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ABSTRACT 

In this paper we introduce a new class of sets namely αg**-closed sets which is settled 

properly in between the class of α-closed and the class of g**-closed sets. The notion of the 

αg**-continuous maps and αg**- irresolute maps are introduced and certain results regarding 

the above said maps are found. spaceT ** and spaceT **

 are introduced and studied.  
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___________________________________________________________________________ 

1.INTRODUCTION 

Levine [8] introduced the class of generalized closed sets, a super class of closed sets in 1970. 

Andrijevic[1] defined semi- pre-open sets in 1986. Dontchev[6] introduced on generalizing 

semi- pre-open sets in 1995.  Balachandran[3], Sundaram and Maki introduced on 

generalized continuous maps in topological spaces in 1991. Arya[2] and Nour defined 

Characterizations of s-normal spaces in 1990. Pauline Mary Helen [13], PonnuthaiSelvarani 

and Veronica Vijayan introduced g**-closed sets in topological spaces in 2012. 

Veerakumar[14] defined g*-closed sets in 1996. 

Levine [9], Njasted[12] introduces semi- open sets, pre-open sets, α-closed sets. The 

complement of a semi-open (resp. pre-open, α-open, semi- pre-open) set in 1963. Maki [11], 

Devi and Balachandran defined associated topologies of generalized α-closed sets and α-

generalized closed sets in 1994. Devi [4], Maki and Balachandran introduced Semi-
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generalized closed maps and generalized closed maps in 1993. Gnanbambal [7] defined on 

generalized pre regular closed sets in topological spaces in 1997. Devi [5], Maki and 

Balachandran introduced Semi-generalized homeomorphisms and generalized semi-

homeomorphism in topological spaces in 1995. We proved that g**- closedness is 

independent from αg**-closedness. Applying αg**-closed sets, two new spaces namely, 

Tα
**

-spaces and ** T -spaces are introduced. Maragathavalli[10] and Sheik Jhon introduced 

on sαg**-closed sets in topological spaces in 2005. 

2.Preliminaries 

Throughout this paper (X,τ), (Y,σ) and (Z, ) represent non- empty topological spaces on 

which no separation axioms are assumed unless otherwise mentioned. For a subset A of a 

space (X,τ), cl(A) and int(A) denote the closure and the interior of A respectively. 

Definition 2.1: A subset A of a topological space (X,τ) is called 

1) a semi-open set [9] if      A cl(int(A)) and semi-closed set if int(cl(A))A. 

2) a semi-pre-open set [1] if A cl(int(cl(A))) and semi-pre closed set [1] if 

int(cl(int(A)))A. 

3) an  -open set if A int(cl(int(cl(A))) and an -closed set [12] if  

cl(int(cl(A)))A. 

Definition 2.2: A subset A of a topological space (X,τ) is called 

1) a generalized closed set (briefly g-closed) [8] if cl(A)U whenever AU and U is 

open in (X, ). 

2) a generalized semi-closed set (briefly gs-closed) [2] if scl(A)U whenever AU and 

U is open in (X, ). 

3) a generalized closed set (briefly  g-closed) [11]if  cl(A)U whenever AU and 

U is open in  (X, ). 
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4) a generalized * closed set (briefly g*-closed) [14] if cl(A)U whenever AU and U 

is g-open in (X, ). 

5) a generalized ** closed set (briefly g**-closed) [13] if cl(A)U whenever AU and 

U is g*-open in    (X, ). 

6) a generalized semi-pre closed set (briefly gsp-closed) [9] if spcl(A)U whenever A

U and U is open in (X, ). 

7) a semi  generalized * closed set (briefly s g*-closed)[10] if  cl(A)U whenever 

AU and U is     g*-open in (X, ). 

Definition 2.3: A function f: (X,τ) →(Y,σ) is called 

1) a continuous if the inverse image of every closed set in ),( Y  is closed in ),( X . 

2) an continuousg  [7] if the inverse image of every closed set in ),( Y  is closedg 

in ),( X . 

3) ags-continuous [5] if the inverse image of every closed set in ),( Y  is gs-closed in

),( X . 

4) agsp-continuous [6] if the inverse image of every closed set in ),( Y  is gsp-closed in

),( X . 

5) a g*-continuous [14] if the inverse image of every closed set in ),( Y  is g*-closed in

),( X . 

6) a sαg*-continuous [14] if the inverse image of every closed set in ),( Y  is sαg*-

closed in ),( X . 

7) a irresoluteg * [14] if the inverse image of every g*-closed set in ),( Y  is g*-

closed in ),( X  
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Definition 2.4: A topological space (X,τ) is said to be 

1) a spaceT *2/1  [14] if every g*-closed set in ),( X  is closed in ),( X . 

