INTERNATIONAL JOURNAL OF COMPUTER APPLICATION  ISSUE 2, VOLUME 4 (AUGUST 2012)
Available online on http://www.rspublication.com/ijca/ijca_index.htm ISSN: 2250-1797

Separation axioms Via g**-open Sets in topological spaces and
ideal topological spaces
Sr.Pauline Mary Helen, Associate Professor, Nirmala College, Coimbatore.

Mrs.Ponnuthai Selvarani, Associate Professor, Nirmala College, Coimbatore.
Mrs.Veronica Vijayan,Aassociate Professor, Nirmala College, Coimbatore.
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1. Introduction
Levine [1] introduced the class of g-closed sets in 1970 and M.K.R.S. Veerakumar[5]
introduced g*-closed sets in 1991. Ideal topological spaces have been first introduced by K.
Kuratowski [2] in 1930. In this paper we generalize the traditional separation axioms via g**-
open sets.
2. Preliminaries
Definition 2.1: A subset A of a topological space(X, 1) is called

1) generalized closed (briefly g-closed)[1] if cl(A) < U whenever A < U and U is open

in (X, 1).
2) generalized star closed (briefly g*-closed)[5] if cl(A) < U whenever Ac U and U is

g- open in (X, 1).
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3) generalized star star closed (briefly g**-closed)[4] if cl(A) < U whenever A < U and
U is g*- open in (X, 7).
Definition 2.2: A function f: (X, 1) — (Y, o) is called
1) g**-irresolute [4] if f (V) is a g**-closed set of (X, 1) for every g**-closed set V
of (Y, o).
2) g**-continuous [4] if f (V) is a g**-closed set of (X,z)for every closed set V of
Y,0).
Definition 2.3: An ideal[2] | on a non empty set X is a collection of subsets of X which
satisfies the following properties.(i) Acl, Bel = AuBel (i) Ael , BCcA =
B € | A topological space (X,7) with an ideal I on X is called an ideal topological space
and is denoted by (X,z,1).
3.g**cl(A) and g**int(A)

Definition 3.1: Let (X,7r) be a topological space and xe X . Every g**—open set

containing X is said to be a g **—neighbourhood of x.

Definition 3.2: Let A be a subset of x. A point x € X is said to be a g **— limit point of A

if every g**—neighbourhood of x contains a point of A other than x .
The set of all g**— limit points of A is denoted by the symbol A’.

Definition 3.3: Let A be a subset of a topological space (X,z). g**cl(A) is defined to be

the intersection of all g**—closed sets containing A.

Note: [3] g**cl(A) need not be g**—closed , since intersection of g**—closed sets need

not be g**—closed . But if Ais g**—closed then g**cl(A)=A.

Definition 3.4: A topological space (X,7) is said to be g**—multiplicative if arbitrary
intersection of g**—closed sets is g**—closed . Equivalently arbitrary union of

g**—open setsis g**—open.
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Note: If (X,7z) is g**—multiplicative then A=g**cl(A) if and only if A is

g**—closed .
Theorem 3.5: Let A be a subset of a topological space (X,z). Then g**cl(A) = AUA'.

Proof: g**cl(A)= intersection of all g**—closed sets containing A. Therefore
Ac g**cl(A). Let x e A'and suppose x ¢ g **cl(A), then there exists g**—closed set F
containing A such that x¢ F . Then X —F is a g**—open set and x € X — F . Therefore
(X —=F)n(A-{x})#¢ which is not true. Therefore xeg**cl(A) . Therefore
AUA cg**cl(A) .Let xeg**cl(A) and x¢ A. Suppose xg A" then there exists a
g **—neighbourhood U of x such that U A=¢ . Therefore Ac X —-U which is
g**—closed containing x and xg¢ X—-U , which is a contradiction. Therefore

g**cl(A) c AUA'. Hence g**cl(A) = AUA'.

Theorem 3.6: Let (X,7) be a g**—multiplicative space then a subset A of X is

g**—closed if andonlyif Ao A'.
Proof: By theorem (3.5), A is g**-closed if and only if A= AU A < AcC A.

Definition 3.7: Let (X,7) be a topological space and A be a subset of X . A point xe A is

said to be g** interior point of A if there exists g**—open set U suchthat xeU c A.

Definition 3.8: Let A be a subset of a topological space (X,z). g**int(A) is defined to be

the union of all g**—open sets contained in A.
Note: 1. Obviously g**int(A)is the set of all g** interior point of A.
2.9 **int(A)need not be g**—open but if Ais g**—open then g**int(A) = A.

