A note on the weaker form of bI sets and its generalization on SEITS

*Assistant Professor,
Department of Mathematics (CA), Nirmala College for Women, Coimbatore
F. Nirmala Irudayam* Dr. Sr. I. Arockiarani**, ** Associate Professor, Department of Mathematics, Nirmala College for Women, Coimbatore

Abstract

The focus of this paper is to introduce a new class of sets known as bI^{+}open sets, defined in the light of simple expansion topology and ideal topology. This set is investigated and found to be a weaker form of bI open sets.We have also generalized this concept and studied its properties.

1.INTRODUCTION

Levine [9] , in 1963 defined simple expansion of topology τ by a non open set B where $\mathrm{B} \in \tau$ as $\tau[\mathrm{B}]=\left\{\mathrm{OU}\left(\mathrm{O}^{\prime} \cap \mathrm{B}\right) / \mathrm{O}, \mathrm{O}^{\prime} \in \tau\right\}$. In 1990, Jankovic and Hamlett [8] introduced the notion of I open sets in ideal topological space. M.E Abd.El-Monsef et al [2] further investigated I open sets and I continuous function.

In 1999 Dontchev [6] introduced the notion of pre I open sets which is a combination of pre open set and an ideal and found that to be weaker than that of I open sets. The concept of pre open set was introduced by Corson and Micheal [4] who used the term "locally dense". This set defined by Corson was redefined by the name "pre- open set" by A. S. Mashhour. M.E Abd Ed.

The other notions of α open set, Semi-open set, β open set, t set, b open and $*$ perfect sets were introduced and studied by many topologists in [12],[10], [1], [13], [5]

These sets defined above were idealized as $\alpha \mathrm{I}$ open, semiI-open and $\beta \mathrm{I}$-open by Hatir and Noiri [7]. Caksu Guler and Aslim[3] have introduced the notion of bI open sets and bI continuous functions.

The prerequisites of the paper are defined as follows:
A set A of a ideal topological space is said to be
1.1 I open [8] if $\quad \mathrm{A} \subseteq \operatorname{int}\left(\mathrm{A}^{*}\right)$
$1.2 \propto \mathrm{I}$ open [12] if $\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{*}(\operatorname{int}(\mathrm{~A}))\right)$
1.3 PreI-open[6] if $A \subseteq \operatorname{int}\left(\mathrm{cl}^{*}(\mathrm{~A})\right)$
1.4 SemiI-open[7] if $A \subseteq \mathrm{cl}^{*}(\operatorname{int}(\mathrm{~A}))$
1.5 bI open[3] if $\quad \mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{*}(\mathrm{~A})\right) \cup \mathrm{cl}^{*}(\operatorname{int}(\mathrm{~A}))$
$1.6 \beta \mathrm{I}$ open[7] if $\mathrm{A} \subseteq \mathrm{cl}^{*}\left(\operatorname{int}\left(\mathrm{cl}^{*}(\mathrm{~A})\right)\right.$
1.7 * perfect[5] if $\mathrm{A}=\mathrm{A}^{*}$

In this paper we have made an attempt to extend these concepts of I openness, \propto I openness, pre-openness, semi-openness,tI openness, $\beta \mathrm{I}$ openness and bI openness in simple expansion topology.

2.bI ${ }^{+}$OPEN SETS

Definitions:

Let A be a subset of a SEITS, then A is said to be

1. b^{+}open if $\quad \mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+}(\mathrm{A})\right) \cup \mathrm{cl}^{+}(\operatorname{int}(\mathrm{A}))$
2. I^{+}open if $\quad \mathrm{A} \subseteq \operatorname{int}\left(\mathrm{A}^{+*}\right)$
3. $\alpha \mathrm{I}^{+}$open if $\quad \mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+*}\left(\operatorname{int}\left(\mathrm{~A}^{+*}\right)\right)\right)$
4. PreI $^{+}$open if $\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right)$
5. SemiI ${ }^{+}$open if $\quad \mathrm{A} \subseteq \mathrm{cl}^{+^{+}}(\operatorname{int}(\mathrm{A}))$
6. II^{+}open if $\quad \operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right)=\operatorname{int}(\mathrm{A})$
7. $\beta \mathrm{I}^{+}$open if $\quad \mathrm{A} \subseteq \mathrm{cl}^{+*}\left(\operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right)\right.$
8. bI^{+}open if $\quad \mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right) \cup \mathrm{cl}^{+^{*}}(\operatorname{int}(\mathrm{~A}))$.

In all the above definitions the interior refers to the interior in usual topology and $\mathrm{cl}^{+^{*}}(\mathrm{~A})$ denotes the closure with respect to the ideal topological space under simple expansion.
Here a new local function is defined on the simple expansion ideal topological space (SEITS) and it is denoted as $A^{+*}=\left\{x \in X / U \cap A \notin I\right.$ for each neighbourhood U of x in $\left.\tau^{+}(B)\right\}$ and known as extended local function with respect to τ^{+}and I . Also we define the closure operator as
$\mathrm{cl}^{+}(\mathrm{A})=\mathrm{A} \cup \mathrm{A}^{+*}$
A subset A of $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ is called ${ }^{*}+$ perfect if $\mathrm{A}=\mathrm{A}^{+*}$

Theorem 2.1:

i)Every open set is bI^{+}open.
ii)Every bI^{+}open set is bI open.
iii)Every I^{+}open set is bI^{+}open

Proof:

i)Let A be any subset of $\left(X, \tau^{+}, I\right)$ if A is open in τ, we have,

$$
\mathrm{A}=\operatorname{int}(\mathrm{A})
$$

ie., $\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+}{ }^{*}(\mathrm{~A})\right)$
ie., $\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+}{ }^{*}(\mathrm{~A})\right) \cup \mathrm{cl}^{+}(\operatorname{int}(\mathrm{A}))$
$\Rightarrow \mathrm{A}$ is bI^{+}open
ii) By the definitions of bl^{+}open and bI open sets and the condition that $\mathrm{cl}^{+^{*}}(\mathrm{~A}) \subseteq \mathrm{cl}^{*}(\mathrm{~A})$,
every bI^{+}open set is bI open.
iii) Proof is obvious.

