A note on the weaker form of bI sets and its generalization on SEITS

F. Nirmala Irudayam* Dr. Sr. I. Arockiarani**,	
*Assistant Professor,	** Associate Professor,
Department of Mathematics (CA),	Department of Mathematics,
Nirmala College for Women, Coimbatore	Nirmala College for Women, Coimbatore

ABSTRACT

The focus of this paper is to introduce a new class of sets known as bI^+ open sets, defined in the light of simple expansion topology and ideal topology. This set is investigated and found to be a weaker form of bI open sets. We have also generalized this concept and studied its properties.

1.INTRODUCTION

Levine [9], in 1963 defined simple expansion of topology τ by a non open set B where $B \in \tau$ as $\tau[B] = \{ OU(O^{'} \cap B) / O, O^{'} \in \tau \}$. In 1990, Jankovic and Hamlett [8] introduced the notion of I open sets in ideal topological space. M.E Abd.El-Monsef et al [2] further investigated I open sets and I continuous function.

In 1999 Dontchev [6] introduced the notion of pre I open sets which is a combination of pre open set and an ideal and found that to be weaker than that of I open sets. The concept of pre open set was introduced by Corson and Micheal [4] who used the term "locally dense". This set defined by Corson was redefined by the name "pre- open set" by A. S. Mashhour. M.E Abd Ed.

The other notions of α open set, Semi-open set, β open set, t set, b open and * perfect sets were introduced and studied by many topologists in [12],[10], [1], [13], [5]

These sets defined above were idealized as αI open, semiI-open and βI -open by Hatir and Noiri [7]. Caksu Guler and Aslim[3] have introduced the notion of bI open sets and bI continuous functions.

The prerequisites of the paper are defined as follows:

A set A of a ideal topological space is said to be

- 1.1I open [8] if $A \subseteq int(A^{\hat{}})$ 1.2 $\propto I$ open [12] if $A \subseteq int(cl^*(int(A)))$ 1.3PreI-open[6] if $A \subseteq int(cl^*(A))$ 1.4SemiI-open[7] if $A \subseteq cl^*(int(A))$ 1.5bI open[3] if $A \subseteq int(cl^*(A)) \cup cl^*(int(A))$ 1.6 βI open[7] if $A \subseteq cl^*(int(cl^*(A)))$
- 1.7 * perfect[5] if $A=A^*$

In this paper we have made an attempt to extend these concepts of I openness, ∝I openness,

pre-openness, semi-openness, tI openness, β I openness and bI openness in simple expansion topology.

2.bI⁺ OPEN SETS

Definitions:

Let A be a subset of a SEITS, then A is said to be

- 1. b^+ open if $A \subseteq int(cl^+(A)) \cup cl^+(int(A))$
- 2. I⁺ open if $A \subseteq int(A^{+*})$
- 3. αI^+ open if $A \subseteq int(cl^{+*}(int(A^{+*})))$
- 4. PreI⁺open if $A \subseteq int(cl^{+*}(A))$
- 5. SemiI⁺open if $A \subseteq cl^{+*}(int (A))$
- 6. tI^+ open if $int(cl^{+*}(A)) = int(A)$
- 7. βI^+ open if $A \subseteq c l^{+*}$ (int($c l^{+*}(A)$)
- 8. bI^+ open if $A \subseteq int(cI^{+*}(A)) \cup cI^{+*}(int (A)).$

In all the above definitions the interior refers to the interior in usual topology and $cl^{+*}(A)$ denotes the closure with respect to the ideal topological space under simple expansion.

Here a new local function is defined on the simple expansion ideal topological space (SEITS) and it is denoted as $A^{+*} = \{x \in X / U \cap A \notin I \text{ for each neighbourhood } U \text{ of } x \text{ in } \tau^+(B)\}$ and known as extended local function with respect to τ^+ and I. Also we define the closure operator as

 $cl^{+*}(A) = A \cup A^{+*}$

A subset A of (X , τ^+ ,I) is called *+ perfect if A=A^{+*}

Theorem 2.1:

i)Every open set is bI⁺ open.

ii)Every bI⁺ open set is bI open.

iii)Every I⁺ open set is bI⁺ open

Proof:

i)Let A be any subset of (X , τ^+ ,I) if A is open in τ , we have,

A = int(A)ie., $A \subseteq int(cl^{+*}(A))$ ie., $A \subseteq int(cl^{+*}(A)) \cup cl^{+*}(int(A))$ $\Rightarrow A \text{ is } bI^+ \text{ open}$ ii) By the definitions of bI^+ open and bI open sets and the condition that $cl^{+*}(A) \subseteq cl^{*}(A)$, every bI^+ open set is bI open.

iii) Proof is obvious.