3. If (X,7) is a g**—multiplicative space then A=g**int(A) if and only if A is
g**—open.
Theorem 3.9: A subset of a topological space (X,z)is g**—open if and only if every point

xe Alisa g** interior point of A . Thatis Ac g**int(A)

Proof: Necessity: Let A be g**—open and xe A . Then X — A is g**—closed and
x¢ X —A Thenx ¢ (X —A)' and hence there exists a g **—open set U such that x U and

Un(X—-A) =¢. ..U c Awhich proves that x e g **int(A)
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Sufficiency: Let Ac g**int(A). Let us prove that X — A is g**-closed. Let xe(x—A)"
Suppose x ¢ X — A thenx € A Therefore there exists g**-open set U such that xeU < A
which is a contradiction to the fact that x e (x — A)". Therefore X —A is g**-closed and hence

A is g**-open.
4. g** - Tp Space

Definition 4.1: A topological space (X,7) is said to be a g**- T, space if for every pair of

points x # yin X either there exists g**-open set U such thatxeU, ygU or yeU, x¢U.

Example 4.2: Let (X, 1) be an indiscrete topological space with at least two points. Here all
subsets are g-closed, only ¢ and X are g*-closed and all subsets are g**-closed. This space is
g**_TO-

Example 4.3: Let X = {a,b,c,d}, T= {9, {a}, X}.Then G**O(X) = {9, {a}, X}.This space is
not g**-To.

Theorem 4.4: Every T space is g**-Tg space but not conversely.

Proof is obvious since every open set is g**-open.

Example 4.5: The space in example (4.2) is g**-T, but not To.

Theorem 4.6: Let(X,z) be a g**-multiplicative topological space. Then X is g**-T, space

if and only if the g**-closures of distinct points are distinct.

Proof:Let (X,7) be a g**-T, space. Let xand y be two distinct points in X. Then there exists
g**-open set U such that xeU and yeX-U. Since X -U is g**-closed,

g**cl({y}) < X -U. S gl ({3) = g **cl({y}). Conversely let
g**cl({x}) = g**cl({y}) whenever x=y. Then there exists zeg**cl({x}) and

z ¢ g**cl({y}). Suppose x e g **cl({y}), then
g **cl({x}) < g **cl(g **cl ({y}) = g **cl ({y}). Therefore z € g **cl({y}), which is not true.
Hence x ¢ g**cl({y}).Since X is g**-multiplicative, g**cl({y})is g**-closed. Therefore
U =X -g**cl({y})is g**-open, xeU and y ¢U.Therefore (X,7) is a g**-T, space.

Definition 4.7: Let(X,7) and (Y,o) be two topological spaces and f : (X,7) — (Y,o)is said

to be g**-resolute if f(U)is g**-open in Y whenever U is g**-open in X.
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Theorem 4.8: Let(X,7) and(Y,o) be two topological spaces and f : (X,7) — (Y,o) be a
function. Then (1) f is one to one, g**-continuous and Y is a T space = X is a g**- Ty

space.
(2) f isonetoone, g**-irresolute and Y is a g**-T, space = X is a g**- T, space.
(3) f isoneto one, continuous and Y is a Ty space = X is a g**- T, space.
(4) f isonetoone, onto, g**-open and X is a To space =Y is a g**- T, space.

(5) f isoneto one, onto, g**-resolute and X is a g**-T, space =Y is a g**- Ty space.

Proof: (1) Let x, ybe two distinct points in X. Then f(x)and f(y) are distinct points inY.
Then there exists open set U in Y such that f(x)eU and f(y)gU or f(y)eU and

f(x)2U.Then f*(U)is a g**-open set in X such that xe f *(U) and y & f *(U) or
ye f 1) and x & f *(U). Therefore X is a g**- T, space.
Proof for (2), (3), (4) and (5) are similar to (1).

The property of being g**-T, space is preserved under one to one, onto and g**-resolute
mapping.

5. g**-T, modulo an Ideal

Definition 5.1: An ideal topological space (X, z,1)is said to be g**-T, modulo | if for every
pair of points X # yin X there exists g**-open set U such that xeU,U n{y}el or

yeU,Un{x}el.

Example 5.2: Any ideal topological space (X,z,1) with I = g@(x)is a g**-T, modulo |

space.

