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Abstract
In this paper we introduce strongly g, g*, g** closed sets in bitopological spaces.
Properties of these sets are investigated and we introduce six new spaces namely (i, j)- Ty,

space, (i, j)- T, space, (i, j)- T, space, (i, })- T, space, (i, j)- “T,,space, (i, j)- ‘T,

space.
Key words: (i, j)- strongly g closed sets, (i, j)- strongly g* closed sets and (i, j)- strongly g**
closed sets.

1.INTRODUCTION

Atriple (X,z,,7,) where X is a non-empty set and 7,7, are topologies in X is called a

bitopological space and Kelley[5] initiated the study of such spaces. In 1985, Fukutake[2] introduced
the concepts of g-closed sets in bitopological spaces. M.K.R.S. Veerakumar[11] introduced and
studied the concepts of g*-closed sets and g*-continuity in topological spaces. Sheik John. M and
sundaram. P [10] introduced and studied the concepts of g*-closed sets in bitopological spaces in
2002. The purpose of this paper is to introduce the concept of strongly g, g*, g** closed sets in

bitopological spaces. Six new spaces namely, (i, j) - T%S space, (i, j) - T%s* space, (i, j) - T%SH space,

@,j - *T%s space, (i, j) - **T%S & (i, ]) - *T%S*space in bitopological spaces are introduced and some
of their properties are investigated.

2.PRELIMINARIES

Throughtout this paper (X ,7) represents non-empty topological space on which no
separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X ,1),
cl(A) and int(A) denote the closure and the interior of A respectively.

Definition2.1: A subset A of a topological space (X, 7)is said to be

1. asemiopenset [6] if Accl(int(A))and semi closed set if int(clA)) < A.

2. aregular open set [6] if A=int(cl(A)).

3. ageneralized closed set (briefly g-closed) [7] if cl(A) —U , whenever AU and U is open
in (X,7).

4. ageneralized star closed set (briefly g*-closed set) [12] if cl(A) cU , whenever Ac U and is
gopenin (X,7).

5. ageneralized star star closed set (briefly g**-closed) [8] if cl(A) c U, whenever Ac U and
Uis g*openin (X,7).
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6. astrongly generalized closed set (briefly sg-closed) [9] if cl(int(A)) cU , whenever Ac U
and U is openin (X,7).

7. astrongly generalized star closed set (briefly sg*-closed) [13] if cl(int(A) cU , whenever
AcUandUisgopenin (X,7).

8. astrongly generalized star star closed set (briefly sg**-closed) [9] if cl(int(A) c U,
whenever Ac U and U isgopenin (X,7).

Definition 2.2: A subset A of a bitopological space (X,z,,7,) is called

1. an(i, j)-gclosed [2] if z; —cl(A) cU , whenever AcU and U is openin ;.

2. an (i, j)-g* closed [10] if z; —cl(A) = U , whenever Ac U and Uis g openin z;.

3. an (i, j)-g**closed [8] if 7; —cl(A) cU , whenever AcU and U is g* openin z; .

4. an (i, j)-rg closed [1] if z; —cl(A) U , whenever Ac U and U is regular open in z;.

Definition 2.3: A bitopological space (X,z,,7,) is called

1. an(i,))- T% space [2] if every (i, j)-g closed set is 7, -closed.

2. an(i,j)- T}/2 *space [10] if every (i, j)-g* closed set is 7 -closed.

3. an(i,j)- T}/2 **space [8] if every (i, j)-g** closed set is 7 -closed.

3. (i, j)-strongly g, g*, g** closed sets
In this section we introduce the concept of (i, j)-strongly g, g*, g** closed sets in bitopological spaces.

Definition 3.1: A subset A of a bitopological space (X,7,,7,) is called (i, j)-strongly g closed if

v; —cl(int(A) cU , whenever AcU and Uisopenint;.

Definition 3.2: A subset A of a bitopological space (X,z,,7,) is called (i, j)-strongly g* closed if
r; —cl(int(A) cU , whenever Ac U and Uisgopenin 7; .