Remark 2.2:

From the above theorem we note that the class of bI^+ open sets is properly placed between an open set and a bI open set.

But the converses of the above theorem are not true .

Example 2.3:

 $X = \{a,b,c\} \ \tau = \{\phi,X,\{a\},\{a,b\}\}; I = \{\phi,\{b\}\}; B = \{b\}; \tau^+(B) = \{\phi,X,\{a\},\{b\},\{a,b\}\}.$

Here {a,c} is bI^+ open but not open in the topology τ and $\tau^+(B)$.

Example 2.4:

 $X = \{a,b,c\} \ \tau = \{\phi,X,\{a\},\{b\},\{a,b\}\} I = \{\phi,\{a\}\}; B = \{b,c\}; \tau^{+}(B) = \{\phi,X,\{a\},\{b\},\{a,b\},\{b,c\}\}.$

Here $\{a\},\{b,c\},\{a,b\}$ are bI^+ open but not I^+ open.

Example 2.5:

 $X=\{a,b,c\} \ \tau = \{\phi,X,\{a\},\{b\},\{a,b\}\}I=\{\phi,\{c\}\}; B=\{b,c\};\tau^+(B)=\{\phi,X,\{a\},\{b\},\{a,b\},\{b,c\}\}.$ Here $\{a,c\}$ is bI open but not bI⁺ open.

Theorem 2.6:

For an SEITS (X , τ^+ ,I) and A \subseteq X we have the following:

i) If $I = \phi$ then A is bI^+ open if and only if A is b^+ open

ii) If I = P(X) then A is bI^+ open if and only if A is open in τ

iii) If I = N then A is bI^+ open if and only if A is b^+ open

Proof:

i)If I= ϕ then A^{+*}= cl⁺(A) for any subset A of X and hence

 $cl^{+*}(A) = A^{+*} \cup A = cl^{+}(A)$. Hence we have $A^{+*} = cl^{+}(A) = cl^{+*}(A)$.

Thus (i) follows immediately.

ii) If I = P(X) then $A^{+*} = \phi$ for any subset A of X.

Since A is bI^+ open we have , $A \subseteq int(cl^{+*}(A)) \cup cl^{+*}(int (A))$

ie., $A \subseteq int(A^{+*} \cup A) \cup [(int (A)^{+*}) \cup int(A)]$

 $A \subseteq int(\varphi \cup A) \cup [\varphi \cup int(A)]$

 $A \subseteq int (A) \Rightarrow A is open in \tau.$

iii)Every bI^+ open set is b^+ open .

Let A be a bI^+ open set then,

 $A \subseteq int (cl^{+*}(A)) \cup cl^{+*}(int (A))$

 $A \subseteq int (A^{+*} \cup A) \cup [(int (A)^{+*}) \cup int(A)]$

 $A \subseteq int \ (cl^{+}(A) \cup A) \cup [\ cl^{+}(int \ (A) \cup int(A)]$

 $A \subseteq int \ (cl^{\scriptscriptstyle +}(A)) \cup cl^{\scriptscriptstyle +}(int \ (A))$

 \Rightarrow A is b⁺ open.

Hence (iii) is proved.

Now let us consider I = N and A is b^+ open

If I=N, then $A^{+*} = cI^{+*} (int(cI^{+*}(A)))$

Since A is b^+ open $\Rightarrow A \subseteq int(cl^+(A) \cup cl^+(int (A)))$

Then $A \subseteq int (A \cup cl^{+}(int(cl^{+}(A))) \cup cl^{+}(int(A))$ $\subseteq int (A \cup cl^{+}(int(cl^{+*}(A))) \cup cl^{+*}(int(A))$ $\subseteq int (A \cup A^{+*}) \cup cl^{+*}(int(A))$ $A \subseteq int (cl^{+*}(A)) \cup cl^{+*}(int(A))$

 \Rightarrow A is bI ⁺ open. Hence the proof.