Remark 2.2:

From the above theorem we note that the class of bI^{+}open sets is properly placed between an open set and a bI open set.
But the converses of the above theorem are not true .

Example 2.3:

$X=\{a, b, c\} \tau=\{\phi, X,\{a\},\{a, b\}\} ; I=\{\phi,\{b\}\} ; B=\{b\} ; \tau^{+}(B)=\{\phi, X,\{a\},\{b\},\{a, b\}\}$.
Here $\{\mathrm{a}, \mathrm{c}\}$ is bI^{+}open but not open in the topology τ and $\tau^{+}(\mathrm{B})$.

Example 2.4:

$X=\{a, b, c\} \tau=\{\phi, X,\{a\},\{b\},\{a, b\}\} I=\{\phi,\{a\}\} ; B=\{b, c\} ; \tau^{+}(B)=\{\phi, X,\{a\},\{b\},\{a, b\},\{b, c\}\}$.
Here $\{a\},\{b, c\},\{a, b\}$ are bI^{+}open but not I^{+}open.

Example 2.5:

$X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \tau=\{\phi, X,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\} \mathrm{I}=\{\phi,\{\mathrm{c}\}\} ; \mathrm{B}=\{\mathrm{b}, \mathrm{c}\} ; \tau^{+}(\mathrm{B})=\{\phi, X,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$.
Here $\{\mathrm{a}, \mathrm{c}\}$ is bI open but not bI^{+}open.

Theorem 2.6:

For an SEITS ($\mathrm{X}, \tau^{+}, \mathrm{I}$) and $\mathrm{A} \subseteq \mathrm{X}$ we have the following:
i) If $\mathrm{I}=\phi$ then A is bI^{+}open if and only if A is b^{+}open
ii) If $\mathrm{I}=\mathrm{P}(\mathrm{X})$ then A is bI^{+}open if and only if A is open in τ
iii) If $\mathrm{I}=\mathrm{N}$ then A is bI^{+}open if and only if A is b^{+}open

Proof:

i)If $\mathrm{I}=\phi$ then $\mathrm{A}^{+*}=\mathrm{cl}^{+}(\mathrm{A})$ for any subset A of X and hence $\mathrm{cl}^{+*}(\mathrm{~A})=\mathrm{A}^{+^{*}} \cup \mathrm{~A}=\mathrm{cl}^{+}(\mathrm{A})$. Hence we have $\mathrm{A}^{+*}=\mathrm{cl}^{+}(\mathrm{A})=\mathrm{cl}^{+^{*}}(\mathrm{~A})$.
Thus (i) follows immediately.
ii) If $I=P(X)$ then $A^{+*}=\phi$ for any subset A of X.

Since A is bI^{+}open we have, $\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right) \cup \mathrm{cl}^{+}{ }^{+}(\operatorname{int}(\mathrm{A}))$

$$
\text { ie., } \mathrm{A} \subseteq \operatorname{int}\left(\mathrm{~A}^{+^{*}} \cup \mathrm{~A}\right) \cup\left[\left(\operatorname{int}(\mathrm{A})^{+^{*}}\right) \cup \operatorname{int}(\mathrm{A})\right]
$$

$$
\mathrm{A} \subseteq \operatorname{int}(\phi \cup \mathrm{~A}) \cup[\phi \cup \operatorname{int}(\mathrm{A})]
$$

$$
\mathrm{A} \subseteq \operatorname{int}(\mathrm{~A}) \Rightarrow \mathrm{A} \text { is open in } \tau
$$

iii)Every bI^{+}open set is b^{+}open .

Let A be a bI^{+}open set then,

$$
\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right) \cup \mathrm{cl}^{+^{*}}(\operatorname{int}(\mathrm{~A}))
$$

$A \subseteq \operatorname{int}\left(A^{+*} \cup A\right) \cup\left[\left(\operatorname{int}(A)^{+*}\right) \cup \operatorname{int}(A)\right]$
$\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+}(\mathrm{A}) \cup \mathrm{A}\right) \cup\left[\mathrm{cl}^{+}(\operatorname{int}(\mathrm{A}) \cup \operatorname{int}(\mathrm{A})]\right.$
$\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+}(\mathrm{A})\right) \cup \mathrm{cl}^{+}(\operatorname{int}(\mathrm{A}))$
$\Rightarrow \mathrm{A}$ is b^{+}open .
Hence (iii) is proved.
Now let us consider $\mathrm{I}=\mathrm{N}$ and A is b^{+}open
If $\mathrm{I}=\mathrm{N}$, then $\mathrm{A}^{+*}=\mathrm{cl}^{+^{*}}\left(\operatorname{int}\left(\mathrm{cl}^{+*}(\mathrm{~A})\right)\right.$
Since A is b^{+}open $\Rightarrow \mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+}(\mathrm{A}) \cup \mathrm{cl}^{+}(\operatorname{int}(\mathrm{A})\right.$
Then $\quad \mathrm{A} \subseteq \operatorname{int}\left(\mathrm{A} \cup \mathrm{cl}^{+}\left(\operatorname{int}\left(\mathrm{cl}^{+}(\mathrm{A})\right)\right) \cup \mathrm{cl}^{+}(\operatorname{int}(\mathrm{A})\right.$
$\subseteq \operatorname{int}\left(\mathrm{A} \cup \mathrm{cl}^{+}\left(\operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right)\right) \cup \mathrm{cl}^{+^{*}}(\operatorname{int}(\mathrm{~A})\right.$
$\subseteq \operatorname{int}\left(\mathrm{A} \cup \mathrm{A}+^{*}\right) \cup \mathrm{cl}^{+^{*}}(\operatorname{int}(\mathrm{~A})$
$\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right) \cup \mathrm{cl}^{+^{*}}(\operatorname{int}(\mathrm{~A}))$
$\Rightarrow \mathrm{A}$ is bI^{+}open. Hence the proof.

Theorem 2.7:

Let A be a subset of a SEITS ($\mathrm{X}, \tau^{+}, \mathrm{I}$) then the following properties are true
a)Every semi I^{+}open set is bI^{+}open
b)Every pre I^{+}open set is bI^{+}open
c) Every bI^{+}open set is $\beta \mathrm{I}^{+}$open.
d)Every $\alpha \mathrm{I}^{+}$open set is $\beta \mathrm{I}^{+}$open.

