ag**-closed sets in topological spaces Issue 3, Volume 3 (May-June 2013) ISSN: 2250-1797 ### Pauline Mary Helen M Associate Professor in Mathematics, Nirmala College, Coimbatore, India Mythili. S PG Student, Nirmala College, Coimbatore, India #### **ABSTRACT** In this paper we introduce a new class of sets namely αg^{**} -closed sets which is settled properly in between the class of α -closed and the class of g^{**} -closed sets. The notion of the αg^{**} -continuous maps and αg^{**} - irresolute maps are introduced and certain results regarding the above said maps are found. T_{α} **-space and T_{α} *-space are introduced and studied. **Keywords:** ag^{**} -closed set, ag^{**} -continuous map, ag^{**} -irresolute maps, T_{α}^{**} - spaces ; $^{*}T_{\alpha}^{*}$ - spaces #### 1.INTRODUCTION Levine [8] introduced the class of generalized closed sets, a super class of closed sets in 1970. Andrijevic[1] defined semi- pre-open sets in 1986. Dontchev[6] introduced on generalizing semi- pre-open sets in 1995. Balachandran[3], Sundaram and Maki introduced on generalized continuous maps in topological spaces in 1991. Arya[2] and Nour defined Characterizations of s-normal spaces in 1990. Pauline Mary Helen [13], PonnuthaiSelvarani and Veronica Vijayan introduced g**-closed sets in topological spaces in 2012. Veerakumar[14] defined g*-closed sets in 1996. Levine [9], Njasted[12] introduces semi- open sets, pre-open sets, α -closed sets. The complement of a semi-open (resp. pre-open, α -open, semi- pre-open) set in 1963. Maki [11], Devi and Balachandran defined associated topologies of generalized α -closed sets and α -generalized closed sets in 1994. Devi [4], Maki and Balachandran introduced Semi- generalized closed maps and generalized closed maps in 1993. Gnanbambal [7] defined on generalized pre regular closed sets in topological spaces in 1997. Devi [5], Maki and Balachandran introduced Semi-generalized homeomorphisms and generalized semi-homeomorphism in topological spaces in 1995. We proved that g^{**} - closedness is independent from αg^{**} -closedness. Applying αg^{**} -closed sets, two new spaces namely, $T\alpha^{**}$ -spaces and ${}_{*}T_{\alpha}$ *-spaces are introduced. Maragathavalli[10] and Sheik Jhon introduced on $s\alpha g^{**}$ -closed sets in topological spaces in 2005. #### 2. Preliminaries Throughout this paper (X,τ) , (Y,σ) and (Z,η) represent non- empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ) , cl(A) and int(A) denote the closure and the interior of A respectively. #### **Definition 2.1:** A subset A of a topological space (X,τ) is called - 1) a semi-open set [9] if $A \subseteq cl(int(A))$ and semi-closed set if $int(cl(A)) \subseteq A$. - 2) a semi-pre-open set [1] if $A \subseteq cl(int(cl(A)))$ and semi-pre closed set [1] if $int(cl(int(A))) \subseteq A$. - 3) an α -open set if $A \subseteq int(cl(int(cl(A))))$ and an α -closed set [12] if $cl(int(cl(A))) \subseteq A$. #### **Definition 2.2:** A subset A of a topological space (X,τ) is called - 1) a generalized closed set (briefly g-closed) [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . - 2) a generalized semi-closed set (briefly gs-closed) [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . - 3) a α generalized closed set (briefly α g-closed) [11]if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ) . - Issue 3, Volume 3 (May-June 2013) ISSN: 2250-1797 - 4) a generalized * closed set (briefly g*-closed) [14] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) . - 5) a generalized ** closed set (briefly g**-closed) [13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g*-open