(g α)*- CLOSED SETS IN TOPOLOGICAL SPACES

Issue 3, Volume 3 (May-June 2013)

ISSN: 2250-1797

Daffiny Swarnakumari.E, B.T. Assistant, Mani Higher Secondary School, Coimbatore, India Veronica Vijayan, Associate Professor, Nirmala College, Coimbatore, India

ABSTRACT

In this paper we introduce a new class of sets namely, $(g\alpha)^*$ - closed sets in topological spaces, which settled in between the class of closed sets and the class of $g\alpha$ -closed sets. Applying these sets, we introduce five new classes of spaces namely, $T_{g\alpha}^*$ - spaces, $T_{g\alpha}$ - spaces. Further we introduce $(g\alpha)^*$ - continuous maps and $(g\alpha)^*$ - irresolute maps.

Key words: $(g\alpha)^*$ - closed sets, $T_{g\alpha}^*$ - spaces, $T_{g\alpha}$ - spaces, $T_{g\alpha}^*$ - spaces, $T_{g\alpha}^*$

1. INTRODUCTION

Levine [9] introduced the class of g - closed sets in 1970. Maki.et.al [11] defined αg - closed sets in 1994. .P Arya and T. Nour [3] defined gs - closed sets in 1990. J. Dontchev [7], Y. Gnanambal [8], N. Palaniappan and K.C.Rao [17] introduced gsp - closed sets, gpr - closed sets and rg - closed sets respectively. H. Maki, J. Umehara and T. Noiri [13], H. Maki, R. Devi and K. Balachandran [12], M.K.R.S. Veerakumar [19] introduced gp - closed sets, $g\alpha$ - closed sets and g^* - closed sets respectively.

Devi.et.al [4] introduced $_{\alpha}T_{b}$ - spaces, Devi.et.al [5] introduced T_{b} - spaces. Applying $(g\alpha)^{*}$ - closed sets, we introduce five new class of spaces namely $T_{g\alpha}^{*}$ - spaces, $T_{g\alpha}$ - spaces, $T_{g\alpha}^{\alpha}$ - spaces. Further we introduce $(g\alpha)^{*}$ - continuous maps and $(g\alpha)^{*}$ - irresolute maps.

2. PRELIMINARIES

Issue 3, Volume 3 (May-June 2013)

ISSN: 2250-1797

Throughout this paper (X,τ) , (Y,σ) and (Z,η) represent non - empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ) , cl(A) and int(A) denote the closure and the interior of A respectively.

Definition 2.1 A subset A of a topological space X is said to be,

- 1) a pre closed set [14] if cl [int(A)] \subseteq A and a pre open set if A \subseteq (int [cl(A)])
- 2) a semi closed set [10] if (int [cl(A)]) $\subseteq A$ and a semi open set if $A \subseteq cl[int(A)]$
- 3) a g-closed set [9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 4) a gs- closed set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 5) a gp-closed set [13] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 6) a regular closed set [10] if A = (cl [int (A)]) and a regular open set if A = (int [cl(A)])
- 7) a α closed set [15] if cl [int[cl(A)]] \subseteq A and a α -open set[16] if A \subseteq (int[cl(int(A))])
- 8) a semi pre closed set [1] if $(int[cl(int(A))]) \subseteq A$ and a semi pre open set if $A \subseteq (cl[int[cl(A)]])$
- 9) a $g\alpha$ closed set [16] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α open in X.
- 10) a αg closed set [11] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 11) a rg- closed set [17] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 12) a gpr- closed set [8] if $pcl(A) \subset U$ whenever $A \subset U$ and U is open in X.
- 13) a g^* closed set [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g- open in X.
- 14) a gsp- closed set [7] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 15) a g^{**} closed set [18] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^{*} open in X.

Definition 2.2 A space (X, τ) is called

- 1) an $_{\alpha}T_{b}$ space [4] if every αg closed set in it is closed.
- 2) a T_b space [5] if every gs closed set in it is closed.

Definition 2.3 A function $f:(X,\tau) \to (Y,\sigma)$ is called,

- 1) a gsp continuous [7] if $f^1(V)$ is gsp Closed in (X, τ) for every closed set V of (Y, σ) .
- 2) a gp continuous [2] if $\ f^1(V)$ is a gp Closed set of $(X,\,\tau)$ for every closed set V of

 (Y,σ) .

- 3) a gs continuous [6] if $f^{-1}(V)$ is a gs Closed set of (X, τ) for every closed set V of (Y, σ) .
- 4) an $g\alpha$ continuous [12] if $f^{-1}(V)$ is a $g\alpha$ Closed set of (X, τ) for every closed set V of (Y, σ) .
- 5) an αg continuous [8] if $f^{-1}(V)$ is a αg Closed set of (X, τ) for every closed set V of (Y, σ) .