Proof:

(a) \& (b) are obvious from the definition of bI^{+}open set
c) Let A be a b I I^{+}open set then we have,

$$
\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+{ }^{*}}(\mathrm{~A})\right) \cup \mathrm{cl}^{+^{*}}(\operatorname{int}(\mathrm{~A}))
$$

ie., $\quad \mathrm{A} \subseteq \mathrm{cl}^{+^{*}}\left\{\left(\operatorname{int}\left(\mathrm{cl}^{+*}(\mathrm{~A})\right) \cup\left[\left(\operatorname{int}(\mathrm{A})^{+^{*}} \cup \operatorname{int}(\mathrm{~A})\right]\right\}\right.\right.$
$\mathrm{A} \subseteq \mathrm{cl}^{+^{*}}\left\{\left(\operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right) \cup \mathrm{cl}^{+*}\left[\left(\operatorname{int}(\mathrm{~A})^{+^{*}} \cup \operatorname{int}(\mathrm{~A})\right]\right\}\right.\right.$
$A \subseteq \mathrm{cl}^{+^{*}}\left(\operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right) \cup \mathrm{cl}^{+^{*}}\left[\left(\operatorname{int}(\mathrm{~A})^{+^{*}}\right]\right.\right.$
$\mathrm{A} \subseteq \mathrm{cl}^{+^{*}}\left(\operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right)\right.$
ie., A is $\beta \mathrm{I}^{+}$open.
d)Proof is obvious.

Remark:2.8:

Open in $\tau \quad \rightarrow \quad \mathrm{II}^{+}$open $\quad \rightarrow$ semiI $^{+}$open

$$
\mathrm{I}^{+} \text {open } \rightarrow \text { preI }^{+} \text {open } \quad \rightarrow \quad \mathrm{bI}^{+} \text {open } \quad \rightarrow \quad \mathrm{KI}^{+} \text {open }
$$

Some of the reverse implications are not ture as shown by the following examples.

Example 2.9:

$X=\{a, b, c\} \tau=\{\phi, X,\{a\},\{b\},\{a, b\}\} I=\{\phi,\{a\}\} ; B=\{b, c\} ; \tau^{+}(B)=\{\phi, X,\{a\},\{b\},\{a, b\}\{b, c\}\}$.
Here $\{b, c\}$ is bI^{+}open but not preI ${ }^{+}$open .

Example 2.10:

$X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \tau=\left\{\phi, \mathrm{X},\{\mathrm{c}\} ; \mathrm{I}=\{\phi,\{\mathrm{c}\}\} ; \mathrm{B}=\{\mathrm{a}\} ; \tau^{+}(\mathrm{B})=\{\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}\right.$.
Here $\{\mathrm{a}, \mathrm{c}\}$ is bI^{+}open but not semi I^{+}open.

Example 2.11

$X=\{a, b, c\} \tau=\{\phi, X,\{a\},\{b\},\{a, b\}\} I=\{\phi,\{a\}\} ; B=\{b, c\} ; \tau^{+}(B)=\{\phi, X,\{a\},\{b\},\{a, b\}\{b, c\}\}$.
Here $\{b, c\}$ is bI^{+}open but not $\alpha \mathrm{I}^{+}$open.

Theorem 2.12:

Let $\left(X, \tau^{+}, I\right)$ be a SEITS with I and J as ideals on X and let A \& B be subsets of X then we have the following
a) $\mathrm{A} \subseteq \mathrm{B} \Rightarrow \mathrm{A}^{+*} \subseteq \mathrm{~B}^{+*}$
b) $\mathrm{I} \subseteq \mathrm{J} \Rightarrow \mathrm{A}^{+*}(\mathrm{I}) \subseteq \mathrm{A}^{+}(\mathrm{J})$
c) $\mathrm{A}^{+*}=\operatorname{cl}\left(\mathrm{A}^{+^{*}}\right) \subseteq \operatorname{cl}(\mathrm{A})$
d) $\left(\mathrm{A}^{+*}\right)^{+*} \subseteq \mathrm{~A}^{+*}$
e) $(\mathrm{A} \cup \mathrm{B})^{+*}=\mathrm{A}^{+*} \cup \mathrm{~B}^{+*}$
f) $\mathrm{U} \in \tau \Rightarrow \mathrm{U} \cap \mathrm{A}^{+^{*}}=\mathrm{U} \cap(\mathrm{U} \cap \mathrm{A})^{+^{*}} \subseteq(\mathrm{U} \cap \mathrm{A})^{+^{*}}$
g) $\mathrm{I} \in \mathrm{I} \Rightarrow(\mathrm{A} \cup \mathrm{I})^{+^{*}}=\mathrm{A}^{+^{*}}=(\mathrm{A} \backslash \mathrm{I})^{+^{*}}$

Proof:
Obvious using the definition of A^{+*}

Theorem 2.13:

Let $\left(X, \tau^{+}, I\right)$ be a SEITS and let $A, U \in X$.If A is a bI^{+}open set and $U \in \tau$, then $A \cap U$ is a bI^{+}open set.

Proof:

By assumption let A be a bI^{+}open set then, $\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right) \cup \mathrm{cl}^{+^{*}}(\operatorname{int}(\mathrm{~A}))$ and $\mathrm{U} \subseteq \operatorname{int} \mathrm{U}$
By theorem 2.12 (f) we have

$$
\begin{aligned}
\mathrm{A} \cap \mathrm{U} & \subseteq\left[\operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right) \cup \mathrm{cl}^{+^{*}}(\operatorname{int}(\mathrm{~A}))\right] \cap \operatorname{intU} \\
& \subseteq\left[\operatorname{int}\left(\mathrm{cl}^{+{ }^{*}}(\mathrm{~A})\right) \cap \operatorname{intU}\right] \cup\left[\mathrm{cl}^{+^{*}}(\operatorname{int}(\mathrm{~A})) \cap \operatorname{intU}\right] \\
& =\left[\operatorname{int}\left(\mathrm{A}^{+^{*}} \cap \mathrm{U}\right) \cup(\mathrm{A} \cap \mathrm{U}]\right] \cup\left[\operatorname{int}(\mathrm{A})^{+*} \cap \operatorname{intU}\right] \cup[\operatorname{int}(\mathrm{A}) \cap \operatorname{intU}]
\end{aligned}
$$

$\subseteq \operatorname{int}\left[(\mathrm{A} \cap \mathrm{U})^{+^{*}} \cup(\mathrm{~A} \cap \mathrm{U})_{-}\right] \cup\left[\operatorname{int}(\mathrm{A} \cap \mathrm{U})^{+^{*}} \cup \operatorname{int}(\mathrm{~A} \cap \mathrm{U})\right]$
$\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+*}(\mathrm{~A} \cap \mathrm{U})\right) \cup \mathrm{cl}^{+*}(\operatorname{int}(\mathrm{~A} \cap \mathrm{U}))$
$\Rightarrow \mathrm{A}$ is is $\mathrm{U} \cap \mathrm{A}$ is is bI^{+}open.

