set F 

containing A such that Fx  . Then FX   is a openg **  set and FXx  . Therefore 

   )()( xAFX  which is not true. Therefore )(** Aclgx . Therefore 

)(** AclgAA  .Let )(** Aclgx  and Ax . Suppose Ax   then there exists a 

oodneighbourhg **  U of x  such that  AU . Therefore UXA   which is 

closedg **  containing x  and UXx  , which is a contradiction. Therefore 

AAAclg )(** . Hence AAAclg )(** . 

Theorem 3.6: Let ),( X  be a tivemultiplicag **  space then a subset A of  X is 

closedg **  if  and only if AA  . 

Proof: By theorem (3.5), A is g**-closed if and only if AAAAA  ' .  

Definition 3.7: Let ),( X  be a topological space and A be a subset of X . A point Ax   is 

said to be **g   interior point of A if there exists openg **  set U such that AUx  . 

Definition 3.8: Let A be a subset of a topological space ),( X . )int(** Ag  is defined to be 

the union of all openg **  sets contained in A.  

Note: 1. Obviously )int(** Ag is the set of all **g   interior point of A. 

          2. )int(** Ag need not be openg **  but if A is openg **  then AAg )int(** . 

          3. If ),( X  is a tivemultiplicag **  space then )int(** AgA    if and only if A is 

openg ** . 

Theorem 3.9: A subset of a topological space ),( X is openg **  if and only if every point 

Ax  is a **g   interior point of A .That is  )int(** AgA  

Proof: Necessity: Let A be openg **  and Ax  . Then X – A is closedg ** and

AXx   Then )'( AXx   and hence there exists a openg ** set U such that Ux and   

.)(  AXU  AU  which proves that )int(** Agx  
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Sufficiency: Let ).int(** AgA  Let us prove that X – A is g**-closed. Let )'.( Axx 

Suppose  AXx   then .Ax  Therefore there exists g**-open set U such that AUx 

which is a contradiction to the fact that )'.( Axx   Therefore X –A is g**-closed and hence 

A is g**-open. 

4. g** - T0 Space 

Definition 4.1: A topological space ),( X  is said to be a g**- T0 space if for every pair of 

points yx  in X either there exists g**-open set U such that ,Ux Uy   or ,Uy .Ux   

Example 4.2: Let (X, τ) be an indiscrete topological space with at least two points. Here all 

subsets are g-closed, only υ and X are g*-closed and all subsets are g**-closed. This space is 

g**-T0.  

Example 4.3: Let X = {a,b,c,d}, τ = {υ, {a}, X}.Then G**O(X) = {υ, {a}, X}.This space is 

not g**-T0.  

Theorem 4.4: Every T0 space is g**-T0 space but not conversely. 

Proof is obvious since every open set is g**-open. 

Example 4.5: The space in example (4.2) is g**-T0 but not T0. 

Theorem 4.6: Let ),( X   be a g**-multiplicative topological space. Then X is g**-T0 space 

if and only if the g**-closures of distinct points are distinct. 

Proof:Let ),( X  be a g**-T0 space. Let x and y be two distinct points in X. Then there exists 

g**-open set U such that Ux  and .UXy   Since UX   is g**-closed, 

.})({** UXyclg  }).({**})({** yclgxclg  Conversely let 

})({**})({** yclgxclg  whenever .yx   Then there exists })({** xclgz and 

}).({** yclgz Suppose }),({** yclgx then 

}).({**})({**(**})({** yclgyclgclgxclg  Therefore }),({** yclgz which is not true. 

Hence }).({** yclgx Since X is g**-multiplicative, })({** yclg is g**-closed. Therefore 

})({** yclgXU  is g**-open, Ux  and .Uy Therefore ),( X  is a g**-T0 space. 

Definition 4.7: Let ),( X  and ),( Y  be two topological spaces and ),(),(:  YXf  is said 

to be g**-resolute if )(Uf is g**-open in Y whenever U is g**-open in X. 
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Theorem 4.8: Let ),( X  and ),( Y  be two topological spaces and ),(),(:  YXf   be a 

function. Then (1) f  is one to one, g**-continuous and Y is a T0 space X is a g**- T0 

space. 