Example 5.3: Let X = {a, b, ¢, d}, t= {o, {a}, X} and | = ¢@.In this space G**O(X) = {o,
{a}, X}. (X,z,1)is not a g**-To modulo | space.

Theorem 5.4: Every g**-T space is g**-To modulo | space for every ideal I.
Proof is obvious since ¢ e I.

Remark 5.5: The converse of the above theorem need not be true as seen in the following

example.
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Example 5.6: Let X ={a, b, c,d}, 1= {0, {a}, X} and | =p(X).Then (X,z,1)is g**-To

modulo | but not g**-Ty.

Remark 5.7: If, 1 ={¢} both the concepts “g**-Ty” and “g**-To modulo I~ coincide.

Theorem 5.8: Let (X, 7, 1)be g**-To modulo | and J an ideal in X with I < J then (X, z,J)

isa g**-To modulo J space.
Proof is obvious.

Theorem 5.9: Let f:(X,z,1)—>(Y,o, f(l))be a bijection then,

(1) f isg**-resolute and (X,z,1)is g**-To modulo I = (Y, o, f(1))is g**-T, modulo
f(l).

(2) f isg**-openand (X,z,1)is To = (Y,o, f(l1))is g**-To modulo f(I).

(3) f isanopen mapping and (X,z,1)is To = (Y, o, f(1))is g**-To modulo f(l).

(4) f isg**-continuous and Y is To modulo f (1) = X is g**-To modulo 1.

(5) f isg**-irresolute and Y is To modulo f (1) = Xis g**-To modulo 1.

(6) f iscontinuousand Y is To modulo f(l) = X s g**-To modulo 1.

Proof: (1) : Note that{ f (I) /1< | }isanideal inY. Let y, #y, €Y.Since f is onto, there
exists x, #x, € X such that f(x,)=y,and f(x,)=y,Since X is g**-To modulo I there
exists g**-open set U such that x, eU,U n{x,}el or x, eU,U n{x,}|.Since f is g**-
resolute f(U)isg**-openinY and y, e f(U), f(U) n{y,}e f(l)or

y, € fU), f(U){y,}e f(I). Therefore (Y,o, f(l))is g**-To modulo f (I).

Proof of (2),(3), (4), (5) and (6) are similar to (1).

6. g**- T, space

Definition 6.1: A topological space (X,7) is said to be a g**- T, space if for every pair of
points x # yin X there exists g**-open sets U and V such thatxeU, ygU and yeV,

XxeV.
Example 6.2: The space in example (4.2) is g**- T;.

Example 6.3: The space in example (4.3) is not g**- T;.
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Theorem 6.4: Every T space is g**-T; space but not conversely.
Proof is obvious since every open set is g**-open.
Example 6.5: The space in example (4.2) is g**-T, but not To.

Theorem 6.6: A topological space (X,7) is said to be a g**- T, space if and only if every
singleton set is g**-closed.

Proof: Necessity: Let (X,z)be a g**- T, space and x, € X.Let x=Xx,be an arbitrary
element in X. There exists g**-open sets U and V such that xeU,x, U and x, eV,xeV.
Now U is a g**-open set containing X not intersecting {x,}. Therefore xis not a g**-limit
point of {X,}. .. {X,}is g**-closed.(by theorem (3.6).

Sufficiency: Let every singleton set in X be g**-closed. If xand y are distinct points in X

then U =X —{y}and V =X —{x} are g**-open sets in X such that xeU,y¢U and
y eV,x V. Therefore (X,7) isag**-T; space.

Theorem 6.7: If (X,7)is a g**-Ty space then every finite subset of X is g**-Tj.

Proof: Let A be a finite subset then A= XKEJA{X}iS a finite union of g**-closed sets and hence it
is g**-closed.
Theorem 6.8: In a topological space (X,7)the following statements are equivalent:

(1) (X,7)is ag**-T; space.

(2) Every singleton set of (X,7) is g**-closed.
(3) Every finite subset of X is g**-closed.

(4) The intersection of g**neighbourhoods of an arbitrary point of X is singleton.

Proof: The proof for (1) < (2) < (3) follows from the definitions and by theorems (6.4) and
(6.5)

()= (4): Let N be the intersection of g**neighbourhoods of xin X. Let y # x be a point in
X.

Since (X,7) is g**-T; there exists a g**-open set U such that xeU,y¢U. ..y¢N.