Theorem 2.14:

Let (X, τ^{+},I) be a SEITS .Then the following hold
a) Union of arbitrary family of bI^{+}open sets is bI^{+}open.
b) Intersection of arbitrary family of bI^{+}closed sets is bI^{+}closed.
c) If $\mathrm{A} \in \mathrm{BI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right) \quad$ and $\mathrm{B} \in \tau$,then $\mathrm{A} \cap \mathrm{B} \in \mathrm{BI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$

Proof:

a)Let $\left\{\mathrm{A}_{\alpha} / \alpha \in \Delta\right\}$ be a family of bI^{+}open sets then,
$\mathrm{A}_{\alpha} \subseteq \operatorname{int}\left(\mathrm{cl}^{+^{*}}\left(\mathrm{~A}_{\alpha}\right)\right) \cup \mathrm{cl}^{+*}\left(\operatorname{int}\left(\mathrm{~A}_{\alpha}\right)\right)$
Hence $\cup_{\alpha} \mathrm{A}_{\alpha} \subseteq \cup_{\alpha}\left[\operatorname{int}\left(\mathrm{cl}^{+^{*}}\left(\mathrm{~A}_{\alpha}\right)\right) \cup \mathrm{cl}^{+^{*}}\left(\operatorname{int}\left(\mathrm{~A}_{\alpha}\right)\right)\right]$

$$
\begin{aligned}
& \subseteq \cup_{\alpha}\left[\operatorname{int}\left(\mathrm{cl}^{+^{*}}\left(\mathrm{~A}_{\alpha}\right)\right)\right] \cup\left[\cup_{\alpha}\left(\mathrm{cl}^{+^{*}}\left(\operatorname{int}\left(\mathrm{~A}_{\alpha}\right)\right)\right]\right. \\
& \subseteq \quad \operatorname{int}\left(\cup_{\alpha}\left(\mathrm{cl}^{+^{*}}\left(\mathrm{~A}_{\alpha}\right)\right) \cup \mathrm{cl}^{+^{*}}\left(\cup_{\alpha} \operatorname{int}\left(\mathrm{A}_{\alpha}\right)\right)\right. \\
& \subseteq \quad \operatorname{int}\left((\mathrm { cl } ^ { + ^ { * } } (\cup _ { \alpha } \mathrm { A } _ { \alpha })) \cup \mathrm { cl } ^ { + ^ { * } } \left(\left(\operatorname{int}\left(\cup_{\alpha} \mathrm{A}_{\alpha}\right)\right)\right.\right.
\end{aligned}
$$

$\Rightarrow \cup_{\alpha} \mathrm{A}_{\alpha}$ is bI^{+}open.
b) Let $\left\{\mathrm{B}_{\alpha} / \alpha \in \Delta\right\}$ be a family of bI^{+}closed sets.

Then $\left\{\mathrm{B}_{\alpha}{ }^{\mathrm{c}} / \alpha \in \Delta\right\}$ be a family of bI^{+}open sets. By (a) $\cup_{\alpha} \mathrm{B}_{\alpha}{ }^{\mathrm{c}}$ is bI^{+}open.
Hence $\left(\cap_{\alpha} B_{\alpha}\right)^{c}=\left(\cup_{\alpha} B_{\alpha}\right)^{c}$ is bI^{+}open.
$\Rightarrow\left(\cap_{\alpha} B_{\alpha}\right)$ is bI^{+}closed set. Hence the proof.
c) Let $\mathrm{A} \in \mathrm{BI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right) \quad$ and $\mathrm{B} \in \tau$. Then $\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+}{ }^{*}(\mathrm{~A})\right) \cup \mathrm{cl}^{+^{*}}(\operatorname{int}(\mathrm{~A}))$ and
$\mathrm{A} \cap \mathrm{B} \subseteq\left[\operatorname{int}\left(\mathrm{cl}^{+*}(\mathrm{~A})\right) \cup \mathrm{cl}^{+*}(\operatorname{int}(\mathrm{~A}))\right] \cap \mathrm{B}$
$=\left[\left(\operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right) \cap \mathrm{B}\right)\right] \cup\left[\mathrm{cl}^{+^{*}}(\operatorname{int}(\mathrm{~A})) \cap \mathrm{B}\right]$
$=\left[\operatorname{int}\left(\mathrm{A} \cup \mathrm{A}^{+*}\right) \cap \mathrm{B}\right] \cup\left[\left(\operatorname{int}(\mathrm{A}) \cup\left(\operatorname{int}(\mathrm{A})^{+^{*}}\right) \cap \mathrm{B}\right]\right.$
$\subseteq\left[\operatorname{int}\left[(A \cap B) \cup\left(A^{+*} \cap B\right)\right]\right] \cup\left[\left(\operatorname{int}(A \cap B) \cup \operatorname{int}(A \cap B)^{+*}\right]\right.$ (using theorem 3.9)
$\subseteq\left[\right.$ int cl $\left.{ }^{+^{*}}(\mathrm{~A} \cap \mathrm{~B})\right] \cup\left[\mathrm{cl}^{+^{+}}(\operatorname{int}(\mathrm{A} \cap \mathrm{B})]\right.$
Hence $\mathrm{A} \cap \mathrm{B} \in \mathrm{BI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right) \quad$. Hence the proof.

If $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ be a SEITS and A is a subset of X , we denote by τ^{+} / A, the relative topology on A and $\mathrm{I} / \mathrm{A}=\{\mathrm{A} \cap \mathrm{I}: \mathrm{I} \in \mathrm{I}\}$ is clearly an ideal on A .