         (2) f  is one to one, g**-irresolute and Y is a g**-T0 space X is a g**- T0 space. 

         (3) f  is one to one, continuous and Y is a T0 space X is a g**- T0 space. 

         (4) f  is one to one, onto, g**-open and X is a T0 space Y is a g**- T0 space. 

         (5) f  is one to one, onto, g**-resolute and X is a g**-T0 space Y is a g**- T0 space. 

Proof: (1) Let yx, be two distinct points in X. Then )(xf and )(yf  are distinct points in Y. 

Then there exists open set U in Y such that Uxf )( and Uyf )( or Uyf )( and 

.)( Uxf  Then )(1 Uf  is a g**-open set in X such that )(1 Ufx   and )(1 Ufy  or 

)(1 Ufy   and ).(1 Ufx   Therefore X is a g**- T0 space. 

Proof for (2), (3), (4) and (5) are similar to (1). 

The property of being g**-T0 space is preserved under one to one, onto and  g**-resolute 

mapping. 

5. g**-T0 modulo an Ideal 

Definition 5.1: An ideal topological space ),,( IX  is said to be g**-T0 modulo I if for every 

pair of points yx  in X there exists g**-open set U such that IyUUx  }{, or 

.}{, IxUUy   

Example 5.2: Any ideal topological space ),,( IX   with )(xI  is a g**-T0 modulo I 

space. 

Example 5.3: Let X = {a, b, c, d}, τ = {υ, {a}, X} and .I In this space G**O(X) = {υ, 

{a}, X}. ),,( IX  is not a g**-T0 modulo I space. 

Theorem 5.4: Every g**-T0 space is g**-T0 modulo I space for every ideal I. 

Proof is obvious since .I  

Remark 5.5: The converse of the above theorem need not be true as seen in the following 

example. 
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Example 5.6:  Let X = {a, b, c, d}, τ = {υ, {a}, X} and ).(XI  Then ),,( IX  is g**-T0 

modulo I but not g**-T0. 

Remark 5.7: If, }{I  both the concepts “g**-T0” and “g**-T0 modulo I” coincide. 

Theorem 5.8: Let ),,( IX  be g**-T0 modulo I and J an ideal in X with JI  then ),,( JX 

is a g**-T0 modulo J  space. 

Proof is obvious. 

Theorem 5.9: Let ))(,,(),,(: IfYIXf   be a bijection then, 

(1) f  is g**-resolute and ),,( IX  is g**-T0 modulo I  ))(,,( IfY  is g**-T0 modulo 

)(If . 

(2) f  is g**-open and ),,( IX  is T0  ))(,,( IfY  is g**-T0 modulo )(If . 

(3) f  is an open mapping and ),,( IX  is T0  ))(,,( IfY  is g**-T0 modulo )(If . 

(4) f  is g**-continuous and Y is T0 modulo )(If  X is g**-T0 modulo .I  

(5) f  is g**-irresolute and Y is T0 modulo )(If  X is g**-T0 modulo .I  

(6) f  is continuous and Y is T0 modulo )(If  X is g**-T0 modulo .I  

Proof: (1) : Note that{ f (I) / I I }is an ideal in Y.  Let .21 Yyy  Since f is onto, there 

exists  Xxx  21  such that 11)( yxf  and 22 )( yxf  Since X is g**-T0 modulo I there 

exists g**-open set U  such that IxUUx  }{, 21
or .}{, 12 IxUUx  Since f  is g**-

resolute )(Uf is g**-open in Y and )(}{)(),( 21 IfyUfUfy  or 

).(}{)(),( 12 IfyUfUfy  Therefore ))(,,( IfY  is g**-T0 modulo )(If . 

Proof of (2),(3), (4), (5) and (6) are similar to (1). 