Theorem 2.7:

Let A be a subset of a SEITS (X , $\tau^{\scriptscriptstyle +},I)\,$ then the following properties are true

a)Every semi I^+ open set is bI^+ open

b)Every pre I^+ open set is bI^+ open

```
c) Every b I^+ open set is \beta I^+ open.
```

d)Every αI^+ open set is βI^+ open.

Proof:

(a) & (b) are obvious from the definition of bI^+ open set

c) Let A be a b I^+ open set then we have,

$$A \subseteq int(cl^{*}(A)) \cup cl^{*}(int (A))$$

ie.,
$$A \subseteq cl^{*} \{ (int(cl^{*}(A)) \cup [(int(A)^{*} \cup int(A)] \}$$

 $A \subseteq cl^{*} \{ (int(cl^{*}(A)) \cup cl^{*} [(int(A)^{*} \cup int(A)] \}$
 $A \subseteq cl^{*} (int(cl^{*}(A)) \cup cl^{*} [(int(A)^{*}]$
 $A \subset cl^{*} (int(cl^{*}(A)))$

ie., A is βI^+ open.

d)Proof is obvious.

Remark:2.8:

Open in $\tau \rightarrow \alpha I^+$ open \rightarrow semil⁺open

 \downarrow

 I^+ open \rightarrow pre I^+ open \rightarrow βI^+ open \rightarrow βI^+ open

Some of the reverse implications are not ture as shown by the following examples.

 \downarrow

Example 2.9:

 $X = \{a,b,c\} \ \tau = \{\phi,X,\{a\},\{b\},\{a,b\}\}I = \{\phi,\{a\}\}; B = \{b,c\};\tau^+(B) = \{\phi,X,\{a\},\{b\},\{a,b\}\{b,c\}\}.$

Here $\{b,c\}$ is bI^+ open but not $preI^+open$.

Example 2.10:

 $X = \{a,b,c\} \ \tau = \{\phi,X,\{c\};I = \{\phi,\{c\}\}; B = \{a\};\tau^{+}(B) = \{\phi,X,\{a\},\{c\},\{a,c\}\}.$

Here $\{a, c\}$ is bI^+ open but not semi I^+ open.

Example 2.11

 $X = \{a,b,c\} \ \tau = \{\phi,X,\{a\},\{b\},\{a,b\}\}I = \{\phi,\{a\}\}; B = \{b,c\};\tau^+(B) = \{\phi,X,\{a\},\{b\},\{a,b\}\{b,c\}\}.$

Here {b,c} is bI^+ open but not αI^+ open.

Theorem 2.12:

Let (X , $\tau^{+},I)~$ be a SEITS with I and J as ideals on X and let A & B be subsets of X then we have the following

a)
$$A \subseteq B \Rightarrow A^{+*} \subseteq B^{+*}$$

b) $I \subseteq J \Rightarrow A^{+*}(I) \subseteq A^{+*}(J)$
c) $A^{+*} = cl(A^{+*}) \subseteq cl(A)$
d) $(A^{+*})^{+*} \subseteq A^{+*}$
e) $(A \cup B)^{+*} = A^{+*} \cup B^{+*}$
f) $U \in \tau \Rightarrow U \cap A^{+*} = U \cap (U \cap A)^{+*} \subseteq (U \cap A)^{+*}$
g) $I \in I \Rightarrow (A \cup I)^{+*} = A^{+*} = (A \setminus I)^{+*}$

Proof:

Obvious using the definition of A^{+*}

Theorem 2.13:

Let (X, τ^+, I) be a SEITS and let $A, U \in X$. If A is a bI^+ open set and $U \in \tau$, then $A \cap U$ is a bI^+ open set.