Lemma 2.15:

Let $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ be a SEITS and A, B are subsets of X such that $\mathrm{B} \subseteq \mathrm{A}$. Then $\mathrm{B}^{+*}\left(\tau^{+} /{ }_{\mathrm{A}}, \mathrm{I} / \mathrm{A}\right)=\mathrm{B}^{+*}\left(\tau^{+}, \mathrm{I}\right) \cap \mathrm{A}$.

Theorem 2.16:

Let $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ be a SEITS and if $\mathrm{U} \in \tau$ and $\mathrm{V} \in \mathrm{BI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}\right.$, I$)$ then $\mathrm{U} \cap \mathrm{V} \in \mathrm{BI}^{+} \mathrm{O}\left(\mathrm{U}, \tau^{+} /_{\mathrm{A}}, \mathrm{I} / \mathrm{A}\right)$.

Proof:

Since U is open, we have $\operatorname{int}_{\mathrm{u}} \mathrm{A}=$ int A for any subset A of U . By using this fact and theorem 2.15 we have,

$$
\begin{aligned}
\mathrm{U} \cap \mathrm{~V} & \subseteq \mathrm{U} \cap\left(\mathrm{cl}^{+^{*}}(\operatorname{int}(\mathrm{~V})) \cup \operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~V})\right)\right) \\
& \subseteq\left[\mathrm{U} \cap\left[\left(\operatorname{int}(\mathrm{~V}) \cup(\operatorname{int}(\mathrm{V}))^{+^{*}}\right)\right] \cup\left[\mathrm{U} \cap \operatorname{int}\left(\mathrm{~V} \cup \mathrm{~V}^{+^{*}}\right)\right]\right] \\
& \subseteq\left\{\mathrm{U} \cap\left[\mathrm{U} \cap \operatorname{int}(\mathrm{~V}) \cup \mathrm{U} \cap(\operatorname{int}(\mathrm{~V}))^{+^{*}}\right]\right\} \cup\left\{\mathrm{U} \cap\left[\mathrm{U} \cap\left[\operatorname{int}\left(\mathrm{~V} \cup \mathrm{~V}^{+^{*}}\right)\right]\right]\right\} \\
& \subseteq\left\{\mathrm{U} \cap\left[\mathrm{U} \cap \operatorname{int}(\mathrm{~V}) \cup(\mathrm{U} \cap \operatorname{intV})^{+^{*}}\right] \cup\left\{\mathrm{U} \cap\left[\mathrm{U} \cap\left[\operatorname{int}\left(\mathrm{~V} \cup \mathrm{~V}^{+^{*}}\right)\right]\right]\right\}\right. \\
& \subseteq\left\{\mathrm { U } \cap \left[\operatorname{int}_{\mathrm{U}}(\mathrm{U} \cap \mathrm{~V}) \cup\left(\mathrm{U} \cap \operatorname{int}_{\mathrm{U}}(\mathrm{U} \cap \mathrm{~V})^{+^{*}}\right] \cup\left\{\mathrm{U} \cap\left[\left[\operatorname{int}(\mathrm{U} \cap \mathrm{~V}) \cup(\mathrm{U} \cap \mathrm{~V})^{+^{*}}\right]\right]\right\}\right.\right. \\
& \left.=\left\{\left[\operatorname{int}_{\mathrm{U}}(\mathrm{U} \cap \mathrm{~V})\right] \cup\left[\operatorname{int}_{\mathrm{U}}(\mathrm{U} \cap \mathrm{~V})\right]^{+^{*}}\left(\tau^{+} / \mathrm{U}, \mathrm{I} / \mathrm{U}\right)\right]\right\} \cup\left\{\mathrm{U} \cap\left[\left[\operatorname{int}(\mathrm{U} \cap \mathrm{~V}) \cup(\mathrm{U} \cap \mathrm{~V})^{+^{*}}\right]\right]\right\} \\
& =\mathrm{cl}^{+^{*}}\left[\operatorname{int}_{\mathrm{U}}(\mathrm{U} \cap \mathrm{~V})\right] \cup\left[\operatorname{int}_{\left.\mathrm{U}\left(\mathrm{cl}^{+^{*}}(\mathrm{U} \cap \mathrm{~V})\right)\right]}\right.
\end{aligned}
$$

This shows that $\mathrm{U} \cap \mathrm{V} \in \mathrm{BI}^{+} \mathrm{O}\left(\mathrm{U}, \tau^{+} /{ }_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}\right)$.
Definition 2.17:
A point $x \in X$ is said to be an I^{+}limit point of A if for every I^{+}open set U in $X, U \cap(A \mid x) \neq \phi$.
The set of all I^{+}limit point of A is called the I^{+}derived set of A denoted by $\mathrm{D}_{\mathrm{I}}{ }^{+}(\mathrm{A})$

Definition 2.18:

Let A be a subset of $\left(X, \tau^{+}, I\right)$. A point $x \in X$ is said to be an bI^{+}limit point of A if for every bI^{+} open set U in $X, U \cap(A \mid x) \neq \phi$.
The set of all bI^{+}limit point of A is called the bI^{+}derived set of A denoted by $\mathrm{D}_{\mathrm{bI}}{ }^{+}(\mathrm{A})$
Since every open set is preI ${ }^{+}$open and every preI $^{+}$open is bI^{+}open we have
$\mathrm{D}_{\mathrm{bI}}{ }^{+}(\mathrm{A}) \subseteq \mathrm{D}(\mathrm{A})$ for any subset $\mathrm{A} \subseteq \mathrm{X}$. Moreover , since every closed set is bI^{+}open we have
$\mathrm{A} \subseteq \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{cl}(\mathrm{A})$

Lemma 2.19:

If $\mathrm{D}(\mathrm{A})=\mathrm{D}_{\mathrm{bI}}{ }^{+}(\mathrm{A})$, then we have $\mathrm{cl}(\mathrm{A})=\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})$
Proof: Straightforward

Corollary 2.20:

If $D(A) \subseteq D_{b I}^{+}(A)$, for every subset A of X. Then for any subset F and B of X, we have $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{F} \cup \mathrm{B})=\mathrm{bI}^{+} \mathrm{cl}(\mathrm{F}) \cup \mathrm{bI}^{+} \mathrm{cl}(\mathrm{B})$.
Theorem 2.21:
If A be a subset of $\left(X, \tau^{+}, I\right)$, then $x \in \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})$ if and only if every bI^{+}open set U containing x intersects A.

