"Strongly g, g*, g** Closed Sets In Bitopological Space"

Veronica Vijayan

Issue 3, Volume 3 (May-June 2013)

ISSN: 2250-1797

Associate professor, Nirmala college for women, Coimbatore, Tamil Nadu

B.Thenmozhi Nirmala college for women, Coimbatore, Tamil Nadu

Abstract

In this paper we introduce strongly g, g*, g** closed sets in bitopological spaces. Properties of these sets are investigated and we introduce six new spaces namely (i, j)- $T_{\frac{1}{2}s}$ space, (i, j)- $T_{\frac{1}{2}s}$ space.

Key words: (i, j)- strongly g closed sets, (i, j)- strongly g* closed sets and (i, j)- strongly g** closed sets.

1.INTRODUCTION

A triple (X, τ_1, τ_2) where X is a non-empty set and τ_1, τ_2 are topologies in X is called a bitopological space and Kelley[5] initiated the study of such spaces. In 1985, Fukutake[2] introduced the concepts of g-closed sets in bitopological spaces. M.K.R.S. Veerakumar[11] introduced and studied the concepts of g*-closed sets and g*-continuity in topological spaces. Sheik John. M and sundaram. P [10] introduced and studied the concepts of g*-closed sets in bitopological spaces in 2002. The purpose of this paper is to introduce the concept of strongly g, g*, g** closed sets in bitopological spaces. Six new spaces namely, (i, j) - $T_{1/2}$ space, (i, j) - $T_{1/2}$ space are introduced and some of their properties are investigated.

2.PRELIMINARIES

Throughtout this paper (X,τ) represents non-empty topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ) , cl(A) and int(A) denote the closure and the interior of A respectively.

Definition2.1: A subset A of a topological space (X, τ) is said to be

- 1. a semi open set [6] if $A \subseteq cl(\text{int}(A))$ and semi closed set if $\text{int}(clA) \subseteq A$.
- 2. a regular open set [6] if A = int(cl(A)).
- 3. a generalized closed set (briefly g-closed) [7] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ) .
- 4. a generalized star closed set (briefly g*-closed set) [12] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and is g open in (X, τ) .
- 5. a generalized star star closed set (briefly g^{**} -closed) [8] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is g^{*} open in (X, τ) .

- 6. a strongly generalized closed set (briefly sg-closed) [9] if $cl(int(A)) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ) .
- 7. a strongly generalized star closed set (briefly sg*-closed) [13] if $cl(\text{int}(A) \subseteq U)$, whenever $A \subseteq U$ and U is g open in (X, τ) .
- 8. a strongly generalized star star closed set (briefly sg**-closed) [9] if $cl(\text{int}(A) \subseteq U)$, whenever $A \subset U$ and U is g open in (X, τ) .

Definition 2.2: A subset A of a bitopological space (X, τ_1, τ_2) is called

- 1. an (i, j)-g closed [2] if $\tau_i cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in τ_i .
- 2. an (i, j)-g* closed [10] if $\tau_i cl(A) \subseteq U$, whenever $A \subseteq U$ and U is g open in τ_i .
- 3. an (i, j)-g**closed [8] if $\tau_i cl(A) \subseteq U$, whenever $A \subseteq U$ and U is g* open in τ_i .
- 4. an (i, j)-rg closed [1] if $\tau_i cl(A) \subseteq U$, whenever $A \subseteq U$ and U is regular open in τ_i .

Definition 2.3: A bitopological space (X, τ_1, τ_2) is called

- 1. an (i, j)- T_{χ} space [2] if every (i, j)-g closed set is τ_{j} -closed.
- 2. an (i, j)- T_{y} *space [10] if every (i, j)-g* closed set is τ_{j} -closed.
- 3. an (i, j)- $T_{\frac{1}{2}}$ **space [8] if every (i, j)-g** closed set is τ_{j} -closed.

3. (i, j)-strongly g, g*, g** closed sets

In this section we introduce the concept of (i, j)-strongly g, g*, g** closed sets in bitopological spaces.

Definition 3.1: A subset A of a bitopological space (X, τ_1, τ_2) is called (i, j)-strongly g closed if $\tau_i - cl(\text{int}(A) \subseteq U$, whenever $A \subseteq U$ and U is open in τ_i .

Definition 3.2: A subset A of a bitopological space (X, τ_1, τ_2) is called (i, j)-strongly g^* closed if $\tau_i - cl(\text{int}(A) \subseteq U$, whenever $A \subseteq U$ and U is g open in τ_i .