3. BASIC PROPERTIES OF $(g\alpha)^*$ - CLOSED SETS

We introduce the following definition

Definition 3.1 A subset A of a topological space (X,τ) is called $(g\alpha)^*$ - closed if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$ - open in X.

The class of $(g\alpha)^*$ - closed subsets of (X,τ) is denoted by $G_\alpha^* C(X,\tau)$

Proposition 3.2 Every closed set is $(g\alpha)^*$ - Closed.

Proof: Let A be closed. Then Cl(A) = A Let $A \subseteq U$ and U be $g\alpha$ - open. $\alpha Cl(A) \subseteq Cl(A) = A \subset U$. $\therefore A$ is $(g \alpha)^*$ - closed.

A $(g \alpha)^*$ - closed set need not be closed.

Example3.3 Let $X = \{a,b,c\}$, $\tau = \{\phi, X, \{a\}\}$ Let $A = \{b\}$ is $(g\alpha)^*$ - closed but not closed. So the class of $(g\alpha)^*$ - closed sets properly contains the class of closed sets.

Proposition 3.4 Every $(g\alpha)^*$ - closed set is $g\alpha$ - closed. Converse is not true.

Example 3.5 Let $X = \{a,b,c\}$, $\tau = \{\phi,X,\{a\},\{b,c\}\}\$ $A = \{b\}$ is $g\alpha$ - closed but not $(g\alpha)^*$ -closed. \therefore The class of $(g\alpha)^*$ -closed sets is properly contained in the class of $g\alpha$ -closed sets.

Proposition 3.6 Every α - closed set is $(g\alpha)^*$ - closed.

Proof: Let A be α - closed. Then $\alpha Cl(A) = A$. Whenever $A \subseteq U$ and U is $g\alpha$ - open, $\alpha Cl(A) \subseteq U$. \therefore A is $(g\alpha)^*$ - closed.

The converse of the above proposition need not be true in general as it can be seen from the following example.

Example 3.7 Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a,b\}\}$ $\therefore A = \{a,c\}$ is $(g\alpha)^*$ - closed but not α -closed.

Proposition 3.8 Every (gα)* closed set is gs- closed.

Proof follows from the definitions.

Example 3.9 Let $X = \{a,b,c\}$, $\tau = \{\phi, X,\{a\},\{a,c\}\}\$ $A = \{a,b\}$ is gs - closed but not $(g\alpha)^*$ - closed. .: The class of $(g\alpha)^*$ - closed sets is properly contained in the class of gs - closed sets.

Proposition 3.10 Every $(g\alpha)^*$ closed set is αg – closed.

Proof: Let A be $(g\alpha)^*$ - closed. Then $\alpha cl(A) \subseteq U$, whenever $A \subseteq U$ and U is $g\alpha$ - open.

Let us prove that $\alpha cl(A) \subseteq U$, when ever $A \subseteq U$ and U is open. Let $A \subseteq U$ and U be open.

Then $A \subseteq U$ and U is $g\alpha$ -open. $\alpha Cl(A) \subseteq U$, since A is $(g\alpha)^*$ - closed. $\therefore A$ is αg - closed.

Example 3.11 In example 3.9, $A = \{a,b\}$ is αg - closed but not $(g\alpha)^*$ - closed.

... The class of αg - closed sets properly contains the class of $(g\alpha)^*$ - closed sets.

Proposition 3.12 Every $(g\alpha)^*$ closed set is gsp -closed.

The following example shows that the converse of the above proposition need not be true in general.

Example 3.13 In example 3.9, $A = \{a,b\}$ is gsp - closed but not $(g\alpha)^*$ - closed.

Proposition 3.14 Every $(g\alpha)^*$ closed set is gp –closed.

Proof: Let A be $(g\alpha)^*$ closed. Then $\alpha Cl(A) \subseteq U$, whenever $A \subseteq U$ and U is $g\alpha$ - open.

Let us prove that A is gp - closed. Let us prove that $pcl(A) \subseteq U$, whenever $A \subseteq U$ and U is open. Let $A \subseteq U$ and U be open. Then $A \subseteq U$ and U is $g\alpha$ - open. Then $\alpha cl(A) \subseteq U$. $pcl(A) \subseteq \alpha cl(A) \subseteq U$. $\therefore pcl(A) \subseteq U$, whenever $A \subseteq U$ and U is open. \therefore A is gp- closed.

Example 3.15 Let $X = \{a,b,c\}, \ \tau = \{\phi,X,\{a\},\{a,c\}\}\ A = \{a,b\} \text{ is gp-closed but not } (g\alpha)^*\text{-closed.}$

:. The class of $(g\alpha)^*$ - closed sets is properly contained in the class of gp - closed sets.

Example 3.16 A gpr - closed set need not be $(g\alpha)^*$ - closed. In example 3.9, $A = \{a,b\}$ is gpr - closed but not $(g\alpha)^*$ - closed.

Example 3.17 A rg - closed set need not be $(g\alpha)^*$ - closed.