Definition 3.3: A subset A of a bitopological space (X,z,,7,) is called (i, j)-strongly g** closed if
7; —cl(int(A) c U, whenever Ac U and Uisg* openin 7; .

Remark 3.4:

(i) Bysetting 7, =z, in definition (4.1), a (i, j)-strongly g closed set is a strongly g closed set.
(i) By setting 7, =z, in definition (4,2), a (i, j)-strongly g* closed set is a strongly g* closed set.

(iii) By setting z, =z, in definition (4.3), a (i, j)-strongly g** closed set is a strongly g** closed set.

Theorem 3.5: Every 7 -closed set is (i, j)-strongly g closed.

Proof: let Abe 7, -closed. Since Ais 7;-closed, z; —cl(A) = A.let AcU and U be ; -open.
7; —cl(int(A)) = z; —cl(A) = Ac U . Therefore A'is (i, j)-strongly g closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.6: Let X={a, b, ¢}, ;= {®, {c}, {a, c}, X} and 7,={®, {a}, X}. Then the set
A= {b} is (i, j)-strongly g closed but not z,-closed in (X,7,,7,).

Theorem 3.7: Every 7 -closed set is (i, j)-strongly g*closed.

proof follows from the definition.
The converse of the above theorem is not true as seen in the following example.

Example 3.8: In example (3.6), A={a, b} is (i, j)-strongly g* closed but not z; -closed.
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Theorem 3.9: Every 7 -closed set is (i, j)-strongly g** closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.10: in example (3.6), A= {b} is (i, j)-strongly g**closed but not 7 ; -closed.

Theorem 3.11: Every (i, j)-g closed set is (i, j)-strongly g closed.

Proof: Let A be (i, j)-g closed. Let A< U and U be; -open. Since A is (i, j)-g closed,

7, —cl(A)cU ...z, —cl(int(A)) = 7; —cl(A) cU . Hence Ais (i, j)-strongly g closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.12: Let X={a, b, c}, 7,={ @, {a}, {b}, {a, b}, X} and 7,={D, {a}, {a, b}, X}. Then
the set A= {b} is (i, j)-strongly g closed but not (i, j)-g closed.

Theorem 3.13: Every (i, j)-g* closed set is (i, j)-strongly g* closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.14: In example (3.6), A= {c} is (i, j)-strongly g* closed but not a (i, j)-g* closed set.
Theorem 3.15: Every (i, j)-g** closed set is (i, j)-strongly g** closed.

proof follows from the definition.

The converse of the above theorem is not true as seen in the following example.

Example 3.16: let X={a, b, c}, 7,= {®, {b}, X} and 7,= {®, {c}, X}. Then A={b} is (i, j)-
strongly g** closed but not (i, j)-g** closed.

Theorem 3.17: Every (i, j)-strongly g* closed set is (i, j)-strongly g closed.

Proof: Let A be (i, j)-strongly g* closed. Let AU and U be 7, -open. Then Ac U and U is
7;-g open. Since A'is (i, j)-strongly g* closed, z; —cl(int(A)) cU . Therefore A'is (i, j)-strongly g
closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.18: let X={a, b, c}, 7,= {®, {a}, X} and 7,= {D, {a}, {a, b}, X}. Then A= {a, c} is
(i, j)-strongly g closed but not (i, j)-strongly g* closed.

Theorem 3.19: Every (i, j)-strongly g** closed set is (i, j)-strongly g closed.
proof follows from the definition.

Theorem 3.20: Every (i, j)-strongly g* closed set is (i, j)-strongly g** closed.

Proof: Let A be (i, j)-strongly g*closed set. Let AU and U is 7, -g*open. Then Ac U and U is
7, -g open. Since A'is (i, j)-strongly g* closed, z; —cl(int(A)) c U . Therefore Ais (i, j)-strongly
g**closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.21: Let X={a, b, ¢}, 7,={®, {c}, X} and 7,={®, {a}, X}. Then A={a} is (i, j)-
strongly g**closed but not (i, j)-strongly g*closed set.