Definition 3.3: A subset A of a bitopological space (X, τ_1, τ_2) is called (i, j)-strongly g^{**} closed if $\tau_i - cl(\text{int}(A) \subseteq U$, whenever $A \subseteq U$ and U is g^* open in τ_i .

Remark 3.4:

- (i) By setting $\tau_1 = \tau_2$ in definition (4.1), a (i, j)-strongly g closed set is a strongly g closed set.
- (ii) By setting $\tau_1 = \tau_2$ in definition (4,2), a (i, j)-strongly g^* closed set is a strongly g^* closed set.
- (iii) By setting $\tau_1 = \tau_2$ in definition (4.3), a (i, j)-strongly g^{**} closed set is a strongly g^{**} closed set.

Theorem 3.5: Every τ_i -closed set is (i, j)-strongly g closed.

Proof: let A be τ_j -closed. Since A is τ_j -closed, $\tau_j - cl(A) = A$. let $A \subseteq U$ and U be τ_i -open. $\tau_j - cl(\operatorname{int}(A)) \subseteq \tau_j - cl(A) = A \subseteq U$. Therefore A is (i, j)-strongly g closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.6: Let $X = \{a, b, c\}$, $\tau_1 = \{\Phi, \{c\}, \{a, c\}, X\}$ and $\tau_2 = \{\Phi, \{a\}, X\}$. Then the set $A = \{b\}$ is (i, j)-strongly g closed but not τ_j -closed in (X, τ_1, τ_2) .

Theorem 3.7: Every τ_i -closed set is (i, j)-strongly g*closed.

proof follows from the definition.

The converse of the above theorem is not true as seen in the following example.

Example 3.8: In example (3.6), A={a, b} is (i, j)-strongly g^* closed but not τ_j -closed.

Theorem 3.9: Every τ_i -closed set is (i, j)-strongly g^{**} closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.10: in example (3.6), $A = \{b\}$ is (i, j)-strongly g^* -closed but not τ_i -closed.

Theorem 3.11: Every (i, j)-g closed set is (i, j)-strongly g closed.

Proof: Let A be (i, j)-g closed. Let $A \subseteq U$ and U be τ_i -open. Since A is (i, j)-g closed,

 $\tau_i - cl(A) \subseteq U :: \tau_i - cl(\operatorname{int}(A)) \subseteq \tau_i - cl(A) \subseteq U$. Hence A is (i, j)-strongly g closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.12: Let $X = \{a, b, c\}$, $\tau_1 = \{\Phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\tau_2 = \{\Phi, \{a\}, \{a, b\}, X\}$. Then the set $A = \{b\}$ is (i, j)-strongly g closed but not (i, j)-g closed.

Theorem 3.13: Every (i, j)-g* closed set is (i, j)-strongly g* closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.14: In example (3.6), $A = \{c\}$ is (i, j)-strongly g^* closed but not a (i, j)- g^* closed set.

Theorem 3.15: Every (i, j)-g** closed set is (i, j)-strongly g** closed. proof follows from the definition.

The converse of the above theorem is not true as seen in the following example.

Example 3.16: let $X = \{a, b, c\}$, $\tau_1 = \{\Phi, \{b\}, X\}$ and $\tau_2 = \{\Phi, \{c\}, X\}$. Then $A = \{b\}$ is (i, j)-strongly g^{**} closed but not (i, j)- g^{**} closed.

Theorem 3.17: Every (i, j)-strongly g* closed set is (i, j)-strongly g closed.

Proof: Let A be (i, j)-strongly g^* closed. Let $A \subseteq U$ and U be τ_i -open. Then $A \subseteq U$ and U is

 au_i -g open. Since A is (i, j)-strongly g* closed, $au_j - cl(\operatorname{int}(A)) \subseteq U$. Therefore A is (i, j)-strongly g closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.18: let $X = \{a, b, c\}$, $\tau_1 = \{\Phi, \{a\}, X\}$ and $\tau_2 = \{\Phi, \{a\}, \{a, b\}, X\}$. Then $A = \{a, c\}$ is (i, j)-strongly g closed but not (i, j)-strongly g^* closed.

Theorem 3.19: Every (i, j)-strongly g^{**} closed set is (i, j)-strongly g closed. proof follows from the definition.