2) an spaceTc  [14]if every closedg   set in ),( X  is g*-closed in ),( X . 

3) a spaceTb  [4] if every gs-closed set in ),( X  is closed in ),( X . 

4) a spaceTb  [11] if every closedg   set in ),( X  is closed in ),( X . 

5) a spaceTb   [3] if every closedg   set in ),( X  is closed in ),( X . 

3.Basic properties of αg**-closed sets 

We now introduce the following definition. 

Definition 3.1: A subset A of (X,τ) is said to be a αg**-closed set if αcl(A)⊆U whenever 

A⊆U and U is g**-open in X. 

The class of αg**-closed subset of (X,τ) is denoted by αg**C (X,τ). 

Proposition 3.2: Every closed set is αg**-closed. 

Proof follows from the definition. 

The converse of the above proposition need not be true in general as seen in the following 

example. 

Example 3.3:Let X = {a,b,c} and τ = {Φ,X,,{b},{b,c}}. Let A={c}, then A is αg**-closed 

but not closed. 

So, the class of αg**-closed setg is properly contained in the class of closed sets. 

Proposition 3.4: Every g*-closed set is αg**-closed. 

Proof follows from the definition. 

The converse of the above proposition need true and in general it can be seen from the 

following example. 
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Example 3.5:Let X= {a,b,c}, τ = {Φ,X,{a},{a,b}}. Let A = {b} is αg**-closed but not g*-

closed. 

Proposition 3.6: Every αg**-closed set is gs-closed. 

Proof follows from the definition. 

The converse of the above proposition need true and in general it can be seen from the 

following example. 

Example 3.7:Let X={a,b,c}, τ = {Φ,X,{a},{b,c}}. let A={c} & {a,c} is gs-closed but not 

αg**-closed. 

Proposition 3.8: Every αg**-closed set is αg-closed. 

Proof follows from the definition. 

The converse of the above proposition need true and in general it can be seen from the 

following example. 

Example 3.9: Let X={a,b,c}, τ = {Φ,X,{a},{b,c}}. let A={a,c} is αg-closed but not αg**-

closed. 

Proposition 3.10: Every αg**-closed set is gsp-closed. 

Proof follows from the definition. 

The converse of the above proposition need true and in general it can be seen from the 

following example. 

Example 3.11:Let X={a,b,c}, τ={Φ,X,{a}}. Let A={a,c} then A is gsp-closed but not αg**-

closed. 

Proposition 3.12: Every αg**-closed set is sαg*-closed. 

Proof follows from the definition. 

The converse of the above proposition need true and in general it can be seen from the 

following example. 
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Example 3.13:Let X={a,b,c}, τ = {Φ,X,{a},{b,c}}. let A={b} is sαg*-closed but not αg**-

closed. 

Theorem 3.14: For each xX either {x} is g**- closed (or) {x}
c 
is closedg **    in X. 

Proof: If {x} is not g**-closed then the only g**-open set containing {x}
 c 

is X. 

Xxcl c  }{ and hence {x}
 c
 is closedg ** . 

Theorem 3.15: A is a closedg ** set of ),( X  if AAcl \)( does not contains any non-

empty g**-closed set. 

Proof: Let F be a g**-closed set of ),( X  such that AAclF \)( .Then FXA \  since A 

is closedg ** and FX \  is g**-open, FXAcl \)(  .This implies )(\ AclXF   so 

)\)(())(\( ASAclAclXF     )())(\( AclAclX  F  

Remark 3.16: closednessg ** and closednessg ** are independent. 

In example (3.5) A={b} is closedg **  but not g**-closed. 

In example (3.10)  A= {c} is closedg **  but not closedg ** . 

 

The above results can be represented in the following figure. 

 

Closed  g*-closed   gsp-closed 

 

 

αg**-closed 

 

 

gs-closed   sαg*-closed   αg-closed 

Where A → B(resp. A          B ) represents A implies B (resp. A & B are independent) 
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4.αg**-CONTINUOUS MAPS AND αg**-IRRESOLUTE MAPS. 

We now introduce the following definitions. 

Definition 4.1: A map ),(),(:  YXf   from a topological space ),( X  to a topological 

space ),( Y  is called continuousg **  if the inverse image of every closed set in ),( Y  

is closedg ** in ),( X . 

Theorem 4.2: Every continuous map is αg**-continuous. 