in (X, τ) . - 6) a generalized semi-pre closed set (briefly gsp-closed) [9] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . - 7) a semi α generalized * closed set (briefly s α g*-closed)[10] if α cl(A) \subseteq U whenever A \subseteq U and U is g*-open in (X, τ). ### **Definition 2.3:** A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called - 1) a continuous if the inverse image of every closed set in (Y, σ) is closed in (X, τ) . - 2) an αg continuous [7] if the inverse image of every closed set in (Y, σ) is αg closed in (X, τ) . - 3) ags-continuous [5] if the inverse image of every closed set in (Y, σ) is gs-closed in (X, τ) . - 4) agsp-continuous [6] if the inverse image of every closed set in (Y, σ) is gsp-closed in (X, τ) . - 5) a g*-continuous [14] if the inverse image of every closed set in (Y, σ) is g*-closed in (X, τ) . - 6) a sag*-continuous [14] if the inverse image of every closed set in (Y, σ) is sag*-closed in (X, τ) . - 7) a g*-irresolute [14] if the inverse image of every g*-closed set in (Y, σ) is g*-closed in (X, τ) #### Issue 3, Volume 3 (May-June 2013) ISSN: 2250-1797 ### **Definition 2.4:** A topological space (X,τ) is said to be - 1) $aT_{1/2}$ *-space [14] if every g*-closed set in (X, τ) is closed in (X, τ) . - 2) an $_{\alpha}T_{c}$ space [14] if every αg closed set in (X, τ) is g*-closed in (X, τ) . - 3) aT_b space [4] if every gs-closed set in (X, τ) is closed in (X, τ) . - 4) $a_{\alpha}T_{b}$ space [11] if every αg closed set in (X,τ) is closed in (X,τ) . - 5) $a_{\alpha}T_{b}$ space [3] if every αg closed set in (X,τ) is closed in (X,τ) . ### 3.Basic properties of ag**-closed sets We now introduce the following definition. **Definition 3.1:** A subset A of (X,τ) is said to be a αg^{**} -closed set if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^{**} -open in X. The class of αg^{**} -closed subset of (X,τ) is denoted by $\alpha g^{**}C(X,\tau)$. **Proposition 3.2:** Every *closed set* is αg^{**} -closed. Proof follows from the definition. The converse of the above proposition need not be true in general as seen in the following example. **Example 3.3:**Let $X = \{a,b,c\}$ and $\tau = \{\Phi,X,,\{b\},\{b,c\}\}$. Let $A = \{c\}$, then A is αg^{**} -closed but not closed. So, the class of αg^{**} -closed setg is properly contained in the class of closed sets. **Proposition 3.4:** Every g^* -closed set is αg^{**} -closed. Proof follows from the definition. The converse of the above proposition need true and in general it can be seen from the following example. Issue 3, Volume 3 (May-June 2013) ISSN: 2250-1797 **Example 3.5:**Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{a\},\{a,b\}\}$. Let $A = \{b\}$ is αg^{**} -closed but not g^{*} -closed. **Proposition 3.6:** Every αg^{**} -closed set is gs-closed. Proof follows from the definition. The converse of the above proposition need true and in general it can be seen from the following example. **Example 3.7:**Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{a\},\{b,c\}\}$. let $A = \{c\}$ & $\{a,c\}$ is gs-closed but not αg^{**} -closed. **Proposition 3.8:** Every αg**-closed set is αg-closed. Proof follows from the definition. The converse of the above proposition need true and in general it can be seen from the following example. **Example 3.9:** Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{a\},\{b,c\}\}$. let $A = \{a,c\}$ is αg -closed but not αg^{**} -closed. **Proposition 3.10:** Every αg^{**} -closed set is gsp-closed. Proof follows from the definition. The converse of the above proposition need true and in