Proof:
Let us prove that $\mathrm{x} \notin \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})$ if and only if there exists a bI^{+}open set U containing x which does not intersect A.
ie. $\mathrm{x} \notin \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \Rightarrow \mathrm{x} \in \mathrm{X} \backslash \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})$ which does not intersect A .
Conversely, let U be a bI^{+}open set U containing x which does not intersect A. Then $(X \backslash U)$ is a bI^{+}open set U containing A and $\mathrm{x} \notin\left((\mathrm{X} \backslash \mathrm{U})\right.$ but $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{X} \backslash \mathrm{U}$.

Therefore, $\mathrm{x} \in \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})$.

Theorem 2.22:

$\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})=\mathrm{A} \cup \mathrm{D}_{\mathrm{bI}}{ }^{+}(\mathrm{A})$.
Proof: If $x \in D_{b I}{ }^{+}(A)$.
Then for every $b I+$ open set U containing x, we have $U \cap\{A \backslash\{x\}\} \neq \phi$. Therefore $x \in \mathrm{bI}^{+} c l(A)$
ie., $\mathrm{A} \cup \mathrm{D}_{\mathrm{bI}}{ }^{+}(\mathrm{A}) \subseteq \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})$
Conversely, let $\mathrm{x} \in \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})$
If $x \in A$,then $x \in A \cup D_{b I}{ }^{+}(A)$. Let $x \notin A$, since $x \in \mathrm{bI}^{+} c l(A)$ every bI^{+}open set U containing x intersect A. But $x \notin A \Rightarrow U \cap\{A \backslash\{x\}\} \neq \phi$. Therefore $x \in D_{b I}{ }^{+}(A)$

$$
\text { ie., } \mathrm{bI}^{+} \mathrm{cl}(\mathrm{~A}) \subseteq \mathrm{A} \cup \mathrm{D}_{\mathrm{bI}}^{+}(\mathrm{A}) \quad(2)
$$

From (1) and (2) we get $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})=\mathrm{A} \cup \mathrm{D}_{\mathrm{bI}}{ }^{+}(\mathrm{A})$. Hence the proof.

Theorem 2.23:

In a SEITS $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ then $\mathrm{D}_{\mathrm{bI}}{ }^{+}(\mathrm{A}) \subseteq \mathrm{D}_{\mathrm{I}}^{+}(\mathrm{A})$ for every subset A of X .
Proof:
Let $\mathrm{x} \in \mathrm{D}_{\mathrm{bI}}{ }^{+}(\mathrm{A})$ and let U be an open set in A containing x , then U is bI^{+}open.
Therefore , U is bI^{+}open set containing x .
Hence $U \cap\{A \backslash\{x\}\} \neq \phi$.
ie., $x \in D_{I}^{+}(A)$. Hence $D_{b I}^{+}(A) \subseteq D_{I}^{+}(A)$.

3.GENERALISED bI ${ }^{+}$CLOSED SETS

Definition3.1: A subset A of a $\operatorname{SEITS}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ is said to be a gbI^{+}closed if $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $A \subseteq U$ and U is open in τ^{+}.
The collection of all gbI^{+}closed sets of X is denoted as $\mathrm{GBI}^{+} \mathrm{C}(\mathrm{X})$

Example 3.2:

Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \tau=\{\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\} \mathrm{I}=\{\phi,\{\mathrm{b}\}\} ; \mathrm{B}=\{\mathrm{b}\} ; \tau^{+}(\mathrm{B})=\{\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$.
Here bI^{+}open sets are $\{\phi, X,\{a\},\{a, b\},\{a, c\}\}$ and gbI^{+}closed sets are $\{\phi, X,\{b\},\{c\},\{b, c\},\{a, c\}\}$.

Note:

Since every I^{+}closed set is bI^{+}closed we have $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{I}^{+} \mathrm{cl}(\mathrm{A})$

Theorem 3.3:

i)Every I^{+}closed set is gbI^{+}closed.
ii)Every bI^{+}closed set is gbI^{+}closed.

Proof:

Let $\mathrm{A} \subseteq \mathrm{U}$ and U is open in τ^{+}.
Since A is I^{+}closed we have $\mathrm{A}=\mathrm{I}^{+} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$. By the above note we have $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{I}^{+} \mathrm{cl}(\mathrm{A})$
ie., $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in τ^{+}. Hence the proof.
ii) Let A be a bI^{+}closed set. Then $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})=\mathrm{A} \subseteq \mathrm{U}$. Hence A is a gbI^{+}closed.

But the converse need not be true.

Example 3.4:

Let $X=\{a, b, c\} \tau=\{\phi, X,\{a\},\{a, b\}\} \mathrm{I}=\{\phi,\{b\}\} ; B=\{b\} ; \tau^{+}(B)=\{\phi, X,\{a\},\{b\},\{a, b\}\}$.
Here $\{\mathrm{a}, \mathrm{c}\}$ is gbI^{+}closed but not bI^{+}closed.

Theorem 3.5:

If A is a gbI^{+}closed set of a SEITS $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$, then $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \backslash \mathrm{A}$ does not contain any non empty closed set.

Proof:

Let F be a closed set such that $\mathrm{F} \subseteq \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \backslash \mathrm{A}$. Then $(\mathrm{X} \mid \mathrm{F})$ is open and
$\mathrm{F} \subseteq \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \cap \mathrm{A}^{\mathrm{c}} \longrightarrow$ (1)
$\Rightarrow \mathrm{F} \subseteq \mathrm{A}^{\mathrm{c}}$
$\Rightarrow(\mathrm{X} \backslash \mathrm{F}) \supset \mathrm{A}$. Since A is gbI^{+}closed we have $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \subseteq(\mathrm{X} \backslash \mathrm{F})$.
Hence $\mathrm{F} \subseteq \mathrm{XlbI}^{+} \mathrm{cl}(\mathrm{A})$
From (1) \& (2) we have
$\mathrm{F} \subseteq\left(\mathrm{XlbI}^{+} \mathrm{cl}(\mathrm{A})\right) \cap \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})=\phi$ ie., $\mathrm{F}=\phi$. Hence $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \backslash \mathrm{A}$ does not contain any non empty closed set. Hence the proof.