Theorem 3.20: Every (i, j)-strongly g* closed set is (i, j)-strongly g** closed.

Proof: Let A be (i, j)-strongly g*closed set. Let $A \subseteq U$ and U is τ_i -g*open. Then $A \subseteq U$ and U is τ_i -g open. Since A is (i, j)-strongly g*closed, τ_j - $cl(\operatorname{int}(A)) \subseteq U$. Therefore A is (i, j)-strongly g**closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.21: Let $X = \{a, b, c\}$, $\tau_1 = \{\Phi, \{c\}, X\}$ and $\tau_2 = \{\Phi, \{a\}, X\}$. Then $A = \{a\}$ is (i, j)-strongly g^* -closed but not (i, j)-strongly g^* -closed set.

Theorem 3.22: If A is both τ_i -open and (i, j)-strongly g*closed in (X, τ_1, τ_2) , then it is (i, j)-regular closed in (X, τ_1, τ_2) .

Proof: Let A be both τ_i -open and (i, j)-strongly g*closed. Since A is open, τ_j - int(A) = A. A is τ_i -open \Rightarrow A is τ_i -open \Rightarrow Copen. (i.e.,) $A \subseteq A$, where A is τ_i -g open. Since A is (i, j)-strongly g* closed, τ_i -cl(int(A)) \subseteq A----- (1).

 $A \subseteq \tau_j - cl(A) = \tau_j - cl(\operatorname{int}(A)) \dots A \subseteq \tau_j - cl(\operatorname{int}(A)) - \cdots (2). \text{ By (1) & (2)}$

 $A = \tau_i - cl(\text{int}(A))$ and hence A is regular closed in (X, τ_1, τ_2) .

Theorem 3.23: If a subset A of a bitopological space (X, τ_1, τ_2) is both (i, j)-strongly g^* closed and τ_j -semi open, then it is (i, j)- g^* closed.

Proof: Let A be both (i, j)-strongly g^* closed and τ_i -semi open. Let $A \subseteq U$ and U be τ_i -g open.

Since A is (i, j)-strongly g* closed, $\tau_j - cl(\operatorname{int}(A)) \subseteq U$. Since A is τ_j -semi open,

 $A \subseteq \tau_i - cl(\operatorname{int}(A))$.

Then, $\tau_i - cl(A) \subseteq \tau_i - cl(cl(int(A))) = \tau_i - cl(int(A)) \subseteq U$. Therefore A is (i, j)-g* closed.

Theorem 3.24: If A is both (i, j)-strongly g closed and τ_i -open, then A is (i, j)-rg closed.

Proof: Let A be (i, j)-strongly g closed. Let $A \subseteq U$ and U be

 τ_i -regular open $\Rightarrow A \subseteq U$ and U is τ_i -open. Since A is (i, j)-strongly g closed,

 $\tau_j - cl(\text{int}(A)) \subseteq U \cdot \tau_j - cl(A) = \tau_j cl(\text{int}(A)) \subseteq U$. Therefore A is (i, j)-rg closed.

Theorem 3.25: Every (i, j)-g* closed set is (i, j)-strongly g closed.

Proof: Let A be (i, j)-g* closed. Let $A \subseteq U$ and U is τ_i -open. Then $A \subseteq U$ and U is τ_i -g open.

Since A is (i, j)-g* closed, $\tau_j - cl(A) \subseteq U$. $\tau_j - cl(\operatorname{int}(A)) \subseteq \tau_j - cl(A) \subseteq U$. Therefore A is (i, j)-strongly g closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.26: Let $X = \{a, b, c\}$, $\tau_1 = \{\Phi, \{a\}, X\}$ and $\tau_2 = \{\Phi, \{c\}, X\}$. Then $A = \{b\}$ is (i, j)-strongly g closed but not (i, j)-g* closed.

Theorem 3.27: Every (i, j)-g* closed set is (i, j)-strongly g** closed. proof follows from the definition.

The converse of the above theorem is not true as seen in the following example.

Example 3.28: let $X = \{a, b, c\}$, $\tau_1 = \{\Phi, \{b\}, X\}$ and $\tau_2 = \{\Phi, \{a\}, X\}$. Then $A = \{b\}$ is (i, j)-strongly g^{**} closed but not (i, j)- g^* closed.

Theorem 3.29: Every (i, j)-g** closed set is (i, j)-strongly g closed. proof follows from the definition.

The converse of the above theorem is not true as seen in the following example.