general it can be seen from the following example. **Example 3.11:**Let $X=\{a,b,c\}$, $\tau=\{\Phi,X,\{a\}\}$. Let $A=\{a,c\}$ then A is gsp-closed but not αg^{**} -closed. **Proposition 3.12:** Every αg^{**} -closed set is αg^* -closed. Proof follows from the definition. The converse of the above proposition need true and in general it can be seen from the following example. **Example 3.13:**Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{a\},\{b,c\}\}$. let $A = \{b\}$ is $s\alpha g^*$ -closed but not αg^{**} -closed. **Theorem 3.14:** For each $x \in X$ either $\{x\}$ is g^{**} -closed (or) $\{x\}^c$ is αg^{**} -closed in X. **Proof:** If $\{x\}$ is not g^{**} -closed then the only g^{**} -open set containing $\{x\}^c$ is X. $\therefore \alpha cl\{x\}^c \subseteq X$ and hence $\{x\}^c$ is $\alpha g^{**} - closed$. **Theorem 3.15:** A is a αg^{**} – *closed* set of (X, τ) if $\alpha cl(A) \setminus A$ does not contains any non-empty g^{**} -closed set. **Proof:** Let F be a g**-closed set of (X, τ) such that $F \subseteq \alpha cl(A) \setminus A$. Then $A \subseteq X \setminus F$ since A is $\alpha g **-closed$ and $X \setminus F$ is g **-open, $\alpha cl(A) \subseteq X \setminus F$. This implies $F \subseteq X \setminus \alpha cl(A)$ so $F \subseteq (X \setminus \alpha cl(A)) \cap (\alpha cl(A) \setminus AS) \subseteq (X \setminus \alpha cl(A)) \cap \alpha cl(A) = \phi \Rightarrow F = \phi$ **Remark 3.16:** g^{**} – closedness and αg^{**} – closedness are independent. In example (3.5) A={b} is αg^{**} -closed but not g^{**} -closed. In example (3.10) $A = \{c\}$ is $g^{**} - closed$ but not $\alpha g^{**} - closed$. The above results can be represented in the following figure. Where $A \to B(\text{resp. A} \Leftrightarrow B)$ represents A implies B (resp. A & B are independent) ## 4.ag**-CONTINUOUS MAPS AND ag**-IRRESOLUTE MAPS. We now introduce the following definitions. $\therefore f$ is αg^{**} -continuous in (X, τ) . **Definition 4.1:** A map $f:(X,\tau)\to (Y,\sigma)$ from a topological space (X,τ) to a topological space (Y,σ) is called $\alpha g^{**}-continuous$ if the inverse image of every closed set in (Y,σ) is $\alpha g^{**}-closed$ in (X,τ) . **Theorem 4.2:** Every *continuous map* is αg^{**} -continuous. **Proof:** Let $f:(X,\tau) \to (Y,\sigma)$ be *continuous*. Let F be closed set in (Y,σ) then $f^{-1}(F)$ is closed in (X,τ) . Since every closed set is αg^{**} -closed, $f^{-1}(F)$ is αg^{**} -closed in (X,τ) . The converse of the above theorem need not be true and in general it can be seen from the following example. **Example 4.3:** Let $X=Y=\{a,b,c\}$, $\tau=\{\Phi,X,\{a,b\}\},\sigma=\{\Phi,Y,\{a\}\}\}$ $f:(X,\tau)\to (Y,\sigma)$ is defined as the identity map. The inverse image of all the closed sets in (Y,σ) are αg^{**} -closed in (X,τ) . But $f^{-1}(\{b,c\})=\{b,c\}$ is not closed in (X,τ) . Therefore f is αg^{**} -continuous but not continuous. **Theorem 4.4:** Every g^* -continuous map is αg^{**} -continuous. **Proof:** Let $f:(X,\tau)\to (Y,\sigma)$ be g*-continuous. Let F be closed set in (Y,σ) then $f^{-1}(F)$ is g*-closed in (X,τ) . Since every g*-closed set is αg^{**} -closed, $f^{-1}(F)$ is αg^{**} -closed in (X,τ) . $\therefore f$ is αg^{**} -continuous in (X,τ) . The converse of the above theorem need not be true and in general it can be seen from the following example. **Example:** 4.5: Let $X = Y = \{a,b,c\}$ and $\tau = \{X,\Phi,\{a\},\{a,b\}\}, \sigma = \{Y,\Phi,\{b,c\},\{a\}\}\}$. $f:(X,\tau) \rightarrow (Y,\sigma)$ is defined as f(a)=b; f(b)=a; f(c)=c. The inverse image of all the closed sets in (Y,σ) are