Theorem 3.22: If Ais both z, -open and (i, j)-strongly g*closed in (X,7,,7,), theniit is (i, j)-
regular closed in (X, 7,,7,) .

Proof: Let A be both z; -open and (i, j)-strongly g*closed. Since A is open, z; —int(A) = A. Ais
7,-open =Ais 7;-g open. (i.e.,) Ac A ,where Ais 7, -g open. Since A is (i, j)-strongly g* closed,
z; —cl(int(A)) < A (1).

Act;—cl(A) =7, —cl(int(A) ... Ac r; —cl(int(A)) ----------- (2).By (1) &(2)

A=, —cl(int(A))and hence A is regular closed in (X,7,,7,).

Theorem 3.23: If a subset A of a bitopological space (X,7,,7,) is both (i, j)-strongly g* closed and
7;-semi open, then it is (i, j)-g* closed.
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Proof : Let A be both (i, j)-strongly g* closed and 7, -semi open. Let A< U and U be 7, -g open.
Since A is (i, j)-strongly g* closed, z; —cl(int(A)) U . Since Ais 7 -semi open,

Acr; —cl(int(A)).

Then, 7; —cl(A) < z; —cl(cl(int(A))) = z; —cl(int(A)) cU . Therefore Ais (i, j)-g* closed.
Theorem 3.24: If A is both (i, j)-strongly g closed and 7 -open, then A is (i, j)-rg closed.
Proof: Let A be (i, j)-strongly g closed. Let Ac U and U be

7, -regular open = Ac U and U is 7, -open. Since A'is (i, j)-strongly g closed,

7; —cl(int(A)) cU .z; —cl(A) = z;cl(int(A)) c U . Therefore A is (i, j)-rg closed.

Theorem 3.25: Every (i, j)-g* closed set is (i, j)-strongly g closed.

Proof: Let A be (i, j)-g* closed. Let AcU and Uis z,-open. Then AcU and U is 7, -g open.
Since Ais (i, j)-g* closed, 7; —cl(A) cU .z; —cl(int(A)) < z; —cl(A) cU . Therefore A'is (i, j)-
strongly g closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.26: Let X={a, b, c}, 7,= {®, {a}, X} and 7,={®, {c}, X}. Then A= {b} is (i, j)-
strongly g closed but not (i, j)-g* closed.

Theorem 3.27: Every (i, j)-g* closed set is (i, j)-strongly g** closed.

proof follows from the definition.

The converse of the above theorem is not true as seen in the following example.

Example 3.28: let X={a, b, c}, 7,= {®, {b}, X} and 7,={®, {a}, X}. Then A= {b} is (i, j)-
strongly g** closed but not (i, j)-g* closed.

Theorem 3.29: Every (i, j)-g** closed set is (i, j)-strongly g closed.

proof follows from the definition.

The converse of the above theorem is not true as seen in the following example.

Example 3.30: Let X={a, b, c}, 7,={®, {a}, {b}, {a, b}, X} and 7,={®, {a}, X}. Then A= {b} is
(i, j)-strongly g closed but not (i, j)-g** closed.

The above results can be represented in the following figure.

vy
ii e oy
[ (I,J)-Stroncilyg closed L G J)-g“closed ]4—
(i,j)-Strongly g* closed }47 | (i.)-g* closed ]
A 4 v
[ (i,j)-Strongly g** closed (i,j)-g** closed ];

where A — B represents A implies B but not conversely.
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4. Applications of (i, j)-strongly g, g*, g** closed sets.

In this section we introduce six new spaces namely (i, j) - T%s space, (i,J)- T 25* space, (i, j) - T%S**
space, (i, J) - ‘T, space, (i, ) - T, &(i,j)- T, space.