In example 3.9, rg - closed sets are all the subsets of X. $A=\{a,b\}$ is rg -closed but not $(g\alpha)^*$ - closed. \therefore A is rg - closed but $(g\alpha)^*$ - closed.

Remark 3.18 $(g\alpha)^*$ - closedness is independent of g - closedness.

In example 3.9, $A = \{a,b\}$ is g -closed but not $(g\alpha)^*$ - closed. $A = \{c\}$ is $(g\alpha)^*$ - closed but not g - closed. $\therefore (g\alpha)^*$ - closedness is independent of g - closedness.

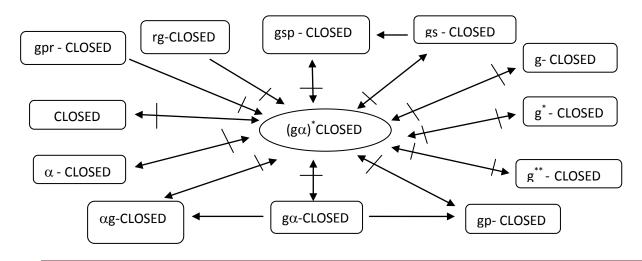
Remark 3.19 $(g\alpha)^*$ - closedness is independent of g^* - closedness.

In example 3.9, $A = \{a,b\}$ is g^* - closed but not $(g\alpha)^*$ - closed and $A = \{c\}$ is $(g\alpha)^*$ - closed but not g^* - closed. $\therefore (g\alpha)^*$ - closedness is independent of g^* -closedness.

Remark 3.20 $(g\alpha)^*$ - closedness is independent of g^{**} - closedness.

In example 3.9, $A = \{a,b\}$ is g^{**} - closed but not $(g\alpha)^*$ - closed and $B = \{c\}$ is $(g\alpha)^*$ - closed but not g^{**} - closed. $\therefore (g\alpha)^*$ - closedness is independent of g^{**} -closedness.

The above results can be represented in the following figure.



4. APPLICATION OF (gα)* -CLOSED SETS

Issue 3, Volume 3 (May-June 2013)

ISSN: 2250-1797

As application of $(g\alpha)^*$ - closed sets, five new spaces namely $T_{g\alpha}^*$ -spaces, $T_{g\alpha}$ -spaces, $T_{g\alpha}^{\alpha}$ -spaces, $T_{g\alpha}^{\alpha}$ - spaces, $T_{(g\alpha)^*}^{\alpha}$ -spaces are introduced.

Definition 4.1 A space (X,τ) is called,

- 1. a $T_{g\alpha}^*$ space if every $(g\alpha)^*$ closed set is closed.
- 2. a $T_{g\alpha}$ space if every $g\alpha$ closed set is closed.
- 3. a $^*T_{g\alpha}$ space if every $g\alpha$ closed set is $(g\alpha)^*$ closed.
- 4. a $T_{\alpha\alpha}^{\alpha}$ space if every g α -closed set is α closed.
- 5. a $T^{\alpha}_{(g\alpha)^*}$ space if every $(g\alpha)^*$ closed set is α closed.

Proposition 4.2 Every $T_{g\alpha}$ - space is a $T_{g\alpha}^*$ - space.

Proof: Let (X,τ) be a $T_{g\alpha}$ - space. Let A be a $(g\alpha)^*$ -closed set. Then A is $g\alpha$ - closed. \therefore A is closed, since the space is $T_{g\alpha}$ - space. \therefore Every $(g\alpha)^*$ - closed set is closed. \therefore (X,τ) is a $T_{g\alpha}^*$ - space.

Converse is not true.

Example 4.3 In example 3.5, $A = \{b\}$ is $g\alpha$ - closed but not closed. $\therefore (X,\tau)$ is not a $T_{g\alpha}$ - space. $(g\alpha)^*$ - closed sets are ϕ , X, $\{a\}$, $\{b,c\}$ and all these sets are closed. $\therefore (X,\tau)$ is a $T_{g\alpha}^*$ - space. \therefore A $T_{g\alpha}^*$ - space need not be a $T_{g\alpha}$ - space.

Proposition 4.4 A space (X,τ) which is both $T_{g\alpha}^*$ and $^*T_{g\alpha}$ is a $T_{g\alpha}$ - space.

Example 4.5 In example 3.9, $A = \{c\}$ is $g\alpha$ - closed but not closed. $\therefore (X,\tau)$ is not a $T_{g\alpha}$ - space. $B = \{c\}$ is $(g\alpha)^*$ - closed but not closed. $\therefore (X,\tau)$ is not a $T_{g\alpha}^*$ - space.

Every $g\alpha$ - closed set is $(g\alpha)^*$ - closed and hence (X,τ) is a $^*T_{g\alpha}$ - space. \therefore A $^*T_{g\alpha}$ - space need not be either $T_{g\alpha}$ - space or $T_{g\alpha}^*$ - space.