6. g**- T1 space 

Definition 6.1: A topological space ),( X  is said to be a g**- T1 space if for every pair of 

points yx  in X there exists g**-open sets U and V such that ,Ux Uy   and ,Vy

.Vx   

Example 6.2: The space in example (4.2) is g**- T1. 

Example 6.3: The space in example (4.3) is not g**- T1. 
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Theorem 6.4: Every T1 space is g**-T1 space but not conversely. 

Proof is obvious since every open set is g**-open. 

Example 6.5: The space in example (4.2) is g**-T0 but not T0.
 

Theorem 6.6: A topological space ),( X  is said to be a g**- T1 space if and only if every 

singleton set is g**-closed. 

Proof: Necessity: Let ),( X be a g**- T1 space and 0x  .X Let 0xx  be an arbitrary 

element in X. There exists g**-open sets U and V such that UxUx  0, and .,0 VxVx 

Now U is a g**-open set containing x not intersecting }.{ 0x Therefore x is not a g**-limit 

point of  }.{ 0x  }{ 0x is g**-closed.(by theorem (3.6). 

Sufficiency: Let every singleton set in X be g**-closed. If x and y are distinct points in X 

then }{yXU  and }{xXV  are g**-open sets in X such that UyUx  , and 

., VxVy  Therefore ),( X  is a g**-T1 space. 

Theorem 6.7: If  ),( X is a g**-T1 space then every finite subset of X is g**-T1. 

Proof: Let A be a finite subset then }{xA
Ax
 is a finite union of g**-closed sets and hence it 

is g**-closed. 

Theorem 6.8: In a topological space  ),( X the following statements are equivalent: 

(1) ),( X is a g**-T1 space. 

(2) Every singleton set of ),( X   is g**-closed. 

(3) Every finite subset of X is g**-closed. 

(4) The intersection of g**neighbourhoods of an arbitrary point of X  is singleton. 

Proof:  The proof for )3()2()1(  follows from the definitions and by theorems (6.4) and 

(6.5)  

(1) (4): Let N be the intersection of g**neighbourhoods of x in X. Let xy  be a point in 

X. 

Since ),( X  is g**-T1 there exists a g**-open set U such  that ., UyUx   .Ny  

}.{xN    
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(4) (1): Let x and y be two distinct points in X and N be the intersection of all g**-open 

neighbourhoods of X. Then }.{xN  .Ny  Hence there exists at least one g**-open set U 

containing x and not containing .y Similarly we can get a g**-open set V containing y and 

not containing .x Therefore ),( X  is a g**-T1 space. 

Remark 6.9:[3] Arbitrary union of g**-closed sets need not be g**-closed as seen in the 

following example..  

Example 6.10: Consider R with cofinite topology. In this space G**C(X) = {υ, X, all finite 

subsets} Let An= {-n, -(n-1), ……………….n-1, n} then An’s are g**-closed, but nA = Z is 

not g**-closed.   

Definition 6.11: The topological space (X, τ) is said to be g**-additive if arbitrary union of 

g**-closed sets is g**-closed. Equivalently arbitrary intersection of g**-open sets is g**-

open. 

Example 6.12: The space in example (4.2) is g**-additive. 

Example 6.13: The space in example (6.11) (X, τ) is not g**-additive. 

Definition 6.14: A space (X, τ) is said to be g**-discrete if every subset is g**-open. 

Equivalently every subset is g**-closed. 

Example 6.15: All discrete topological spaces and all indiscrete topological spaces are g**-

discrete. 

Example 6.16: In example (6.11),  is not g**-discrete. 

Theorem 6.17: Every finite g**-T1 space is a g**-discrete space. 

Proof: Let (X, τ) be a finite g**-T1 space and let A be a subset of X. Since A is finite it is 

g**-closed. Therefore (X, τ) is g**-discrete. 

Theorem 6.18: Let (X, τ) be g**-additive and g**- T1 space. Then (X, τ) is a g**-discrete 

space. 