Proof:Let  f : (X,τ) → (Y,σ) be continuous. Let F be closed set in (Y,σ) then  f 
- 1

(F) is closed 

in (X,τ). Since every closed set is αg**-closed,  f
-1

(F) is αg**-closed in(X,τ).  

f  is αg**-continuous in (X,τ).  

The converse of the above theorem need not be true and in general it can be seen from the 

following example. 

Example 4.3: Let X=Y = {a,b,c}, ,τ = {Φ,X,{a,b}},σ = {Φ,Y,{a}}  f : (X,τ) → (Y,σ) is 

defined as the identity map. The inverse image of all the closed sets in (Y,σ) are αg**-closed 

in (X,τ). But  f
 --1

({b,c})= {b,c} is not closed in (X,τ). Therefore   f is αg**-continuous but not 

continuous. 

Theorem 4.4: Every g*- continuous map is αg**-continuous. 

Proof: Let f : (X,τ) → (Y,σ) be g*-continuous. Let F be closed set in (Y,σ) then            f 
- 1

(F) 

is g*-closed in (X,τ). Since every g*-closed set is αg**-closed,  f 
-1

(F) is αg**-closed in(X,τ).  

f is αg**-continuous in (X,τ).  

The converse of the above theorem need not be true and in general it can be seen from the 

following example. 

Example: 4.5: Let X = Y= {a,b,c} and τ = {X,Φ,{a},{a,b}},σ = {Y,Φ,{b,c},{a}}.      f  : (X,τ) 

→ (Y,σ) is defined as f(a)=b; f(b)=a; f(c)=c . The inverse image of all the closed sets in (Y,σ) 
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are αg**-closed in (X,τ). But f
 --1

({a})= {b} is not g*-closed in (X,τ). Therefore f is αg**-

continuous but not g*-continuous.  

Theorem 4.6: Every αg**- continuous map is gs-continuous. 

Proof:Let  f : (X,τ) → (Y,σ) be sg**-continuous. Let F be closed set in (Y,σ) then f 
- 1

(F) is 

αg**-closed in (X,τ). Since every αg**-closed set is gs-closed,  f
-1

(F) is αg**-closed in (X,τ). 

fis gs-continuous in (X,τ).  

The converse of the above theorem need not be true and in general it can be seen from the 

following example. 

Example: 4.7: Let X = Y= {a,b,c} and τ = {X,Φ,{a},{b,c}},σ = {Y,Φ,{a},{a,b}}.      f  : (X,τ) 

→ (Y,σ) is defined as f(a)=b; f(b)=c; f(c)=a . The inverse image of all the closed sets in (Y,σ) 

are gs-closed in (X,τ). But f 
-1

({c}) = {b} is not αg*-closed in (X,τ). Therefore f is gs-

continuous but not αg**-continuous. 

Theorem: 4.8 Every αg**- continuous map is αg-continuous. 

Proof: Let  f : (X,τ) → (Y,σ) be αg**-continuous. Let F be closed set in (Y,σ) then        f 
- 1

(F) 

is αg**-closed in (X,τ). Since every αg**-closed set is αg-closed,  f 
-1

(F) is    αg-closed in 

(X,τ). f  is αg-continuous in (X,τ). 

The converse of the above theorem need not be true and in general it can be seen from the 

following example. 

Example: 4.9: Let X = Y= {a,b,c} and τ = {X,Φ,{a},{b,c}},σ = {Y,Φ,{a}}.      f  : (X,τ) → 

(Y,σ) is defined as f(a)=c; f(b)=a; f(c)=b . The inverse image of all the closed sets in (Y,σ) are 

αg-closed in (X,τ). But f 
-1

({b,c}) = {a,c} is not αg*-closed in (X,τ). Therefore f is αg-

continuous but not αg**-continuous. 

Theorem: 4.10:Every αg**- continuous map is gsp-continuous. 
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Proof: Let  f : (X,τ) → (Y,σ) be αg**-continuous. Let F be closed set in (Y,σ) then        f 
- 1

(F) 

is αg**-closed in (X,τ). Since every αg**-closed set is gsp-closed,  f
-1

(F) is    gsp-closed in 

(X,τ). f  is gsp-continuous in (X,τ). 

The converse of the above theorem need not be true and in general it can be seen from the 

following example. 

Example: 4.11: Let X = Y= {a,b,c} and τ = {X,Φ,{a}},σ = {Y,Φ,{a},{b,c}}.     

  f  : (X,τ) → (Y,σ) is defined as the identity map. The inverse image of all the closed sets in 

(Y,σ) are gsp-closed in (X,τ). But f 
-1

({b,c}) = {a,c} is not αg*-closed in (X,τ). Therefore f is 

gsp-continuous but not αg**-continuous. 