Proposition 4.6 Every $T_{g\alpha}^{\alpha}\Box$ - space is a $T_{(g\alpha)^*}^{\alpha}$ - space.

Proof: Let A be a $(g\alpha)^*$ - closed set. \therefore A is $g\alpha$ - closed. Then A is α - closed, since (X,τ) is a $T_{g\alpha}^{\alpha}$ - space. \therefore Every $(g\alpha)^*$ - closed set is α - closed. \therefore (X,τ) is a $T_{(g\alpha)^*}^{\alpha}$ - space.

Converse of the above proposition is not true.

Example 4.7 Let $X = \{a,b,c\}$, $\tau = \{\phi,X,\{a\},\{b,c\}\}\}$. $(g\alpha)^*$ - closed sets are ϕ , X, $\{a\},\{b,c\}$ and all these sets are α - closed. $\therefore (X,\tau)$ is a $T^{\alpha}_{(g\alpha)^*}$ - space. $A = \{b\}$ is $g\alpha$ - closed but not α - closed. $\therefore (X,\tau)$ is not a $T^{\alpha}_{g\alpha}$ - space. Hence a $T^{\alpha}_{(g\alpha)^*}$ - space need not be a $T^{\alpha}_{g\alpha}$ - space.

Proposition 4.8 Every $T_{g\alpha}^*$ space is a $T_{(g\alpha)}^{\alpha}$ space. Converse is not true.

Example 4.9 In example 3.9, $A = \{c\}$ is $(g\alpha)^*$ - closed but not closed. $\therefore (X,\tau)$ is not a $T_{g\alpha}^*$ - space. Every $(g\alpha)^*$ - closed set in it is closed. \therefore It is a $T_{(g\alpha)^*}^{\alpha}$ -space.

 \therefore A $T^{\alpha}_{(g\alpha)^*}$ - space need not be a $T^*_{g\alpha}$ - space.

Proposition 4.10 Every $T_{g\alpha}$ - space is a $T_{g\alpha}^{\alpha}$ - space.

Proof: Let A be a $g\alpha$ - closed set. A is closed since (X,τ) is a $T_{g\alpha}$ - space. Then A is α -closed. Hence every $g\alpha$ - closed set is α - closed. \therefore The space is a $T_{g\alpha}^{\alpha}$ - space. Converse is not true.

Example 4.11 In example 3.9, $A = \{c\}$ is $g\alpha$ - closed but not closed. $\therefore (X,\tau)$ is not a $T_{g\alpha}$ - space. Every $g\alpha$ - closed set in this space is α - closed and hence it is a $T_{g\alpha}^{\alpha}$ - space. $\therefore A T_{g\alpha}^{\alpha}$ - space need not be a $T_{g\alpha}$ - space.

Proposition 4.12 Every $_{\alpha}T_{b}$ - space is a $T_{g\alpha}^{*}$ - space. Converse is not true.

Example 4.13 In example 3.9, $A = \{a,b\}$ is αg - closed but not closed. \therefore The space (X,τ) is not a $_{\alpha}T_{b}$ - space. Every $g\alpha$ - closed set in this space is $(g\alpha)^{*}$ - closed. \therefore (X,τ) is a $T_{g\alpha}^{*}$ - space. \therefore A $T_{g\alpha}^{*}$ - space need not be a $_{\alpha}T_{b}$ - space.

Proposition 4.14 Every $_{\alpha}T_{b}$ - space is a $T_{g\alpha}$ - space.

Proof: Let A be a $g\alpha$ - closed set. Then A is αg - closed. \therefore A is closed since it is a $_{\alpha}T_{b}$ - space. Every $g\alpha$ - closed set is closed. \therefore (X, τ) is a $T_{g\alpha}$ - space. \therefore Every $_{\alpha}T_{b}$ - space is a $T_{g\alpha}$ - space.

Proposition 4.15 Every $_{\alpha}T_{b}$ - space is a $T_{(g\alpha)^{*}}^{\alpha}$ - space.

Example 4.16 Every $T^{\alpha}_{(g\alpha)^*}$ - space need not be a ${}_{\alpha}T_b$ - space. In example 3.11, $A = \{a,b\}$ is αg - closed but not closed. \therefore The space is not a ${}_{\alpha}T_b$ - space, but every $(g\alpha)^*$ - closed set in (X,τ) is α - closed. \therefore It is a $T^{\alpha}_{(g\alpha)^*}$ - space but not a ${}_{\alpha}T_b$ - space.

Proposition 4.17 Every $_{\alpha}T_{b}$ - space is a $T_{g\alpha}^{\alpha}$ - space.

Example 4.18 In example 3.9 and 3.11, $A = \{a,b\}$ is αg - closed but not closed. \therefore The space is not a $_{\alpha}T_{b}$ - space. Every $g\alpha$ - closed set is α - closed. \therefore The space is a $T_{g\alpha}^{\alpha}$ - space. \therefore Every $T_{g\alpha}^{\alpha}$ - space need not be a $_{\alpha}T_{b}$ - space.