Proof: Let A be a subset of X. Then }{xA
Ax
 and each }{x is g**-closed. Since X is g**-

additive. A is g**-closed. ),( X is g**-discrete. 

Theorem 6.19: Let ),( X be a g**-T1 space and A be a subset of X. Then the following 

statements are equivalent. 
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(1) Xx is a g**-limit point of A. 

(2) Every g**-open set containing x contains infinitely many points of A. 

Proof: )1()2(  is obvious. 

)2()1(   Let x be a g**-limit point of A and U be a g**-open set containing x . Suppose 

UA is finite, let },.........,( 21 nxxxUA  . Since x is a g**-limit point of A 

 }){( xAU .Then }}{{ xAUH  is finite and hence it is g**-closed. 
cH is g**-

open and so )( UH c  is g**-open set containing x . 

,}){((}){()(  HHxAUHxAUH ccc which is a contradiction to (1). 

UA  is infinite. 

Theorem 6.20: A finite subset of  g**-T1 space has no g**limit point. 

Proof follows from theorem (6.18). 

Theorem 6.21: Let ),( X  and ),( Y  be two topological spaces and ),(),(:  YXf   be a 

function. Then (1) f  is one to one, g**-continuous and Y is a T1 space X is a g**- T1 

space. 

         (2) f  is one to one, g**-irresolute and Y is a g**-T1 space X is a g**- T1 space. 

         (3) f  is one to one, continuous and Y is a T1 space X is a g**- T1 space. 

         (4) f  is one to one, onto, g**-open and X is a T1 space Y is a g**- T1 space. 

         (5) f  is one to one, onto, g**-resolute and X is a g**-T1 space Y is a g**- T1 space. 

Proof: (1) Let  yx, be two distinct points in X. Then )(xf and )(yf  are distinct points in Y. 

Then there exists open sets U in Y such that Uxf )( , Uyf )( and Uyf )( , .)( Uxf 

Then )(1 Uf  is a g**-open set in X such that )(1 Ufx   , )(1 Ufy  and )(1 Ufy   , 

).(1 Ufx   Therefore X is a g**- T1 space. 

Proof for (2), (3), (4) and (5) are similar to (1). 

The property of being g**-T1 space is preserved under one to one, onto and  g**-resolute 

mapping. 

7. g**-T1modulo an ideal 
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Definition 7.1: An ideal topological space ),,( IX  is said to be g**-T1 modulo I if for every 

pair of points yx  in X there exists g**-open sets U and V such that ,Ux  

,}{, IyUVy  .}{ IxV   

Example 7.2: Any ideal topological space ),,( IX   with )(xI  is a g**-T1 modulo I 

space. 

Example 7.3: ),,( IX   in example (5.3) is not g**-T1 modulo I space where Xx 0 . 

Theorem 7.4: Every g**-T1 space is g**-T1 modulo I space for every ideal I. 

Proof is obvious since .I  

Remark7.5: If },{I both concepts “g**-T1” and  “g**-T1 modulo I”coincide. . 

Theorem 7.6: Let ),,( IX   be g**-T1 modulo I and J an ideal in X with JI  . Then 

),,( JX  is a g**-T1 modulo J . 

Proof is obvious. 

Theorem 7.7: Every ideal topological space which is g**-T1 modulo I is g**-T0 modulo I. 

Proof follows from the definitions. 

Remark 7.8: The converse of the above theorem need not be true as seen in the following 

example. 

Example 7.9: Let }}.,{},{},{,{}},{,,{},,,,{ cbbcIaXdcbaX   Then G**O(X) = 

{υ, X, {a}}. Then ),,( IX  is g**-T0 modulo I but not g**-T1 modulo I. 

 Theorem 7.10: Let ))(,,(),,(: IfYIXf   be a bijection then, 

(1) f  is g**-resolute and ),,( IX  is g**-T1 modulo I  ))(,,( IfY  is g**-T1 modulo 

)(If . 

(2) f  is g**-open and ),,( IX  is T1 modulo I  ))(,,( IfY  is g**-T1 modulo )(If . 