Example 3.30: Let $X = \{a, b, c\}$, $\tau_1 = \{\Phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\tau_2 = \{\Phi, \{a\}, X\}$. Then $A = \{b\}$ is (i, j)-strongly g closed but not (i, j)-g** closed.

The above results can be represented in the following figure.

where $A \rightarrow B$ represents A implies B but not conversely.

4. Applications of (i, j)-strongly g, g*, g** closed sets.

In this section we introduce six new spaces namely (i, j) - $T_{\frac{1}{2}s}$ space, (i, j) -

Definition 4.1: A bitopological space (X, τ_1, τ_2) is said to be an (i, j)- $T_{1/2}s$ space if every (i, j)-strongly g closed set is τ_j -closed.

Definition 4.2: A bitopological space (X, τ_1, τ_2) is said to be an (i, j)- $T_{\frac{1}{2}s}^*$ space if every (i, j)-strongly g*closed set is τ_j -closed.

Definition 4.3: A bitopological space (X, τ_1, τ_2) is said to be an (i, j)- $T_{\frac{1}{2}s}^{**}$ space if every (i, j)-strongly g^{**} closed set is τ_i -closed.

Definition 4.4: A bitopological space (X, τ_1, τ_2) is said to be an (i, j)- $^*T_{\frac{1}{2}s}$ space if every (i, j)-strongly g closed set is (i, j)-strongly g^* closed.

Definition 4.5: A bitopological space (X, τ_1, τ_2) is said to be an (i, j)- ** $T_{\frac{1}{2}s}$ space if every (i, j)-strongly g closed set is (i, j)-strongly g ** closed.

Definition 4.6: A bitopological space (X, τ_1, τ_2) is said to be an (i, j)- ${}^*T_{\frac{1}{2}s}^*$ space if every (i, j)-strongly g^* closed set is (i, j)-strongly g^* closed.

Theorem 4.7: Every (i, j)- T_{y_s} space is a (i, j)- T_y space.

Proof: Let (X, τ_1, τ_2) be a (i, j)- $T_{\frac{1}{2}s}$ space. Let A be a (i, j)-g closed set. Then A is (i, j)-strongly g closed. \therefore A is τ_j -closed since (X, τ_1, τ_2) is a (i, j)- $T_{\frac{1}{2}s}$ space. Therefore (X, τ_1, τ_2) is a (i, j)- $T_{\frac{1}{2}s}$ space.

Theorem 4.8: Every (i, j)- $T_{\frac{1}{2}s}$ space is a (i, j)- $T_{\frac{1}{2}s}^*$ space.

Proof: Let (X, τ_1, τ_2) be a (i, j)- $T_{\gamma_2 s}$ space. Let A be a (i, j)-strongly g*closed set. Then A is (i, j)-strongly g closed & hence A is τ_j closed since (X, τ_1, τ_2) is a (i, j)- $T_{\gamma_2 s}$ space. Therefore (X, τ_1, τ_2) is a (i, j)- $T_{\gamma_3 s}$ space.

Theorem 4.9: Every (i, j)- $T_{\gamma s}^{**}$ space is a (i, j)- $T_{\gamma s}^{*}$ space.

proof: Let (X, τ_1, τ_2) be a (i, j)- $T_{\gamma_2 s}^{**}$ space. Let A be a (i, j)-strongly g^* closed set. Then A is (i, j)-strongly g^* closed. \therefore A is τ_j -closed since (X, τ_1, τ_2) is a (i, j)- $T_{\gamma_2 s}^{**}$ space. Therefore every (i, j)-strongly g^* closed set is τ_j -closed & hence (X, τ_1, τ_2) is a (i, j)- $T_{\gamma_2 s}^{**}$ space.

Theorem 4.10: Every (i, j)- T_{γ_s} space is a (i, j)- $T_{\gamma_s}^{**}$ space.

Proof: Let (X, τ_1, τ_2) be a (i, j)- $T_{\gamma_2 s}$ space. Let A be a (i, j)-strongly g^* -closed set. Then A is (i, j)-strongly g closed & hence A is τ_j -closed since (X, τ_1, τ_2) is a (i, j)- $T_{\gamma_2 s}$ space. \therefore Every (i, j)-strongly g^* -closed set is τ_j -closed. Therefore (X, τ_1, τ_2) is a (i, j)- $T_{\gamma_2 s}$ -space.