SN ={x}.
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(4)=(1): Let xand y be two distinct points in X and N be the intersection of all g**-open
neighbourhoods of X. Then N ={x}... y ¢ N. Hence there exists at least one g**-open set U
containing xand not containing y.Similarly we can get a g**-open set V containing y and

not containing x. Therefore (X, 7) is a g**-T; space.

Remark 6.9:[3] Arbitrary union of g**-closed sets need not be g**-closed as seen in the

following example..
Example 6.10: Consider R with cofinite topology. In this space G**C(X) = {p, X, all finite

subsets} Let Ap={-n, -(n-1), ............oee. n-1, n} then A,’s are g**-closed, but - Av=7is

not g**-closed.

Definition 6.11: The topological space (X, t) is said to be g**-additive if arbitrary union of
g**-closed sets is g**-closed. Equivalently arbitrary intersection of g**-open sets is g**-

open.
Example 6.12: The space in example (4.2) is g**-additive.
Example 6.13: The space in example (6.11) (X, t) is not g**-additive.

Definition 6.14: A space (X, 1) is said to be g**-discrete if every subset is g**-open.

Equivalently every subset is g**-closed.

Example 6.15: All discrete topological spaces and all indiscrete topological spaces are g**-

discrete.
Example 6.16: In example (6.11), is not g**-discrete.
Theorem 6.17: Every finite g**-T; space is a g**-discrete space.

Proof: Let (X, 1) be a finite g**-T; space and let A be a subset of X. Since A is finite it is

g**-closed. Therefore (X, 1) is g**-discrete.

Theorem 6.18: Let (X, 1) be g**-additive and g**- T; space. Then (X, 7) is a g**-discrete

space.
Proof: Let A be a subset of X. Then A= uA{x}and each {x}is g**-closed. Since X is g**-
additive. A is g**-closed. .. (X, 7)is g**-discrete.

Theorem 6.19: Let (X,7)be a g**-T; space and A be a subset of X. Then the following

statements are equivalent.
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(1) x e Xis a g**-limit point of A.

(2) Every g**-open set containing x contains infinitely many points of A.
Proof: (2) = (1) is obvious.
D = (2) Let xbe a g**-limit point of A and U be a g**-open set containing x. Suppose
ANU is finite, let ANU = (X, Xy e X,} . Since x is a g**-limit point of A
UN(A—{x}) = ¢@.Then H =U n{A—{x}}is finite and hence it is g**-closed. .. H® is g**-
open and o) (H® nU) IS g**-open set containing X
H AU N(A-{3)=H (U n(A—{x}) =H° nH = ¢, which is a contradiction to (1).
- AnU is infinite.
Theorem 6.20: A finite subset of g**-T; space has no g**limit point.
Proof follows from theorem (6.18).

Theorem 6.21: Let(X,7) and(Y,o) be two topological spaces and f : (X,7) - (Y,o) be a
function. Then (1) f is one to one, g**-continuous and Y is a T, space = X is a g**- T,

space.

(2) f isonetoone, g**-irresolute and Y is a g**-T; space = X is a g**- Ty space.
(3) f isone to one, continuous and Y isa Ty space = X is a g**- T, space.
(4) f isone to one, onto, g**-open and X isa T; space =Y is a g**- T, space.

(5) f isone to one, onto, g**-resolute and X is a g**-T; space =Y is a g**- T, space.
Proof: (1) Let x,ybe two distinct points in X. Then f (x)and f (y) are distinct points inY.
Then there exists open sets U in Y such that f(x)eU, f(y)gUand f(y)eU, f(x)gU.
Then f*(U)is a g**-open set in X such that xe f *(U) , ye f *(U)and ye f *(U) ,
x ¢ f(U). Therefore X is a g**- T, space.

Proof for (2), (3), (4) and (5) are similar to (1).

The property of being g**-T, space is preserved under one to one, onto and g**-resolute
mapping.

7. g**-Timodulo an ideal
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Definition 7.1: An ideal topological space (X, z,1)is said to be g**-T; modulo I if for every
pair of points x # yin X there exists g**-open sets U and V such that x eU,

yeV,Un{y}el,V{x}el.

Example 7.2: Any ideal topological space (X,z,1) with I = g@(x)is a g**-T1 modulo |

space.

Example 7.3: (X,z,1) in example (5.3) is not g**-T; modulo | space where x, € X .

Theorem 7.4: Every g**-T; space is g**-T1 modulo | space for every ideal I.