(3) f  is an open mapping and ),,( IX  is T1 modulo I ))(,,( IfY  is g**-T1 modulo 

)(If . 

Proof  follows from definitions. 
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8. g**- T2 space 

Definition 8.1: A topological space ),( X  is said to be a g**- T2 space if for every pair of 

distinct points yx, in X there exists disjoint g**-open sets U and V in X such that Ux   and 

.Vy  

Example 8.2: The space given in example (4.2) is g**-T2. 

Example 8.3: An infinite set with cofinite topology is not a g**-T2 space. 

Theorem 8.4: Every T2 space is g**-T2 space but not conversely. 

Proof is obvious since every open set is g**-open. 

Example 8.5: The space given in example (4.2) is g**-T2 but not T2.
 

Theorem 8.6: Every g**-T2 space is g**-T1 space but not conversely. 

Proof is obvious from the definitions. 

Example 8.7: The space in example (8.3) is g**-T1but not  g**-T2. 

Theorem 8.8: Let ),( X  and ),( Y be two topological spaces and f and g be g**-

continuous functions from X to Y. If Y is a T2 space then )}()(/{ xgxfxA  is g**-closed 

in X. 

Proof: If AXx 0 then ).()( 00 xgxf  Since Y is a T2 space, there exists open sets U and 

V such that UxfVU  )(, 0 and .)( 0 Vxg  Then NVgUfx   )()( 11

0 which is 

g**-open in X. Hence N is a g**neighbourhood of 0x contained in AX   which proves 

AX   is g**-open.  

Theorem 8.9: Let ),( X  and ),( Y be two topological spaces and f and g be g**-irresolute 

functions from X to Y. If Y is a g**-T2 space then )}()(/{ xgxfxA  is g**-closed in X. 

Proof is similar to the above theorem. 

Definition 8.10: We say a sequence }{ nx in X is g**-convergent to x  in X (briefly 

xx g

n  **  if corresponding to every g**neighbourhood U of x  there exists a positive 

integer N such that ,Uxn  for all .Nn   
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Theorem 8.11: If ),( X is a g**-T2 space then a sequence of points of X, g**-converges to 

atmost one point of X. 

Proof: Suppose that  xx g

n  ** and yx g

n  ** where x and y are two distinct points in X. 

Since X is a g**-T2 space, there exists disjoint g**-open sets U and V such that Ux and 

.Vy Since xx g

n  **  there exists N such that  ,Uxn  for all .Nn  Then V can contain 

only finitely many points of the sequence }{ nx , nx does not g**-converge to .y  

Theorem 8.12: Every g**- discrete topological space, every discrete space and every 

indiscrete space is g**-T2 , g**-T1 and g**-T0 . 

Proof: All discrete spaces and indiscrete spaces are g**-discrete. In a g**-discrete 

topological space all subsets are g**-open. Let x and y  be two distinct points in X. Then 

}{xU  and }{yV  are disjoint g**-open sets such that Ux and Vy and VU . 

Therefore ),( X is a g**-T2 space and hence is g**-T1 and g**-T0 . 

Definition 8.13: If XXA : is a function then define Fix(A) = { }./ xAxXx   

Theorem 8.14: Let ),( X be a g**-T2 space and f be an irresolute function of X into itself 

then Fix( f ) is g**-closed.  

Proof: It is enough to prove that AX  is g**-open. Suppose AX  is empty then it is g**-

open. Let , AX then there exists AXx 0 . .)( 00 xxf  Then there exists disjoint 

g**-open sets U and V such that Ux 0  and .)( 0 Vxf  Then )(1

0 Vfx  which is g**-

open. )(1 VfU  is g**-open set containing .0x  If )(1 VfUx  then Ux  and 

.)( Vxf  )(xfx  which implies .)(. 1 AXVfUAx  
 AX   is g**-open. 

Theorem 8.15: Let ),( X be a T2 space and f be a continuous function of X into itself then 

Fix ( f ) is g**-closed. 