Theorem 3.6:

If A be a gbI^{+}closed set of a $\operatorname{SEITS}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ and $\mathrm{A} \subseteq \mathrm{B} \subseteq \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})$ then B is also gbI^{+}closed.

Proof:

Let A be a gbI^{+}closed set $)$and $\mathrm{A} \subseteq \mathrm{B} \subseteq \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})$.Then $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{bI}^{+} \mathrm{cl}(\mathrm{B}) \subseteq \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})$
which implies $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})=\mathrm{bI}^{+} \mathrm{cl}(\mathrm{B})$ let us now consider U to be a open set in $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ containing B. Then $\mathrm{A} \subseteq \mathrm{U}$ and A is gbI^{+}closed .
$\Rightarrow \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$
$\Rightarrow \mathrm{bI}^{+} \mathrm{cl}(\mathrm{B}) \subseteq \mathrm{U} \Rightarrow \mathrm{B}$ is gbI^{+}closed.
We now provide a necessary and sufficient condition for a gbI^{+}closed set to be bI^{+}closed.

Theorem 3.7:

A gbI^{+}closed set A is bI^{+}closed if and only if $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \backslash \mathrm{A}$ is closed.

Proof:

Let A be bI^{+}closed, then $\mathrm{A}=\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})$.
\Rightarrow if $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \backslash \mathrm{A}=\phi$ which is closed.
Conversely, let $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \backslash \mathrm{A}$ is closed. By theorem 3.5 we know that $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \backslash \mathrm{A}$ does not contain any non empty closed set. Therefore $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \backslash \mathrm{A}=\phi \Rightarrow \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})=\mathrm{A}$. Hence A is bI^{+} closed.

Theorem 3.8 :
If A and B are gbI^{+}closed sets such that $\mathrm{D}(\mathrm{A}) \subseteq \mathrm{D}_{\mathrm{bI}}{ }^{+}(\mathrm{A})$ and $\mathrm{D}(\mathrm{B}) \subseteq \mathrm{D}_{\mathrm{bI}}{ }^{+}(\mathrm{B})$. Then $\mathrm{A} \cup \mathrm{B}$ is gbI ${ }^{+}$closed.

Proof:

Let U be an open set such that $A \cup B \subseteq U$.Then since A and B are $g b I^{+}$closed sets we have
$\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ and $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{B}) \subseteq \mathrm{U}$. Since $\mathrm{D}(\mathrm{A}) \subseteq \mathrm{D}_{\mathrm{bI}}{ }^{+}(\mathrm{A})$, thus $\mathrm{D}(\mathrm{A})=\mathrm{D}_{\mathrm{bI}}{ }^{+}(\mathrm{A})$ and by
lemma 2.19, $\mathrm{cl}(\mathrm{A})=\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A})$ and similarly $\mathrm{cl}(\mathrm{B})=\mathrm{bI}^{+} \mathrm{cl}(\mathrm{B})$.
Thus $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A} \cup \mathrm{B}) \subseteq \mathrm{cl}(\mathrm{A} \cup \mathrm{B})=\mathrm{cl}(\mathrm{A}) \cup \mathrm{cl}(\mathrm{B})=\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \cup \mathrm{bI}^{+} \mathrm{cl}(\mathrm{B}) \subseteq \mathrm{U}$.
This implies $\mathrm{A} \cup \mathrm{B}$ is gbI^{+}closed.

Definition 3.9:

Let $\mathrm{B} \subseteq \mathrm{A} \subseteq \mathrm{X}$. The set B is said to be gbI^{+}closed relative to A if $\mathrm{bI}^{+} \mathrm{cl}_{\mathrm{A}}(\mathrm{B}) \subseteq \mathrm{U}$ whenever $\mathrm{B} \subseteq \mathrm{U}$ and U is open in A , where $\mathrm{bI}^{+} \mathrm{cl}_{\mathrm{A}}(\mathrm{B})=\mathrm{A} \cap \mathrm{bI}^{+} \mathrm{cl}(\mathrm{B})$

Theorem 3.10:

If $\mathrm{B} \subseteq \mathrm{A} \subseteq \mathrm{X}$ and A is gbI^{+}closed and open ,then B is gbI^{+}closed relative to A if and only if B is gbI^{+}closed in X .
Proof:
Let A be gbI^{+}closed and open. Let B be gbI^{+}closed relative to A . Since A is gbI^{+}closed and open, we have $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{A}$.

Therefore $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{B}) \subseteq \mathrm{bI}^{+} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{A}$
Therefore $\mathrm{bI}^{+} \mathrm{cl}_{\mathrm{A}}(\mathrm{B}) \subseteq \mathrm{bI}^{+} \mathrm{cl}(\mathrm{B}) \cap \mathrm{A}=\mathrm{bI}^{+} \mathrm{cl}(\mathrm{B})$.
Now let U be open in X and $B \subseteq U$.
Then $\mathrm{U} \cap \mathrm{A}$ is open in A and $\mathrm{B} \subseteq \mathrm{U} \cap \mathrm{A}$. Since B is gbI^{+}closed relative to A we have $\mathrm{bI}^{+} \mathrm{cl}_{\mathrm{A}}(\mathrm{B}) \subseteq \mathrm{U} \cap \mathrm{A}$. Hence $\mathrm{bI}^{+} \mathrm{cl}_{\mathrm{A}}(\mathrm{B}) \subseteq \mathrm{U} \cap \mathrm{A} \subseteq \mathrm{U}$. Therefore B is gbI^{+}closed.
Conversely, let B be gbI^{+}closed in X .
Consider U be open in A and $\mathrm{B} \subseteq \mathrm{U}$. Then $\mathrm{U}=\mathrm{V} \cap \mathrm{A}$ where V is open in $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$.
Now $\mathrm{B} \subseteq \mathrm{V}$ and B is gbI^{+}closed in X . This implies $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{B}) \cap \mathrm{A} \subseteq \mathrm{V} \cap \mathrm{A}=\mathrm{U}$.
ie., $\mathrm{bI}^{+} \mathrm{cl}_{\mathrm{A}}(\mathrm{B}) \subseteq \mathrm{U}$.
Therefore B is gbI^{+}closed relative to A . Hence the proof.