Theorem 4.11: Every (i, j)- T_{γ_s} space is (i, j)- $T_{\gamma_s}^*$ space.

Proof: Let (X, τ_1, τ_2) be a (i, j)- $T_{\frac{1}{2}s}$ space. Let A be a (i, j)-g* closed set. Then A is a (i, j)-strongly g closed. Then A is τ_j -closed since (X, τ_1, τ_2) is a (i, j)- $T_{\frac{1}{2}s}$ space. Therefore (X, τ_1, τ_2) is a (i, j)- $T_{\frac{1}{2}s}$ space.

The converse of the above theorem is not true as seen in the following example.

Example 4.12: Let $\mathbf{x} = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, $\tau_1 = \{\Phi, \{\mathbf{a}\}, X\}$ and $\tau_2 = \{\Phi, \{\mathbf{a}\}, \{\mathbf{b}, \mathbf{c}\}, X\}$. Then $\mathbf{A} = \{\mathbf{b}\}$ is (i, j)-strongly g closed but not τ_j -closed. $\therefore (X, \tau_1, \tau_2)$ is not a (i, j)- $T_{\frac{\gamma}{2}s}$ space. Here all the (i, j)- g^* closed sets are τ_j -closed. Therefore (X, τ_1, τ_2) is a $T_{\frac{\gamma}{2}}$ space & hence every (i, j)- $T_{\frac{\gamma}{2}s}$ space need not be a (i, j)- $T_{\frac{\gamma}{2}s}$ space.

Theorem 4.13: Every (i, j)- $T_{y_s}^*$ space is a (i, j)- $T_{y_s}^*$ space.

The converse of the above theorem is not true as seen in the following example.

Example 4.14: In example (4.12), A= {b} is (i, j)-strongly g^* closed but not τ_j -closed. \therefore

 (X, au_1, au_2) is not a (i, j)- $T_{\frac{\gamma}{2}s}^*$ space. All the (i, j)-g* closed sets are au_j -closed and hence (X, au_1, au_2) is (i, j)- $T_{\frac{\gamma}{2}s}^*$ space. Therefore (i, j)- $T_{\frac{\gamma}{2}s}^*$ space need not be a (i, j)- $T_{\frac{\gamma}{2}s}^*$ space.

Theorem 4.15: Every (i, j)- $T_{\frac{1}{2}s}^{**}$ space is (i, j)- $T_{\frac{1}{2}s}^{*}$ space.

proof follows from the definition.

The converse of the above is not true as seen in the example.

Example 4.16: In example (4.12), A= {b} is (i, j)-strongly g**closed but not τ_j -closed. Therefore (X, τ_1, τ_2) is not a (i, j)- $T_{\frac{N}{2}}^{**}$ space. (i, j)-g* closed sets are Φ , {b, c}, X and all these sets are τ_j -closed and hence (X, τ_1, τ_2) is (i, j)- $T_{\frac{N}{2}}^{*}$ space. Therefore every (i, j)- $T_{\frac{N}{2}}^{*}$ space need not be a (i, j)- $T_{\frac{N}{2}}^{*}$ space.

Theorem 4.17: Every (i, j)- ${}^*T_{1/2,s}$ space is (i, j)- ${}^{**}T_{1/2,s}$ space.

Proof: Let (X, τ_1, τ_2) be (i, j)- ${}^*T_{\frac{1}{2}s}$ space. Since (X, τ_1, τ_2) is a (i, j)- ${}^*T_{\frac{1}{2}s}$ space, every (i, j)- strongly g closed set is (i, j)-strongly g* closed set is (i, j)-strongly g**closed. Therefore every (i, j)-strongly g closed set is (i, j)-strongly g**closed. $\therefore (X, \tau_1, \tau_2)$ is a (i, j)- ${}^{**}T_{\frac{1}{2}s}$ space.

The converse of the above theorem is not true as seen in the following example.

Example 4.18: Let X={a, b, c}, τ_1 ={ Φ , {a}, X} and τ_2 ={ Φ , {a}, {a, b}, X}. Then A={b} is (i, j)-strongly g closed but not τ_j -closed. (i,e.,) (i, j)-strongly g closed set is not a (i, j)-strongly g* closed. Therefore (X, τ_1, τ_2) is not a (i, j)- ${}^*T_{\frac{1}{2}}$ space. But every (i, j)-strongly g closed set is (i, j)-strongly g**closed. Therefore (X, τ_1, τ_2) is a (i, j)- ${}^*T_{\frac{1}{2}s}$ space. Therefore every (i, j)- ${}^*T_{\frac{1}{2}s}$ space need not be (i, j)- ${}^*T_{\frac{1}{2}s}$ space.