Proof is similar to the above theorem. 

9. g**-T2 modulo an ideal 
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Definition 9.1: An ideal topological space ),,( IX   is said to be g**-T2 modulo I if for every 

pair of distinct points yx, in X there exists g**-open sets U and V such that 

UVyVUx  , and .IVU   

Example 9.2: An indiscrete topological space ),,( IX   is g**-T2 modulo I for any ideal I. 

Example 9.3: Let X be an infinite set, τ the cofinite topology and I ={υ}. Inthis space 

G**O(X) = {υ, X, A / A
c
}. It is impossible to find two disjoint g**-open sets. Therefore this 

space is not g**-T2 modulo I. 

Theorem 9.4: Every g**-T2 space is g**-T2 modulo I but not conversely. 

Example 9.5: In example (9.3) if  )(XI   then the space is not g**-T2 but it is g**-T2 

modulo I. 

For, if yx, are distinct points in X then }{xXU  , }{yXV  are g**-open sets such that 

VUyUVx  , and .IVU   

Note: When }{I the concepts “g**-T2” and  “g**-T2 modulo I” coincide. 

Theorem 9.6: Let ),,( IX   be g**-T2 modulo I and J an ideal in X with JI  . Then 

),,( JX  is a g**-T2 modulo J . 

Proof is obvious. 

Theorem 9.7: Every ideal topological space which is g**-T2 modulo I is g**-T1 modulo I. 

Proof follows from the definitions. 

Remark 9.8: The converse of the above theorem need not be true as seen in the following 

example. 

Example 9.9: Let ).(}},,{},{,,{},,,{ XIcaaXcbaX   Then G**O(X) = {υ, X, {b}, 

{a, b}, {b, c}}. Then ),,( IX  is g**-T1 modulo I but not g**-T2 modulo I.  

Theorem 9.10: Let ))(,,(),,(: IfYIXf   be a bijection then, 

(1) f  is g**-resolute and ),,( IX  is g**-T2 modulo I  ))(,,( IfY  is g**-T2 modulo 

)(If . 
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(2) f  is g**-open and ),,( IX  is T2 modulo I ))(,,( IfY  is g**-T2 modulo )(If . 

(3) f  is an open mapping and ),,( IX  is T2 modulo I  ))(,,( IfY  is g**-T2 modulo 

)(If . 

10. g**-regular spaces and g**-T3 spaces 

Definition10.1: A topological space (X, τ) is said to be g**-regular if and only if for every 

closed subset F of X and for each point Fx there exists two disjoint g**-open sets G and H 

such that Gx and .HF   

Example 10.2: Any indiscrete space (X, τ) is g**-regular. 

 Example 10.3: The space (X, τ) in example 9.3) is not g**-regular. 

Theorem 10.4: Every regular space is g**-regular. 

Proof: Obvious, since every open set is g**-open. 

Definition 10.5: A topological space (X, τ) is said to be g**-T3 space if it is g**-regular and 

g**-T1. 

Example 10.6: The space in example (9.3) is g**-T1  but not g**-regular and hence not g**-

T3. 

Example 10.7: The space in (10.2) is g**-regular and  g**-T1 and so g**-T3. 

11. g**-regular spaces and g**-T3 spaces 

Definition11.1: A topological space (X, τ) is said to be g**-regular modulo I if for every 

closed subset F of X and for each point Fx there exists two g**-open sets G and H such 

that  GHFHGx  , and .IHG   

Example 11.2: Any indiscrete space (X, τ) is g**-regular modulo I for any ideal I. 

 Example 11.3: ),,( IX  in example (9.3) is not g**-regular modulo I. 

Theorem 11.4: Every g**-regular space is g**-regular modulo I for any ideal but not 

conversely. 
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Example 11.5: In  example (9.3) if )(XI  then ),,( IX   is g**-regular modulo I but not 

g**-regular. 

Note: If ){I then both g**-regular and g**-regular modulo I coincide. 
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