Proposition 4.19 Every T_b - space is a $T_{g\alpha}^*$ - space.

Proof: Let A be a $(g\alpha)^*$ - closed set. A is gs-closed since it is $(g\alpha)^*$ - closed. A is closed since the space is a T_b - space. \therefore Every $(g\alpha)^*$ - closed set is closed. \therefore The space is a $T_{q\alpha}^*$ - space.

Example 4.20 In example 3.5, every $(g\alpha)^*$ - closed set is closed. $\therefore (X,\tau)$ is a $T_{g\alpha}^*$ - space. $A = \{b\}$ is gs - closed but not a closed set. $\therefore (X,\tau)$ is not a T_b -space. $\therefore A T_{g\alpha}^*$ - space need not be a T_b - space.

Proposition 4.21 Every T_b - space is a $T_{g\alpha}$ - space. Converse is not true.

Example 4.22 Let $X = \{a,b,c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$, $A = \{b\}$ is gs - closed but not closed. \therefore The space is not a T_b - space. Every $g\alpha$ - closed set is closed in this space. \therefore The space is a $T_{g\alpha}$ - space. \therefore Every $T_{g\alpha}$ - space need not be a T_b - space.

Proposition 4.23 Every T_b - space is a $T_{g\alpha}^{\alpha}$ - space.

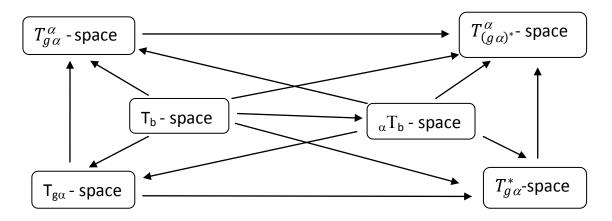
Example 4.24 Every $T_{g\alpha}^{\alpha}$ - space need not be a T_b - space. In example 3.9, $A = \{c\}$ is gs - closed but not closed. \therefore The space is not a T_b - space. But every $g\alpha$ - closed set in this space is α - closed and hence it is a $T_{g\alpha}^{\alpha}$ - space. \therefore A $T_{g\alpha}^{\alpha}$ - space need not be a T_b - space.

Proposition 4.25 Every T_b - space is a $T^{\alpha}_{(q\alpha)^*}$ - space.

Proof: Let A be a $(g\alpha)^*$ - closed set. Then A is gs- closed. A is closed since it is a T_b - space. Then A is α - closed. \therefore Every $(g\alpha)^*$ closed set is α - closed. Hence (X,τ) is a $T^{\alpha}_{(g\alpha)^*}$ -space. \therefore Every T_b - space is a $T^{\alpha}_{(g\alpha)^*}$ - space.

Example 4.26 In example 3.9, $A = \{a,b\}$ is gs - closed but not closed. \therefore The space is not a T_b - space. But every $(g\alpha)^*$ - closed set in it is α - closed and hence it is a $T^{\alpha}_{(g\alpha)^*}$ - space. \therefore Every $T^{\alpha}_{(g\alpha)^*}$ - space need not be a T_b -space.

The following diagram summarizes the above discussion.



5. $(g\alpha)^*$ - CONTINUOUS AND $(g\alpha)^*$ - IRRESOLUTE MAPS

We introduce the following definitions.

Definition 5.1 A function $f:(X,\tau) \to (Y,\sigma)$ is called,

- 1. $a (g\alpha)^*$ continuous map if $f^{-1}(V)$ is a $(g\alpha)^*$ closed set of (X,τ) for every closed set V of (Y,σ) .
- 2. $a (g\alpha)^*$ irresolute if $f^{-1}(V)$ is a $(g\alpha)^*$ closed set of (X,τ) for every $(g\alpha)^*$ closed set of (Y,σ) .

Theorem 5.2 Every continuous map is $(g\alpha)^*$ - continuous.

Proof: Let V be a closed subset of (Y,σ) . Then $f^{-1}(V)$ is closed, since f is continuous. Now $f^{-1}(V)$ is a $(g\alpha)^*$ - closed, since every closed set is $(g\alpha)^*$ - closed. \therefore f is $(g\alpha)^*$ - continuous.

Converse of the above theorem is not true.

Example 5.3 Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a,c\}\}, \text{ and } \sigma = \{\phi, X, \{a,b\}\}.$

 ϕ , Y, and $\{c\}$ are the closed subsets of Y. Define $f:(X,\tau)\to (Y,\sigma)$ by, f(a)=b, f(b)=a, and f(c)=c, $f^{-1}(\{c\})=\{c\}$ is $(g\alpha)^*$ - Closed set in (X,τ) , but it is not closed in (X,τ) . $\therefore f$ is $(g\alpha)^*$ - continuous, but it is not continuous. $\therefore A(g\alpha)^*$ - continuous map need not be continuous.