Definition 4.1: A bitopological space (X,7;,7,) is said to be an (i, j)- Ty space if every (i, j)-
strongly g closed set is 7 ; -closed.

Definition 4.2: A bitopological space (X,7,,7,) issaidtobean (i, j)- T 25* space if every (i, j)-
strongly g*closed set is 7 ; -closed.

Definition 4.3: A bitopological space (X,7,,7,) is said to be an (i, j)- T%S” space if every (i, j)-
strongly g**closed set is 7 ; -closed.

Definition 4.4: A bitopological space (X,7,,7,) is said to be an (i, j)- *T%s space if every (i, j)-

strongly g closed set is (i, j)-strongly g* closed.
Definition 4.5: A bitopological space (X,7,,7,) is said to be an (i, j)- **T%S space if every (i, j)-

strongly g closed set is (i, j)-strongly J ” closed.

Definition 4.6: A bitopological space (X,7,,7,) issaidtobe an(i,j)- T 25* space if every (i, j)-
strongly O ™ closed set is (i, j)-strongly g* closed.

Theorem 4.7: Every (i, j)-T\}/2S space is a (i, j)- T\}/2 space.

Proof: Let (X,7,,7,)bea (i, j)- T%s space. Let A bea (i, j)-g closed set. Then A'is (i, j)-strongly ¢
closed. .. A'is 7, -closed since (X,7;,7,)isa (i, j)- T space. Therefore (X,7,,7,)isa(ij)- T,

space.
Theorem 4.8: Every (i, j)- T%s spaceis a (i, j)- T%S* space.

Proof: Let (X,7,,7,)bea (i, j)- T%s space. Let A be a (i, j)-strongly g*closed set. Then A'is (i, j)-
strongly g closed & hence A is 7 closed since (X,7,,7,)isa (i, j)- T, space. Therefore (X,7,,7,)
is a(i,j)- T%S* space.

Theorem 4.9: Every (i, j)- T%:kspace isa (i, j)- T%S* space.

proof: Let (X,z,,7,)bea(i, j)- T%:k space. Let A be a (i, j)-strongly g*closed set. Then A'is (i, j)-
strongly g** closed. .. Ais 7;-closed since (X,7,,7,)isa (i, j)- T%SH space. Therefore every (i, j)-
strongly g*closed set is 7 ;-closed & hence (X,7,,7,)isa (i, j)- T%S* space.

Theorem 4.10: Every (i, j)- T%s spaceis a (i, j)- T%S**space.

Proof: Let (X,7,,7,)bea (i, j)- T%s space. Let A be a (i, j)-strongly g**closed set. Then Ais (i, j)-
strongly g closed & hence A is 7 -closed since (X,7,,7,) isa(i, j)_T%s space. .. Every (i, j)-
strongly g**closed set is 7;-closed. Therefore (X,7,,7,)isa (i, j)-T%s** space.

Theorem 4.11: Every (i, j)- T%s space is (i, j)- T%*space.
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Proof: Let (X,7,,7,)bea (i, j)- T, space. Let Abea (i, j)-g* closed set. Then A'is a (i, j)-strongly
g closed. Then Ais 7 ;-closed since (X,7;,7,)isa (i, J)- Ty, space. Therefore (X,7,,7,)isa (i, j)-
T,," space.

The converse of the above theorem is not true as seen in the following example.

Example 4.12: Let x={a, b, ¢}, 7,= {®, {a}, X} and 7,= {®, {a}, {b, c}, X}. Then A= {b} is

(i, j)-strongly g closed but not 7, -closed. .. (X,7,,7,) is nota i, i)- Ty, space. Here all the (i, j)-g*
closed sets are 7, -closed. Therefore (X,7,,7,)isa T%* space & hence every (i, j)- T%*space need
not be a (i, j)- T%s space.

Theorem 4.13: Every (i, j)- T, spaceis a (i, j)- T, space.