Proof:

By assumption let A be a bI^+ open set then, $A \subseteq int(cI^{+*}(A)) \cup cI^{+*}(int(A))$ and $U \subseteq intU$

By theorem 2.12 (f) we have

$$A \cap U \subseteq [\operatorname{int}(\operatorname{cl}^{+*}(A)) \cup \operatorname{cl}^{+*}(\operatorname{int}(A))] \cap \operatorname{int} U$$
$$\subseteq [\operatorname{int}(\operatorname{cl}^{+*}(A)) \cap \operatorname{int} U] \cup [\operatorname{cl}^{+*}(\operatorname{int}(A)) \cap \operatorname{int} U]$$
$$= [\operatorname{int}(A^{+*} \cap U) \cup (A \cap U_{-}] \cup [\operatorname{int}(A)^{+*} \cap \operatorname{int} U] \cup [\operatorname{int}(A) \cap \operatorname{int} U]$$

 $\subseteq int[(A \cap U)^{+*} \cup (A \cap U)_{-}] \cup [int (A \cap U)^{+*} \cup int(A \cap U)]$

 $A \subseteq int(cl^{+*}(A \cap U)) \cup cl^{+*}(int (A \cap U))$

 \Rightarrow A is is U \cap A is is bI⁺ open.

Theorem 2.14:

Let (X , τ^+ ,I) be a SEITS .Then the following hold

a) Union of arbitrary family of bI^+ open sets is bI^+ open.

b) Intersection of arbitrary family of bI^+ closed sets is bI^+ closed.

c) If $A\in BI^{^{+}}O(\ X\ ,\ \tau^{^{+}},\ I)\quad \text{and }B\in\tau\text{ ,then }A\cap B\in BI^{^{+}}O(\ X\ ,\ \tau^{^{+}},\ I)$

Proof:

a)Let $\{A_{\alpha} | \alpha \in \Delta\}$ be a family of bI^+ open sets then,

 $A_{\alpha} \subseteq int(cl^{**}(A_{\alpha})) \cup cl^{**}(int (A_{\alpha}))$

Hence $\cup_{\alpha} A_{\alpha} \subseteq \cup_{\alpha}$ [$int(cl^{+*}(A_{\alpha})) \cup cl^{+*}(int(A_{\alpha}))$]

$$\subseteq \cup_{\alpha} [\operatorname{int}(\operatorname{cl}^{+*}(A_{\alpha}))] \cup [\cup_{\alpha} (\operatorname{cl}^{+*}(\operatorname{int}(A_{\alpha}))]$$

$$\subseteq \quad \text{int}(\cup_{\alpha} (\text{cl}^{+*}(A_{\alpha})) \cup \text{cl}^{+*}(\cup_{\alpha} (\text{int} (A_{\alpha}))$$

$$\subseteq \quad \text{int}(\ (cl^{+*}(\cup_{\alpha}\ A_{\alpha})) \cup cl^{+*}(\ (\text{int}\ (\cup_{\alpha}A_{\alpha}))$$

 $\Rightarrow \cup_{\alpha} A_{\alpha} \text{ is bI}^+ \text{ open.}$

b) Let $\{B_{\alpha} | \alpha \in \Delta\}$ be a family of bI^+ closed sets.

Then $\{B_{\alpha}^{\ c}/\alpha \in \Delta\}$ be a family of bI^+ open sets. By (a) $\cup_{\alpha} B_{\alpha}^{\ c}$ is bI^+ open.

Hence $(\bigcap_{\alpha} B_{\alpha})^{c} = (\bigcup_{\alpha} B_{\alpha})^{c}$ is bI^{+} open.

 $\Rightarrow (\cap_{\alpha} B_{\alpha})$ is bI⁺ closed set. Hence the proof.

c) Let $A \in BI^+O(X, \tau^+, I)$ and $B \in \tau$. Then $A \subseteq int(cl^{+*}(A)) \cup cl^{+*}(int(A))$ and

 $A \cap B \subseteq [int(cl^{**}(A)) \cup cl^{**}(int (A))] \cap B$

$$= [(\operatorname{int}(\operatorname{cl}^{**}(A)) \cap B)] \cup [\operatorname{cl}^{**}(\operatorname{int}(A)) \cap B]$$
$$= [\operatorname{int}(A \cup A^{**}) \cap B] \cup [(\operatorname{int}(A) \cup (\operatorname{int}(A)^{**}) \cap B]$$

 $\subseteq [int[(A \cap B) \cup (A^{+^*} \cap B)]] \cup [(int(A \cap B) \cup int(A \cap B)^{+^*}] \text{ (using theorem 3.9)}$

$$\subseteq$$
[int cl^{+*} (A \cap B)] \cup [cl^{+*}(int(A \cap B)]

Hence $A \cap B \in BI^{^{+}}O(\; X \; , \tau^{^{+}}, I) \;\;$.Hence the proof.