Theorem 5.4 Every $(g\alpha)^*$ - continuous map is gsp – continuous, gp – continuous, ga – continuous and αg – continuous.

Proof: Let $f: (X,\tau) \to (Y,\sigma)$ be a $(g\alpha)^*$ - continuous map. Let V be a closed set of (Y,σ) .

Then $f^{-1}(V)$ is a $(g\alpha)^*$ - Closed since f is $(g\alpha)^*$ - continuous. By proposition 3.13 $f^{-1}(V)$ is a gsp- Closed and hence f is gsp - continuous. By proposition 3.15 $f^{-1}(V)$ is a gp- Closed and hence f is gp - continuous. By proposition 3.4 $f^{-1}(V)$ is a ga- Closed and hence f is ga - continuous. By proposition 3.8 $f^{-1}(V)$ is a gs- Closed and hence f is gs - continuous. By proposition 3.10 $f^{-1}(V)$ is a α g- Closed and hence f is α g - continuous.

Converse of the above theorem is not true.

Example 5.5 $X = Y = \{a,b,c\}$ $\tau = \{\phi, X,\{a\},\{a,c\}\}, \sigma = \{\phi, Y,\{a\},\{b\},\{a,b\}\}\}$. Define $f: (X,\tau) \to (Y,\sigma)$ by, f(a) = a, f(b) = c, f(c) = b, $f^{-1}(\{b,c\}) = \{b,c\}$, $f^{-1}(\{b\}) = \{c\}$ and $f^{-1}(\{a,c\}) = \{a,b\}$ are gsp - closed in (X,τ) . $\therefore f^{-1}(V)$ are gsp - closed in (X,τ) for all closed sets V in Y. \therefore f is gsp - continuous, but since $f^{-1}(\{a,c\}) = \{a,b\}$ is not closed in (X,τ) , f is not continuous. \therefore A gsp - continuous map need not be continuous.

Example 5.6 $X = Y = \{a,b,c\}$ $\tau = \{\phi, X, \{c\}, \{b,c\}\}, \sigma = \{\phi,Y,\{a\},\{a,b\}\}\}$ Define $f: (X,\tau) \to (Y,\sigma)$ by f(a) = a, f(b) = a, f(c) = b. ϕ , Y, $\{b,c\}$ and $\{c\}$ are the closed subsets of Y. $f^{-1}(\{b,c\}) = \{a,b\}$ and $f^{-1}(\{c\}) = \{b\}$ are $(g\alpha)^*$ -closed in (X,τ) . \therefore f is $(g\alpha)^*$ -continuous. $f^{-1}(\{c\}) = \{b\}$ is not closed in X. \therefore f is not continuous. \therefore $A(g\alpha)^*$ -continuous map need not be continuous.

Example 5.7 $X = Y = \{a,b,c\} \ \tau = \{\phi, X,\{c\},\{b,c\}\}, \ \sigma = \{\phi, Y,\{a\},\{a,b\}\} \ \text{Define } f : (X,\tau) \ \to (Y,\sigma) \ \text{by } f (a) = c, \ f (b) = a, \ f (c) = b, \ f^{-1}(\{b,c\}) = \{a,c\} \ \text{is not } (g\alpha)^* - \text{closed in } (X,\tau).$ $\therefore f \text{ is not } (g\alpha)^* - \text{continuous.} \ f^{-1}(\{b,c\}) = \{a,c\} \text{ is gp - closed in } (X,\tau). \ f^{-1}(\{c\}) = \{b\} \text{ is gp - closed in } (X,\tau). \ \therefore f \text{ is gp - continuous.}$

∴ A gp - continuous map need not be $(g\alpha)^*$ - continuous.

Example 5.8 X = Y = {a,b,c} τ = { ϕ , X,{a},{b,c}}, σ = { ϕ , Y, {a,b}, {c}} Define f : (X, τ) \rightarrow (Y, σ) by f(a)= b, f(b)=c, f(c)=a, $f^{-1}(\{a,b\}) = \{a,c\}$ and $f^{-1}(\{c\}) = \{b\}$ are g α - closed in (X, τ). \therefore f is g α - continuous. $f^{-1}(\{a,b\}) = \{a,c\}$ is not (g α)*- closed. \therefore f is not (g α)*- continuous. \therefore A g α - continuous map need not be (g α)*- continuous.

Example 5.9 X = Y = {a,b,c} $\tau = \{\phi, X, \{a\}, \{a,c\}\}, \sigma = \{\phi, Y, \{a,b\}\}$ Define f : $(X,\tau) \rightarrow (Y,\sigma)$ by f (a) = c, f (b) = c, f (c) = a In example 3.9, $f^{-1}(\{c\}) = \{a,b\}$ is gs - closed in (X,τ) \therefore f is gs - continuous. $f^{-1}(\{c\}) = \{a,b\}$ is not $(g\alpha)^*$ - closed. \therefore f is not $(g\alpha)^*$ - continuous.