Proof is obvious since ¢ e I.
Remark7.5: If | ={¢}, both concepts “g**-T1” and “g**-T1 modulo I”coincide. .

Theorem 7.6: Let (X,z,1) be g**-T; modulo I and J an ideal in X with I < J . Then
(X,7,Jd)isag**-T1 modulo J.

Proof is obvious.
Theorem 7.7: Every ideal topological space which is g**-T1 modulo I is g**-T, modulo 1.
Proof follows from the definitions.

Remark 7.8: The converse of the above theorem need not be true as seen in the following

example.

Example 7.9: Let X ={a,b,c,d},z ={p, X,{a}},| ={p,{c}.{b}.{b,c}}.Then G**O(X) =
{0, X, {a}}. Then (X,7,1)is g**-To modulo | but not g**-T; modulo 1.

Theorem 7.10: Let f:(X,z,1)—>(Y,o, f(l))be a bijection then,

(1) f isg**-resolute and (X,z,1)is g**-Ty modulo | = (Y, o, f(1))is g**-T; modulo
f(l).

(2) f isg**-openand (X,z,1)is Tymodulo | = (Y, o, f(1))is g**-T1 modulo f(l).

(3) f isanopen mapping and (X,z,1)is T; modulo I= (Y, o, f(lI))is g**-T; modulo

f(1).

Proof follows from definitions.
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8. g**- T, space

Definition 8.1: A topological space (X,7) is said to be a g**- T, space if for every pair of
distinct points X, yin X there exists disjoint g**-open sets U and V in X such thatx eU and

y eV.
Example 8.2: The space given in example (4.2) is g**-T,.

Example 8.3: An infinite set with cofinite topology is not a g**-T, space.

Theorem 8.4: Every T, space is g**-T, space but not conversely.
Proof is obvious since every open set is g**-open.

Example 8.5: The space given in example (4.2) is g**-T, but not To.
Theorem 8.6: Every g**-T, space is g**-T; space but not conversely.
Proof is obvious from the definitions.

Example 8.7: The space in example (8.3) is g**-T;but not g**-T»,.

Theorem 8.8: Let (X,7) and (Y,o) be two topological spaces and f and g be g**-
continuous functions from X to Y. If Y is a T, space then A={x/ f (x) = g(x)}is g**-closed
in X.

Proof: If x, € X —Athen f(x,)=9(x,).Since Y is a T, space, there exists open sets U and
V such that U NV =g, f(x,) €U and g(x,) €V.Then x, € f *U)ng (V) = N which is
g**-open in X. Hence N is a g**neighbourhood of x,contained in X — A which proves
X — A is g**-open.

Theorem 8.9: Let (X,7) and (Y, o) be two topological spaces and f and g be g**-irresolute

functions from X to Y. If Y is a g**-T, space then A={x/ f(x) = g(x)}is g**-closed in X.
Proof is similar to the above theorem.

Definition 8.10: We say a sequence {X,}in X is g**-convergent to x in X (briefly
x. — s x if corresponding to every g**neighbourhood U of x there exists a positive

integer N such that x, eU,for all n> N.
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Theorem 8.11: If (X, 7)is a g**-T, space then a sequence of points of X, g**-converges to

atmost one point of X.

Proof: Suppose that x, —xand x, ——> ywhere xand y are two distinct points in X.

Since X is a g**-T, space, there exists disjoint g**-open sets U and V such that x eU and

y eV.Since x, —5x there exists N such that x, €U, for all n>N.Then V can contain

only finitely many points of the sequence {x,}, x,does not g**-converge to y.

Theorem 8.12: Every g**- discrete topological space, every discrete space and every
indiscrete space is g**-T,, g**-Tyand g**-Ty.

Proof: AIll discrete spaces and indiscrete spaces are g**-discrete. In a g**-discrete

topological space all subsets are g**-open. Let xand y be two distinct points in X. Then
U ={x}and V ={y}are disjoint g**-open sets such that xeU and yeV and U "V =¢.

Therefore (X, 7)is a g**-T, space and hence is g**-T; and g**-Ty .
Definition 8.13: If A: X — X is a function then define Fix(A) = {xe X / Ax = x}.

Theorem 8.14: Let (X,7)be a g**-T, space and f be an irresolute function of X into itself

then Fix( f ) is g**-closed.