If (X, τ^+, I) be a SEITS and A is a subset of X, we denote by $\tau^+/_A$, the relative topology on A and $I/_A = \{A \cap I : I \in I\}$ is clearly an ideal on A.

Lemma 2.15:

Let (X, τ^+, I) be a SEITS and A,B are subsets of X such that $B \subseteq A$. Then $B^{+*}(\tau^+/_A, I/_A) = B^{+*}(\tau^+, I) \cap A$.

Theorem 2.16:

Let (X, τ^+, I) be a SEITS and if $U \in \tau$ and $V \in BI^+O(X, \tau^+, I)$ then

 $U \cap V \in BI^+O(U, \tau^+/_A, I/_A).$

Proof:

Since U is open, we have $int_uA = int A$ for any subset A of U. By using this fact and theorem 2.15 we have,

 $U \cap V \subseteq U \cap (cl^{**}(int (V)) \cup int(cl^{**}(V)))$

$$\subseteq [U \cap [(\operatorname{int}(V) \cup (\operatorname{int}(V))^{**})] \cup [U \cap \operatorname{int}(V \cup V^{**})]]$$

- $\subseteq \{ U \cap [U \cap int(V) \cup U \cap (int(V))^{+^*}] \} \cup \{ U \cap [U \cap [int(V \cup V^{+^*})]] \}$
- $\subseteq \quad \{U \cap [U \cap int(V) \cup (U \cap intV)^{+^*}] \cup \{ U \cap [U \cap [int(V \cup V^{+^*})]] \}$
- $\subseteq \{ U \cap [int_U(U \cap V) \cup (U \cap int_U(U \cap V)^{+^*}] \cup \{ U \cap [[int(U \cap V) \cup (U \cap V)^{+^*}]] \}$
- $= \{ [int_{U}(U \cap V)] \cup [int_{U}(U \cap V)]^{+*} (\tau^{+}_{U, U}) \} \cup \{ U \cap [[int(U \cap V) \cup (U \cap V)^{+*}] \} \}$
- = cl^{+*}[int _U(U \cap V)] \cup [int _U(cl^{+*}(U \cap V))]

This shows that $U \cap V \in BI^+O(U, \tau^+/_A, I/_A)$.

Definition 2.17:

A point $x \in X$ is said to be an I⁺ limit point of A if for every I⁺ open set U in X, U \cap (A\x) $\neq \phi$.

The set of all I⁺ limit point of A is called the I⁺ derived set of A denoted by $D_I^+(A)$

Definition 2.18:

Let A be a subset of (X, τ^+ ,I). A point $x \in X$ is said to be an bI^+ limit point of A if for every bI^+ open set U in X, $U \cap (A \setminus x) \neq \phi$.

The set of all bI^+ limit point of A is called the bI^+ derived set of A denoted by $D_{bI}^+(A)$

Since every open set is $preI^+open$ and every $preI^+open$ is bI^+ open we have

 $D_{bI}^{+}(A) \subseteq D(A)$ for any subset $A \subseteq X$. Moreover ,since every closed set is bI^{+} open we have

 $A \subseteq bI^+ cl(A) \subseteq cl(A)$

Lemma 2.19:

If D (A) = $D_{bI}^+(A)$, then we have $cl(A) = bI^+cl(A)$

Proof: Straightforward

Corollary 2.20:

If $D(A) \subseteq D_{bI}^{+}(A)$, for every subset A of X. Then for any subset F and B of X, we have $bI^{+}cl(F \cup B) = bI^{+}cl(F) \cup bI^{+}cl(B)$.

Theorem 2.21:

If A be a subset of (X , τ^+ ,I), then $x \in bI^+cl(A)$ if and only if every bI^+ open set U containing x intersects A.

Proof:

Let us prove that $x \notin bI^+cl(A)$ if and only if there exists a bI^+ open set U containing x which does not intersect A.

ie. $x \notin bI^+cl(A) \Rightarrow x \in X \setminus bI^+cl(A)$ which does not intersect A.

Conversely, let U be a bI^+ open set U containing x which does not intersect A.Then (X\U) is a bI^+ open set U containing A and $x \notin ((X \setminus U) \text{ but } bI^+ cl(A) \subseteq X \setminus U$.