Theorem 4.12: Every αg**- continuous map is sαg*-continuous. 

Proof: Let  f : (X,τ) → (Y,σ) be αg**-continuous. Let F be closed set in (Y,σ) then          f 
- 

1
(F) is αg**-closed in (X,τ). Since every αg**-closed set is sαg*-closed, f 

-1
(F) is    sαg*-

closed in (X,τ). f  is sαg*-continuous in (X,τ). 

The converse of the above theorem need not be true and in general it can be seen from the 

following example. 

Example 4.13: Let X = Y= {a,b,c} and τ = {X,Φ,{a},{b,c}},σ = {Y,Φ,{a}}.      

 f  : (X,τ) → (Y,σ) is defined as f(a)=c; f(b)=a; f(c)=b. The inverse image of all the closed sets 

in (Y,σ) are sαg*-closed in (X,τ). But f 
-1

({b,c}) = {a,c} is not αg*-closed in (X,τ). Therefore 

f is sαg*-continuous but not αg**-continuous. 

We now introduce the following definition. 

Definition4.14: A function ),(),(:  YXf   is said to be irresoluteg **  if the inverse 

image of every closedg **  set in ),( Y  is closedg **  in ),( X  

Theorem 4.15: Let ),(),(:  YXf  and ),(),(:  ZYg   be any two functions then, 
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(i) ),(),(:  ZXfg  is continuousg **  if f is irresoluteg ** and g is 

continuousg ** . 

(ii) ),(),(:  ZXfg  is irresoluteg **  if f and gare irresoluteg ** . 

(iii) ),(),(:  ZXfg  is continuousg **  if f is irresoluteg ** and g is 

continuous. 

Proof follows from the definitions. 

Theorem 4.16: Every g*-irresolute map is continuousg **  

Proof follows from the definitions. 

The above results can be represented in the following figure. 

Continuous   g*-continuous   gsp-continuous 

 

 

αg**-closed 

 

 

gs-continuous   sαg*-continuous   αg-continuous 

Where A → B(resp. A          B ) represents A implies B (resp. A & B are independent) 

5. APPLICATIONS OF sg**-CLOSED SET. 

As applications of αg**-closed sets , new spaces namely, Tα
**

-space and spaceT 
**

 are 

introduced. 

We introduce the following definitions. 

Definition 5.1:A space ),( X  is said to be spaceT 
**

 , if every αg**-closed set in ),( X  is 

closed in ),( X .   
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Definition 5.2:A space ),( X  is said to be spaceT 
**


, if every αg**-closed set in ),( X  is 

g*-closed in ),( X .   

Theorem5.3: Every spaceT 
**


 is spaceT 

*

2/1
 but not conversely. 

Proof follows from the definitions. 

The converse of the above theorem need not be true in general as seen in the following 

example. 

Example 5.4: In example (3.11), where X = {a,b,c} }}{,,{ aX  every g*-closed set  is 

closed.. ),( X is a spaceT 
*

2/1 .In this space {b} is αg**-closed but not closed  in ),( X . 

Therefore every αg**-closed set is not closed in ),( X  ),( X is not a spaceT 
**

 . 

Theorem5.5: Every spaceT 
*

2/1
 and spaceTc  is spaceT 

**

 . 

Proof follows from the definitions. 

Theorem 5.6: Every spaceTb  is spaceT 
**

 . 

Proof follows from the definitions. 

Theorem 5.7: Every spaceTb  is spaceT 
**

 . 

Proof follows from the definitions. 

Theorem 5.8: Let ),(),(:  YXf   be a continuousg **  map. If ),( X is  spaceT 
**



then  f  is continuous.
 

Proof: Let ),(),(:  YXf   be continuousg ** .Let F be closed in ),( Y  then since   f 

is continuousg **  )(1 Ff 
 is closedg ** in ),( X Also since ),( X is a spaceT 

**

 , 

)(1 Ff 
 is closed in ),( X  

The inverse image )(1 Ff 
 is closed in ),( X f is continuous. 

Theorem 5.9: Every spaceTc  is spaceT 
**

 . 
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Proof: Let ),( X  be  spaceTc 
Let A be αg**-closed in ),( X  

Then by proposition (3.8), A is αg-closed set in ),( X and since ),( X is spaceTc 
 , A is 

g*-closed in ),( X Therefore every αg**-closed set in ),( X  is g*-closed in ),( X . ),( X

is spaceT 
**

 . 

Theorem 5.10: Every spaceTc  is spaceT 
**


. 

Proof follows from the definition. 
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