The converse of the above theorem is not true as seen in the following example.
Example 4.14: In example (4.12), A= {b} is (i, j)-strongly g* closed but not 7 -closed. ..

(X,7,,7,)isnota (i, j)- T%S* space. All the (i, j)-g* closed sets are 7 -closed and hence (X,7,,7,)
is (i, J)- T%* space. Therefore (i, j)-T%*space need not be a (i, j)- T%S* space.

Theorem 4.15: Every (i, j)- T%:kspace is (i, j)- T%*space.

proof follows from the definition.
The converse of the above is not true as seen in the example.

Example 4.16: In example (4.12), A= {b} is (i, j)-strongly g**closed but not 7 -closed. Therefore
(X,z,,7,)isnota (i, j)- T%S**space. (i, J)-g* closed sets are @, {b, c}, X and all these sets are7; -
closed and hence (X,7,,7,)is (i, j)- T%* space. Therefore every (i, j)-T%*space need not be a (i, j)-
T%S* space.

Theorem 4.17: Every (i, j)- T, space s (i, j)- ~ T, space.

Proof: Let (X,7,,7,)be (i, j)- T, space. Since (X,7,,7,)isa (i, )- ‘T, space, every (i, j)-

strongly g closed set is (i, j)-strongly g* closed. But every (i, j)-strongly g* closed set is (i, j)-strongly
g**closed. Therefore every (i, j)-strongly g closed set is (i, j)-strongly g**closed. .". (X,7,,7,)isa (i,

)- **T}/25 space.

The converse of the above theorem is not true as seen in the following example.

Example 4.18: Let X={a, b, c}, 7,={®, {a}, X} and 7,={®, {a}, {a, b}, X}. Then A={b} is (i, j)-
strongly g closed but not 7, -closed. (i,e.,) (i, j)-strongly g closed set is not a (i, j)-strongly g* closed.
Therefore (X,7,,7,) isnota (i, j)- *T% space. But every (i, j)-strongly g closed set is (i, j)-strongly
g**closed. Therefore (X,z,,7,)isa (i, j)- **T%s space. Therefore every (i, j)-" T ;s Space need not
be (i, j)- T, space.

Theorem 4.19: Every (i, j)- T}/25 space is a (i, j)- *T%S space.

proof follows from the definition.
The converse of the above theorem is not true as seen in the following example.

Example 4.20: In example (4.14) we have proved that the (i, j)-strongly g*closed sets are all the
subsets of X and in example (4.12) we have proved that all these sets are (i, j)-strongly g closed.

Therefore every (i, j)-strongly g closed sets are (i, j)-strongly g* closed. .. (X,7,,7,) isa (i, j)-*T}/ZS
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space. In the same example we have proved that (X,z,,7,) is not a T}/25 space. Therefore every (i, j)-
*T}/ZS space need not be a (i, j)- T%s space.

Theorem 4.21: Every (i, j)- T, spaceisa (i, j)- 'T,,, space.

The converse of the above theorem is not true as seen in the following example.

Example 4.22: In example (4.16) we have proved that (X,z,,7,)isnota (i, j)-T%S”space. In the
same example we have proved that all the (i, j)-strongly g**closed sets are (i, j)-strongly g*closed.
Therefore (X, 7,,7,) isa(i, j)-*T%S* space & hence a (i, j) *T%S* space need not be a (i, j)-T%S**
space.

Theorem 4.23: Every space (X,7;,7,) which is both a (i, j)- T, space and a (i, j)-T,,, " space is a
@i, j)- T%S“space.

Proof: Let (X,z,,7,) be both (i, j)- T, space and (i, j)- T, space. Let A be (i, j)-strongly
g**closed. Then A is (i, j)-strongly g*closed since (X,z,,7,)isa (i, j)- *T%s* spaceand A'is 7, -
closed since (X,7,,7,)is (i, j)- T%S* space. .. Ais 7 -closed. Therefore (X,7,7,)is (i, j)- T%S**
space.

The above results can be represented in the following figure.
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