Therefore $x \in bI^+cl(A)$.

Theorem 2.22:

 $bI^+cl(A) = A \cup D_{bI}^+(A).$

Proof: If $x \in D_{bI}^+(A)$.

Then for every bI+ open set U containing x , we have $U \cap \{A \setminus \{x\}\} \neq \phi$. Therefore $x \in bI^+ cl(A)$

ie., $A \cup D_{bI}^{+}(A) \subseteq bI^{+}cl(A)$ \longrightarrow (1)

Conversely, let $x \in bI^+cl(A)$

If $x \in A$, then $x \in A \cup D_{bI}^+(A)$. Let $x \notin A$, since $x \in bI^+cl(A)$ every bI^+ open set U containing x intersect A. But $x \notin A \Rightarrow U \cap \{A \setminus \{x\}\} \neq \phi$. Therefore $x \in D_{bI}^+(A)$

ie., $bI^+cl(A) \subseteq A \cup D_{bI}^+(A)$ (2)

From (1) and (2) we get $bI^+cl(A) = A \cup D_{bI}^+(A)$. Hence the proof.

Theorem 2.23:

In a SEITS (X , τ^+ ,I) then $D_{bI}^+(A) \subseteq D_I^+(A)$ for every subset A of X.

Proof:

Let $x \in D_{bI}^+(A)$ and let U be an open set in A containing x, then U is bI^+ open.

Therefore ,U is bI^+ open set containing x.

Hence $U \cap \{A \setminus \{x\}\} \neq \phi$.

ie., $x \in D_I^+(A)$. Hence $D_{bI}^+(A) \subseteq D_I^+(A)$.

3.GENERALISED bI⁺ CLOSED SETS

Definition3.1: A subset A of a SEITS (X , τ^+ ,I) is said to be a gbI⁺ closed if $bI^+cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ^+ .

The collection of all gbI^+ closed sets of X is denoted as $GBI^+C(X)$

Example 3.2:

Let X= {a,b,c} $\tau = \{\phi, X, \{a\}, \{a,b\}\}$ I={ $\phi, \{b\}\}$; B={b}; $\tau^+(B) = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$.

Here bI^+ open sets are $\{\phi, X, \{a\}, \{a, c\}\}$ and gbI^+ closed sets are $\{\phi, X, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$.

Note:

Since every I^+ closed set is bI^+ closed we have $bI^+cl(A) \subseteq I^+cl(A)$

Theorem 3.3:

i)Every I⁺ closed set is gbI⁺ closed.

ii)Every bI⁺ closed set is gbI⁺ closed.

Proof:

Let $A \subseteq U$ and U is open in τ^+ .

Since A is I⁺ closed we have $A = I^+ cl(A) \subseteq U$. By the above note we have $bI^+ cl(A) \subseteq I^+ cl(A)$

ie., $bI^+cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ^+ . Hence the proof.

ii) Let A be a bI^+ closed set. Then $bI^+cl(A) = A \subseteq U$. Hence A is a gbI^+ closed.

But the converse need not be true.

Example 3.4:

Let X= {a,b,c} $\tau = \{\phi, X, \{a\}, \{a,b\}\}$ I={ $\phi, \{b\}\}$; B={b}; $\tau^+(B) = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$.

Here $\{a,c\}$ is gbI^+ closed but not bI^+ closed.

Theorem 3.5:

If A is a gbI⁺ closed set of a SEITS (X , τ^+ ,I), then bI⁺cl(A) \A does not contain any non empty closed set .

Proof:

Let F be a closed set such that $F \subseteq bI^+cl(A) \setminus A$. Then(X\F) is open and

 $F \subseteq bI^{+}cl(A) \cap A^{c} \longrightarrow (1)$ $\Rightarrow F \subseteq A^{c}$ $\Rightarrow (X \setminus F) \supset A. \text{ Since A is gbI}^{+} \text{ closed we have } bI^{+}cl(A) \subseteq (X \setminus F).$ Hence $F \subseteq X \setminus bI^{+}cl(A) \longrightarrow (2)$ From (1) & (2) we have $F \subseteq (X \setminus bI^+ cl(A)) \cap bI^+ cl(A) = \phi$ i.e., $F = \phi$. Hence $bI^+ cl(A) \setminus A$ does not contain any non empty closed set. Hence the proof.