Theorem 4.19: Every (i, j)- $T_{\frac{1}{2}s}$ space is a (i, j)- $T_{\frac{1}{2}s}$ space.

proof follows from the definition.

The converse of the above theorem is not true as seen in the following example.

Example 4.20: In example (4.14) we have proved that the (i, j)-strongly g*closed sets are all the subsets of X and in example (4.12) we have proved that all these sets are (i, j)-strongly g closed. Therefore every (i, j)-strongly g closed sets are (i, j)-strongly g* closed. $\therefore (X, \tau_1, \tau_2)$ is a (i, j)- ${}^*T_{\gamma_2 s}$

space. In the same example we have proved that (X, τ_1, τ_2) is not a $T_{1/2}s$ space. Therefore every $(i, j)^*T_{1/2}s$ space need not be a $(i, j)^*T_{1/2}s$ space.

Theorem 4.21: Every (i, j)- $T_{y,s}^{**}$ space is a (i, j)- ${}^{*}T_{y,s}^{*}$ space.

The converse of the above theorem is not true as seen in the following example.

Example 4.22: In example (4.16) we have proved that (X, τ_1, τ_2) is not a (i, j)- $T_{\frac{1}{2}s}^{**}$ space. In the same example we have proved that all the (i, j)-strongly g**closed sets are (i, j)-strongly g*closed. Therefore (X, τ_1, τ_2) is a (i, j)- ${}^*T_{\frac{1}{2}s}^{**}$ space & hence a (i, j) ${}^*T_{\frac{1}{2}s}^{**}$ space need not be a (i, j)- $T_{\frac{1}{2}s}^{**}$ space.

Theorem 4.23: Every space (X, τ_1, τ_2) which is both a (i, j)- ${}^*T_{\frac{1}{2}s}$ space and a (i, j)- $T_{\frac{1}{2}s}$ space is a (i, j)- $T_{\frac{1}{2}s}$ space.

Proof: Let (X, τ_1, τ_2) be both (i, j)- ${}^*T_{\gamma_2 s}^*$ space and (i, j)- $T_{\gamma_2 s}^*$ space. Let A be (i, j)-strongly g**closed. Then A is (i, j)-strongly g*closed since (X, τ_1, τ_2) is a (i, j)- ${}^*T_{\gamma_2 s}^*$ space and A is τ_j -closed since (X, τ_1, τ_2) is (i, j)- $T_{\gamma_2 s}^*$ space. \therefore A is τ_j -closed. Therefore (X, τ_1, τ_2) is (i, j)- $T_{\gamma_2 s}^*$ space.

The above results can be represented in the following figure.

Bibliography:

- [1] I. Arockiarani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D. Thesis, Bharathiar Univ., Coimbatore, 1997.
- [2] T. Fukutake, Bull, Fukuoka Univ. Ed. Part III, 35(1985), 19-28.
- [3] T. Fukutake, P. Sundaram and N. Nagaveni, Bull, Fukuoka Univ. Ed. Part III, 48(1999), 33-40.
- [4] T. Fukutake, P. Sundaram, M. Sheik John, Bull, Fukuoka Univ. Ed. Part III, 51(2002),1-9.
- [5] J.C. Kelley, Proc., London Math. Sci. 13(1963), 71-89.
- [6] N. Levine, Amer. Math. Monthly, 70(1963), 36-41.
- [7] N.Levine, Rend. Cire. Math. Palermo, 19(1970), 89-96.
- [8] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, g**-closed sets in Bitopological spaces IJMA-3(7)-July 2012, page 2728-2734.
- [9] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, Mrs. Punitha Tharani, Strongly g-closed sets & Strongly g**-closed sets, IJMA.
- [10] M. Sheik John and P. Sundaram, Indian J. Pure Appl. Math. 35(1)(2004), 71-80.
- [11] M.Stone, Trans. Amer. Math. Soc. 41(1937)374-481.
- [12] M.K.R.S. Veera Kumar, Mem. Fac. Sci. Kochi Univ. (Math.), 21(2000), 1-19.
- [13] R.Parimelazhagan and V.Subramania Pillai, Strongly g*closed sets in topological space, IJMA vol.6, (30)(2012), 1481-1489.