 \therefore A gs - continuous map need not be $(g\alpha)^*$ - continuous.

Theorem 5.10 Every $(g\alpha)^*$ - irresolute function is $(g\alpha)^*$ - continuous.

Proof: Let $f: (X,\tau) \to (Y,\sigma)$ be a $(g\alpha)^*$ - irresolute function. We have to prove that f is $(g\alpha)^*$ - continuous. Let V be a closed set in Y. Then V is $(g\alpha)^*$ - Closed in Y. Then $f^{-1}(V)$ is $(g\alpha)^*$ - closed in X, since f is $(g\alpha)^*$ - irresolute. \therefore f is $(g\alpha)^*$ - continuous. Converse is not true.

Example 5.11 Let $X = Y = \{a,b,c\}, \ \tau = \{\phi, X,\{a\},\{b\},\{a,b\}\{a,c\}\}, \ \sigma = \{\phi, Y, \{a,b\}\}\}$ Define $h : (X,\tau) \to (Y,\sigma)$ by h(a) = b, h(b) = c, h(c) = a. $\{b,c\}$ is $(g\alpha)^*$ - closed in Y but $h^{-1}(\{b,c\}) = (\{a,b\})$ is not $(g\alpha)^*$ - closed in X. \therefore h is not $(g\alpha)^*$ - irresolute.

 ϕ , Y, {c} are the closed subsets of Y. $h^{-1}(\{c\}) = (\{b\})$ is $(g\alpha)^*$ -closed in X. \therefore f is $(g\alpha)^*$ -continuous. \therefore A $(g\alpha)^*$ -continuous map need not be $(g\alpha)^*$ -irresolute function.

Theorem 5.12 Every continuous function $f:(X,\tau)\to (Y,\sigma)$ is $(g\alpha)^*$ - irresolute, if the space (Y,σ) is a $T_{q\alpha}^*$ - space.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be continuous. Let V be a $(g\alpha)^*$ - closed set in Y. Since Y is a $T_{g\alpha}^*$ - space, V is closed. Since f is continuous, $f^{-1}(V)$ is closed in X. Since every closed set is $(g\alpha)^*$ - closed, $f^{-1}(V)$ is $(g\alpha)^*$ - closed. \therefore f is $(g\alpha)^*$ - irresolute.

Theorem 5.13 Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ be any two functions. Then,

- 1) $g \circ f$ is $(g\alpha)^*$ continuous if g is continuous and f is $(g\alpha)^*$ continuous.
- 2) $g \circ f$ is $(g\alpha)^*$ irresolute if both f and g are $(g\alpha)^*$ irresolute.
- 3) $g \circ f$ is $(g\alpha)^*$ continuous if g is $(g\alpha)^*$ continuous and f is $(g\alpha)^*$ irresolute.

Proof: 1) Let V be a closed set in Z. Since g is continuous $g^{-1}(V)$ is closed in Y.

 $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $(g\alpha)^*$ - closed in X, since f is $(g\alpha)^*$ - continuous... $g \circ f$ is $(g\alpha)^*$ - continuous.

le online on http://www.rspublication.com/ijca/ijca_index.htm ISSN: 2250-1797

2) Let V be a $(g\alpha)^*$ - closed set in Z. Then $g^{-1}(V)$ is $(g\alpha)^*$ - closed set in Y, since g is

Issue 3, Volume 3 (May-June 2013)

- $(g\alpha)^*$ irresolute. $f^{-l}(g^{-l}(V)) = (g \circ f)^{-l}(V)$ is $(g\alpha)^*$ closed, since f is $(g\alpha)^*$ irresolute. $\therefore g \circ f$ is $(g\alpha)^*$ irresolute.
- 3) Let V be a closed set in Z. Then $g^{-1}(V)$ is $(g\alpha)^*$ closed set in Y. $\therefore f^{-1}(g^{-1}(V)) = (g\circ f)^{-1}(V)$ is $(g\alpha)^*$ closed in X, since f is $(g\alpha)^*$ irresolute. $\therefore g\circ f$ is $(g\alpha)^*$ continuous.

Theorem 5.14 Let $f:(X,\tau)\to (Y,\sigma)$ be a $(g\alpha)^*$ - continuous map. If (X,τ) is a $T_{g\alpha}^*$ - space then f is continuous.

Proof: Let V be a closed set in Y. Then $f^{-1}(V)$ is $(g\alpha)^*$ -closed in X, since f is $(g\alpha)^*$ -continuous map. Since the space is $T_{g\alpha}^*$ -space, $f^{-1}(V)$ is closed. \therefore f is continuous

Theorem 5.15 Let $f: (X,\tau) \to (Y,\sigma)$ be a $(g\alpha)^*$ - continuous map. If (X,τ) is a $T^{\alpha}_{(g\alpha)^*}$ - space then f is α - continuous.