Theorem 3.6:

If A be a gbI^+ closed set of a SEITS (X , τ^+ ,I) and A \subseteq B \subseteq bI⁺cl(A) then B is also

gbI⁺ closed.

Proof:

Let A be a gbI^+ closed set) and $A \subseteq B \subseteq bI^+cl(A)$. Then $bI^+cl(A) \subseteq bI^+cl(B) \subseteq bI^+cl(A)$

which implies $bI^+cl(A) = bI^+cl(B)$ let us now consider U to be a open set in (X, τ^+, I) containing B. Then $A \subseteq U$ and A is gbI^+ closed.

 \Rightarrow bI⁺cl(A) \subseteq U

 \Rightarrow bI⁺cl(B) \subseteq U \Rightarrow B is gbI⁺ closed.

We now provide a necessary and sufficient condition for a gbI^+ closed set to be bI^+ closed.

Theorem 3.7:

A gbI^+ closed set A is bI^+ closed if and only if bI^+ cl(A) \A is closed.

Proof:

Let A be bI^+ closed, then A= bI^+ cl(A).

 \Rightarrow if bI⁺cl(A) \A= ϕ which is closed.

Conversely, let $bI^+cl(A) \setminus A$ is closed. By theorem 3.5 we know that $bI^+cl(A) \setminus A$ does not contain any non empty closed set. Therefore $bI^+cl(A) \setminus A = \phi \Rightarrow bI^+cl(A) = A$. Hence A is bI^+ closed.

Theorem 3.8 :

If A and B are gbI^+ closed sets such that $D(A) \subseteq D_{bI}^+(A)$ and $D(B) \subseteq D_{bI}^+(B)$. Then $A \cup B$ is gbI^+ closed.

Proof:

Let U be an open set such that $A \cup B \subseteq U$. Then since A and B are gbI^+ closed sets we have

 $bI^+cl(A) \subseteq U$ and $bI^+cl(B) \subseteq U$. Since $D(A) \subseteq D_{bI}^+(A)$, thus $D(A) = D_{bI}^+(A)$ and by

lemma 2.19, $cl(A) = bI^+cl(A)$ and similarly $cl(B) = bI^+cl(B)$.

Thus $bI^+cl(A \cup B) \subseteq cl(A \cup B) = cl(A) \cup cl(B) = bI^+cl(A) \cup bI^+cl(B) \subseteq U$.

This implies $A \cup B$ is gbI^+ closed.

Definition 3.9:

Let $B \subseteq A \subseteq X$. The set B is said to be gbI^+ closed relative to A if $bI^+cl_A(B) \subseteq U$ whenever $B \subset U$ and U is open in A, where $bI^+cl_A(B) = A \cap bI^+cl(B)$

Theorem 3.10:

If $B \subseteq A \subseteq X$ and A is gbI^+ closed and open then B is gbI^+ closed relative to A if

and only if B is gbI^+ closed in X.

Proof:

Let A be gbI^+ closed and open. Let B be gbI^+ closed relative to A. Since A is gbI^+ closed and open, we have $bI^+cl(A) \subseteq A$.

Therefore $bI^+cl(B) \subseteq bI^+cl(A) \subseteq A$

Therefore $bI^+cl_A(B) \subseteq bI^+cl(B) \cap A = bI^+cl(B)$.

Now let U be open in X and $B \subseteq U$.

Then $U \cap A$ is open in A and $B \subseteq U \cap A$. Since B is gbI^+ closed relative to A we have

 $bI^+cl_A(B) \subseteq U \cap A$. Hence $bI^+cl_A(B) \subseteq U \cap A \subseteq U$. Therefore B is gbI^+ closed.

Conversely, let B be gbI^+ closed in X.

Consider U be open in A and B \subseteq U. Then U= V \cap A where V is open in (X, τ^+ ,I).

Now B \subseteq V and B is gbI⁺ closed in X. This implies bI⁺cl(B) \cap A \subseteq V \cap A = U.

ie., $bI^+cl_A(B) \subseteq U$.

Therefore B is gbl⁺ closed relative to A. Hence the proof.

Definition 3.11:

A set A is said to be gbI^+ open if and only if $(X \setminus A)$ is gbI^+ closed.