Proof: It is enough to prove that X — Ais g**-open. Suppose X — Ais empty then it is g**-

open. Let X — A= ¢, then there exists X, € X —A. .. f(X,) # X,. Then there exists disjoint
g**-open sets U and V such that x, €U and f(x,)eV.Then x, € f (V) which is g**-
open. ..U f*(V)is g**-open set containing X,. If x eU ~ f (V) then x €U and

f(x) eV...x= f(x)whichimplies xg A U f*V)cX-A .. X—A is g**-open.

Theorem 8.15: Let (X, 7)be a T, space and f be a continuous function of X into itself then

Fix ( f ) is g**-closed.
Proof is similar to the above theorem.

9. g**-T, modulo an ideal
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Definition 9.1: An ideal topological space (X,z,1) is said to be g**-T, modulo | if for every
pair of distinct points x,y in X there exists g**-open sets U and V such that

xeU-V,yeV-Uand UNV el.
Example 9.2: An indiscrete topological space (X,z,1) is g**-T,modulo I for any ideal I.

Example 9.3: Let X be an infinite set, T the cofinite topology and | ={¢}. Inthis space
G**O(X) = {¢, X, A/ A%}. It is impossible to find two disjoint g**-open sets. Therefore this
space is not g**-T, modulo I.

Theorem 9.4: Every g**-T, space is g**-T, modulo I but not conversely.

Example 9.5: In example (9.3) if | =g(X) then the space is not g**-T, but it is g**-T,

modulo 1.

For, if x, yare distinct points in X then U = X —{x}, V = X —{y}are g**-open sets such that
xeV-U,yeU-Vand UV el.

Note: When | ={p}the concepts “g**-T,”and “g**-T, modulo I~ coincide.

Theorem 9.6: Let (X,z,1) be g**-T, modulo | and J an ideal in X with 1 < J . Then
(X,z,J)isag**-T, modulo J.

Proof is obvious.
Theorem 9.7: Every ideal topological space which is g**-T, modulo I is g**-T; modulo I.
Proof follows from the definitions.

Remark 9.8: The converse of the above theorem need not be true as seen in the following

example.

Example 9.9: Let X ={a,b,c},z ={p, X, {a}.{a,c}},| = p(X).Then G**O(X) = {9, X, {b},
{a, b}, {b, c}}. Then (X,z,1)is g**-Ty modulo I but not g**-T, modulo I.

Theorem 9.10: Let f :(X,z,1)—> (Y, o, f(l))be abijection then,

(1) f isg**-resolute and (X,z,1)is g**-T, modulo | = (Y, o, f(1))is g**-T, modulo

f(1).
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(2) f isg**-openand (X,z,1)is T2 modulo I= (Y, o, f(1))is g**-T, modulo f(I).
(3) f isanopen mapping and (X,z,1)is T, modulo | = (Y, o, f(1))is g**-T, modulo
f(l).

10. g**-regular spaces and g**-T3 spaces

Definition10.1: A topological space (X, 7) is said to be g**-regular if and only if for every
closed subset F of X and for each point x ¢ F there exists two disjoint g**-open sets G and H
suchthat xeGand F — H.

Example 10.2: Any indiscrete space (X, 1) is g**-regular.
Example 10.3: The space (X, 1) in example 9.3) is not g**-regular.
Theorem 10.4: Every regular space is g**-regular.

Proof: Obvious, since every open set is g**-open.

Definition 10.5: A topological space (X, 1) is said to be g**-T3 space if it is g**-regular and
g**-Ti.

Example 10.6: The space in example (9.3) is g**-T; but not g**-regular and hence not g**-
Ts.

Example 10.7: The space in (10.2) is g**-regular and g**-T; and so g**-Ts.
11. g**-regular spaces and g**-T3 spaces

Definition11.1: A topological space (X, 1) is said to be g**-regular modulo | if for every
closed subset F of X and for each point x ¢ F there exists two g**-open sets G and H such
that xeG-H,FcH-Gand GnH 1.

Example 11.2: Any indiscrete space (X, t) is g**-regular modulo | for any ideal .

Example 11.3: (X, z,1) in example (9.3) is not g**-regular modulo 1.

Theorem 11.4: Every g**-regular space is g**-regular modulo I for any ideal but not

conversely.
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Example 11.5: In example (9.3) if | = gp(X)then(X,z,1) is g**-regular modulo | but not

g**-regular.

Note: If | ={¢)then both g**-regular and g**-regular modulo I coincide.
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