Definition 3.11:

A set A is said to be gbI^{+}open if and only if ($\mathrm{X} \backslash \mathrm{A}$) is gbI^{+}closed.
The family of all gbI^{+}open subsets of X is denoted by $\mathrm{GBI}^{+} \mathrm{O}(\mathrm{X})$.
The largest gbI^{+}open set contained in X is called the gbI^{+}interior of A and is denoted by $\operatorname{gbI}^{+}(\operatorname{int}(\mathrm{A}))$.Also A is gbI^{+}open if and only if $\mathrm{gbI}^{+}(\operatorname{int}(\mathrm{A})=\mathrm{A}$.

Theorem 3.12:

$\mathrm{bI}^{+} \mathrm{cl}(\mathrm{X} \backslash \mathrm{A})=\mathrm{X} \backslash \mathrm{bI}^{+}(\operatorname{int}(\mathrm{A})$

Proof:

Let $\mathrm{x} \in \mathrm{bI}^{+} \mathrm{cl}(\mathrm{X} \backslash \mathrm{A})$
\Leftrightarrow every bI^{+}open set U containing x intersects ($\mathrm{X} \backslash \mathrm{A}$)
\Leftrightarrow there is no bI^{+}open set containing x and contained in A .

$$
\Leftrightarrow \mathrm{x} \in \mathrm{X} \backslash \mathrm{bI}^{+}(\operatorname{int}(\mathrm{A})
$$

Theorem 3.13:

A subset A of a SEITS $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ is gbI^{+}open if and only if $\mathrm{F} \subseteq \mathrm{bI}^{+}(\operatorname{int}(\mathrm{A})$ whenever F is closed and $\mathrm{F} \subseteq \mathrm{A}$.

Proof:

Let A be gbI^{+}open and suppose that F is closed and $\mathrm{F} \subseteq \mathrm{A}$. Then $(\mathrm{X} \backslash \mathrm{A})$ is gbI^{+}closed and
$(\mathrm{X} \backslash \mathrm{F}) \supset(\mathrm{X} \backslash \mathrm{A})$. Now $(\mathrm{X} \backslash \mathrm{F})$ is open and $(\mathrm{X} \backslash \mathrm{A})$ is gbI^{+}closed. Therefore $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{X} \backslash \mathrm{A}) \subseteq(\mathrm{X} \backslash \mathrm{F})$.
By theorem 3.12, $\mathrm{bI}^{+} \mathrm{cl}(\mathrm{X} \backslash \mathrm{A})=\mathrm{X} \backslash \mathrm{bI}^{+}(\operatorname{int}(\mathrm{A})$.
Hence $X \backslash$ bI $^{+}(\operatorname{int}(A) \subseteq(X \backslash F)$.
$\mathrm{ie}, \mathrm{F} \subseteq \mathrm{bI}^{+}(\operatorname{int}(\mathrm{A})$.
Conversely, let $\mathrm{F} \subseteq \mathrm{bI}^{+}(\operatorname{int}(\mathrm{A})$ whenever F is closed and $\mathrm{F} \subseteq \mathrm{A}$.
Now to prove A is gbI^{+}open is the same as proving ($\mathrm{X} \backslash \mathrm{A}$) is gbI^{+}closed .Let G be an open set containing $(X \backslash A)$ then $F=(X \backslash G)$ is a closed set such that $F \subseteq A$.

Therefore, $\mathrm{F} \subseteq \mathrm{bI}^{+}(\operatorname{int}(\mathrm{A})$
ie., $(\mathrm{X} \backslash \mathrm{F}) \supset\left(\mathrm{X} \backslash \mathrm{bI}^{+} \mathrm{cl}(\mathrm{X} \backslash \mathrm{A})\right)=\mathrm{bI}^{+} \mathrm{cl}(\mathrm{X} \backslash \mathrm{A})$
$\mathrm{bI}^{+} \mathrm{cl}(\mathrm{X} \backslash \mathrm{A}) \subseteq \mathrm{G}$.
Therefore $(\mathrm{X} \backslash \mathrm{A})$ is gbI^{+}closed.ie., A is gbI^{+}open. Hence the proof.

REFERENCES:

1. M.E Abd.El-Monsef,S.N.Deeb and R.A Mahmoud," β open sets and β continuous mapping",Bull.Fac.Sci.Assiut Univ.12(1983),77-90.
2. M.E Abd.El-Monsef, E.F Lashien and A.A.Nasef,"On I-Open sets and I-continuous functions",Kyungpook Math.J.,32(1992),21-30
3. A.Caksu Guler and G.Aslim," bI -open sets and decomposition of continuity via idealization",Proceddings of Institute of mathematics and mechanics.National Academy of sciences of Azerbaijan, Vol.22,pp.27-32,2005.
4. H.H Corson and E.Michael ,"Metrizability of certain countable unions", Illinois J.Math.8(1964),351-360.
5. Dimitrije Andrijevic,"On b open sets",MATHEMAT,48(1996),59-64.
6. J.Dontchev,"Idealization of Ganster-Reilly decomposition heorems",Math.GN/9901017,5 Jan 1999 (Internet)
7. E.Hatir and T.Noiri ,"On decompositions of continuity via idealization", Acta. Math. Hungar, 96(4)(2002),341-349.
8. D.Jankovic and T.R Hamlett ,"New topologies from old via ideals, Amer.Math.Monthly,97(1990), 295-310
9. N.Levine ,"Simple Extension of topology",Amer .Math.monthly,71,(1964),22-105
10. N.Levine,"Semi-open and Semi-continuity in topological spaces",Amer.Math. monthly, 70,(1963),36-41
11. A.S.Mashhour ,M.E Abd.El-Monsef and S.N.El-Deeb,"On precontiuous and weak precontiuous mappings",Proc.Math.Phys.Soc.Egypt,53(1982),47-53.
12. O.Njastad ,"On some classes of nearly open sets",Pacific J.Math.15(1965),961-970.
13. J.Tong ,"On Decomposition of continuity in topological spaces", Acta Math. Hungar, 54(1989), 51-55