The family of all gbI^+ open subsets of X is denoted by $GBI^+O(X)$.

The largest gbI⁺ open set contained in X is called the gbI⁺ interior of A and is denoted by

 $gbI^{+}(int(A))$. Also A is gbI^{+} open if and only if $gbI^{+}(int(A)=A$.

Theorem 3.12:

 $bI^+cl(X \setminus A) = X \setminus bI^+(int(A))$

Proof:

Let $x \in bI^+cl(X \setminus A)$

 \Leftrightarrow every bI⁺ open set U containing x intersects (X\A)

 \Leftrightarrow there is no bI⁺ open set containing x and contained in A.

 $\Leftrightarrow x \in X \setminus bI^{+}(int(A)$

Theorem 3.13:

A subset A of a SEITS (X , τ^+ ,I) is gbI⁺ open if and only if F \subseteq bI⁺(int(A) whenever F is closed and F \subseteq A.

Proof:

Let A be gbI^+ open and suppose that F is closed and F \subseteq A. Then (X\A) is gbI^+ closed and

 $(X \setminus F) \supseteq (X \setminus A)$.Now $(X \setminus F)$ is open and $(X \setminus A)$ is gbI^+ closed. Therefore $bI^+ cl(X \setminus A) \subseteq (X \setminus F)$.

By theorem 3.12, $bI^+cl(X \setminus A) = X \setminus bI^+(int(A))$.

Hence $X \setminus bI^+(int(A) \subseteq (X \setminus F))$.

ie, $F \subseteq bI^+(int(A))$.

Conversely, let $F \subseteq bI^+(int(A)$ whenever F is closed and $F \subseteq A$.

Now to prove A is gbI^+ open is the same as proving (X\A) is gbI^+ closed .Let G be an open set containing (X\A) then $F=(X\setminus G)$ is a closed set such that $F\subseteq A$.

Therefore, $F \subseteq bI^+(int(A))$

ie., $(X \setminus F) \supset (X \setminus bI^+ cl(X \setminus A)) = bI^+ cl(X \setminus A)$

 $bI^+ cl(X \setminus A) \subseteq G.$

Therefore $(X \setminus A)$ is gbI^+ closed.ie., A is gbI^+ open . Hence the proof.

REFERENCES:

- 1. M.E Abd.El-Monsef,S.N.Deeb and R.A Mahmoud," β open sets and β continuous mapping",Bull.Fac.Sci.Assiut Univ.12(1983),77-90.
- 2. M.E Abd.El-Monsef, E.F Lashien and A.A.Nasef,"On I-Open sets and I-continuous functions", Kyungpook Math.J., 32(1992), 21-30
- 3. A.Caksu Guler and G.Aslim,"bI-open sets and decomposition of continuity via idealization",Proceddings of Institute of mathematics and mechanics.National Academy of sciences of Azerbaijan,Vol.22,pp.27-32,2005.
- 4. H.H Corson and E.Michael ,"Metrizability of certain countable unions",Illinois J.Math.8(1964),351-360.
- 5. Dimitrije Andrijevic,"On b open sets",MATHEMAT,48(1996),59-64.
- 6. J.Dontchev,"Idealization of Ganster-Reilly decomposition heorems",Math.GN/9901017,5 Jan 1999 (Internet)
- 7. E.Hatir and T.Noiri ,"On decompositions of continuity via idealization", Acta. Math. Hungar, 96(4)(2002),341-349.
- 8. D.Jankovic and T.R Hamlett ,"New topologies from old via ideals, Amer.Math.Monthly,97(1990) ,295-310

- 9. N.Levine, "Simple Extension of topology", Amer .Math.monthly, 71, (1964), 22-105
- 10. N.Levine,"Semi-open and Semi-continuity in topological spaces", Amer.Math. monthly, 70,(1963),36-41
- 11. A.S.Mashhour ,M.E Abd.El-Monsef and S.N.El-Deeb,"On precontiuous and weak precontiuous mappings", Proc.Math.Phys.Soc.Egypt, 53(1982), 47-53.
- 12. O.Njastad ,"On some classes of nearly open sets", Pacific J.Math.15(1965), 961-970.
- 13. J.Tong ,"On Decomposition of continuity in topological spaces", Acta Math. Hungar, 54(1989), 51-55