Proof: Let V be a closed set in Y. We have to prove that $f^{-1}(V)$ is α - closed in X. Now $f^{-1}(V)$ is $(g\alpha)^*$ - closed, since f is $(g\alpha)^*$ - continuous map. Since the space is $T^{\alpha}_{(g\alpha)^*}$ - space, every $(g\alpha)^*$ - closed set is α - closed. $\therefore f^{-1}(V)$ is α - closed and hence f is α - continuous.

Theorem 5.16 Let $f:(X,\tau)\to (Y,\sigma)$ be a $g\alpha$ - continuous map. If (X,τ) is $T_{g\alpha}^{\alpha}$ - space, then f is α -continuous.

Proof: Let V be a closed set in Y. Then $f^{-1}(V)$ is $g\alpha$ -closed in X. Since the space is $T_{g\alpha}^{\alpha}$ - space, every $g\alpha$ - closed set is α - closed. \therefore $f^{-1}(V)$ is α - closed and hence f is α - continuous.

Theorem 5.17 Let $f:(X,\tau)\to (Y,\sigma)$ be a $g\alpha$ - continuous map. If (X,τ) is ${}^*T_{g\alpha}$ - space, then f is $(g\alpha)^*$ -continuous.

Proof: Let V be a closed set in Y. Then $f^{-1}(V)$ is $g\alpha$ -closed in X, since f is $g\alpha$ -continuous. Since X is ${}^*T_{g\alpha}$ -space, every $g\alpha$ -closed set is $(g\alpha)^*$ -closed set.: $f^{-1}(V)$ is $(g\alpha)^*$ -closed and hence f is $(g\alpha)^*$ -continuous.

Theorem 5.18 Let $f:(X,\tau)\to (Y,\sigma)$ be a $g\alpha$ - continuous map. If (X,τ) is a $T_{g\alpha}$ - space, then f is $(g\alpha)^*$ -continuous.

Proof: Let V be a closed set in Y. $\therefore f^{-1}(V)$ is $g\alpha$ - closed in X. Since X is $T_{g\alpha}$ - space, $f^{-1}(V)$ is closed. $\therefore f^{-1}(V)$ is $(g\alpha)^*$ - closed. Hence f is $(g\alpha)^*$ - continuous.

REFERENCES:

- [1] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1) (1986), 24 32.
- [2] I. Arokiarani, K. Balachandran and J. Dontchev, Some characterizations of gp irresolute and gp continuous maps between topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A.Math., 20 (1999), 93 -104.
- [3] S.P Arya and T. Nour, Characterizations of s normal spaces, Indian J. Pure. Appl. Math., 21 (8) (1990), 717 719.
- [4] R. Devi, K. Balachandran and H. Maki Generalized α closed maps and α generalized closed maps, Indian J. Pure. Appl. Math., 29 (1) (1998), 37 49.
- [5] R. Devi, H. Maki and K. Balachandran, Semi generalized closed maps and generalized closed maps, Mem. Fac. Sci. Kochi.Univ. Ser.A.Math., 14 (1993), 41 54.
- [6] R. Devi, H. Maki and K. Balachandran, Semi generalized homeomorphisms and generalized semi homeomorphisms in topological spaces, Indian J. Pure. Appl. Math., 26 (3) (1995), 271-284.
- [7] J. Dontchev, On generalizing semi preopen sets, Mem. Fac. Sci. Kochi Ser. A, Math., 16 (1995), 35 48.
- [8] Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28 (3) (1997), 351 360.
- [9] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (2) (1970), 89 96.
- [10] N. Levine, semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [11] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α closed sets and α generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15 (1994), 51-63.

- [12] H. Maki, R. Devi and K. Balachandran, Generalized α closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42 (1993), 13 21.
- [13] H. Maki, J. Umehara and T. Noiri, Every topological space is pre $-T_{\frac{1}{2}}$, Mem. Fac. Sci. Koch. Univ. Ser. A, Math., 17 (1996), 33 42.
- [14] A.S. Mashhour, M.E.Abd El Monsef and S.N.El Deeb, On pre continuous and weak pre continuous mappings, Proc. Math. And Phys. Soc. Egypt, 53 (1982), 47 53.
- [15] A.S. Mashhour, I.A. Hasanein and S.N.El Deeb, α continuous and α open mapping., Acta Math. Hung., 41 (3-4) (1983), 213 218.
- [16] O. Njastad, on some classes of nearly open sets, Pacific J. Math., 15(1965), 961 970.
- [17] N. Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J.,33 (2) (1993), 211 219.
- [18] Pauline Mary Helen.M, Ponnuthai Selvarani and Veronica Vijayan, g^{**} closed sets in topological spaces, Internal Journal of Mathematical Archive 3 [5], 2012, 1 15
- [19] M.K.R.S. Veerakumar, Between closed sets and g closed sets, Mem. Fac. Sci. Koch. Univ. Ser. A, Math., 17 (1996), 33 42.