αg^{**} -closed in (X,τ) . But $f^{-1}(\{a\}) = \{b\}$ is not g^{*} -closed in (X,τ) . Therefore f is αg^{**} -continuous but not g^{*} -continuous. **Theorem 4.6:** Every αg^{**} - continuous map is gs-continuous. **Proof:** Let $f:(X,\tau) \to (Y,\sigma)$ be sg**-continuous. Let F be closed set in (Y,σ) then $f^{-1}(F)$ is αg^{**} -closed in (X,τ) . Since every αg^{**} -closed set is gs-closed, $f^{1}(F)$ is αg^{**} -closed in (X,τ) . \therefore fis gs-continuous in (X,τ) . The converse of the above theorem need not be true and in general it can be seen from the following example. **Example: 4.7:** Let $X = Y = \{a,b,c\}$ and $\tau = \{X,\Phi,\{a\},\{b,c\}\}, \sigma = \{Y,\Phi,\{a\},\{a,b\}\}\}$. $f:(X,\tau) \to (Y,\sigma)$ is defined as f(a)=b; f(b)=c; f(c)=a. The inverse image of all the closed sets in (Y,σ) are gs-closed in (X,τ) . But $f^{-1}(\{c\}) = \{b\}$ is not αg^* -closed in (X,τ) . Therefore f is g-continuous but not αg^* -continuous. **Theorem: 4.8** Every αg^{**} - continuous map is αg -continuous. **Proof:** Let $f: (X,\tau) \to (Y,\sigma)$ be αg^{**} -continuous. Let F be closed set in (Y,σ) then $f^{-1}(F)$ is αg^{**} -closed in (X,τ) . Since every αg^{**} -closed set is αg -closed, $f^{-1}(F)$ is αg -closed in (X,τ) . $\therefore f$ is αg -continuous in (X,τ) . The converse of the above theorem need not be true and in general it can be seen from the following example. **Example: 4.9:** Let $X = Y = \{a,b,c\}$ and $\tau = \{X,\Phi,\{a\},\{b,c\}\},\sigma = \{Y,\Phi,\{a\}\}\}$. $f:(X,\tau) \to (Y,\sigma)$ is defined as f(a)=c; f(b)=a; f(c)=b. The inverse image of all the closed sets in (Y,σ) are αg -closed in (X,τ) . But $f^{-1}(\{b,c\}) = \{a,c\}$ is not αg^* -closed in (X,τ) . Therefore f is αg -continuous but not αg^* -continuous. **Theorem: 4.10:**Every αg**- continuous map is gsp-continuous. **Proof:** Let $f:(X,\tau) \to (Y,\sigma)$ be αg^{**} -continuous. Let F be closed set in (Y,σ) then $f^{-1}(\mathbf{F})$ is αg^{**} -closed in (X,τ) . Since every αg^{**} -closed set is gsp-closed, $f^{I}(F)$ is gsp-closed in (X,τ) . $\therefore f$ is gsp-continuous in (X,τ) . The converse of the above theorem need not be true and in general it can be seen from the following example. **Example:** 4.11: Let $X = Y = \{a,b,c\}$ and $\tau = \{X,\Phi,\{a\}\},\sigma = \{Y,\Phi,\{a\},\{b,c\}\}\}$. $f:(X,\tau)\to (Y,\sigma)$ is defined as the identity map. The inverse image of all the closed sets in (Y,σ) are gsp-closed in (X,τ) . But $f^{-1}(\{b,c\}) = \{a,c\}$ is not αg^* -closed in (X,τ) . Therefore f is gsp-continuous but not αg**-continuous. **Theorem 4.12:** Every αg^{**} - continuous map is $s\alpha g^{*}$ -continuous. **Proof:** Let $f:(X,\tau)\to (Y,\sigma)$ be αg^{**} -continuous. Let F be closed set in (Y,σ) then ¹(F) is αg^{**} -closed in (X,τ) . Since every αg^{**} -closed set is αg^{*} -closed, $f^{-1}(F)$ is sag*closed in (X,τ) . $\therefore f$ is $s\alpha g^*$ -continuous in (X,τ) . The converse of the above theorem need not be true and in general it can be seen from the following example. **Example 4.13:** Let $X = Y = \{a,b,c\}$ and $\tau = \{X,\Phi,\{a\},\{b,c\}\}, \sigma = \{Y,\Phi,\{a\}\}\}$. $f:(X,\tau)\to (Y,\sigma)$ is defined as f(a)=c; f(b)=a; f(c)=b. The inverse image of all the closed sets in (Y,σ) are sag*-closed in (X,τ) . But $f^{-1}(\{b,c\}) = \{a,c\}$ is not ag*-closed in (X,τ) . Therefore *f is sαg*-continuous* but not αg**-continuous. We now introduce the following definition. **Definition 4.14:** A function $f:(X,\tau)\to (Y,\sigma)$ is said to be $\alpha g^{**}-irresolute$ if the inverse image of every αg^{**} - closed set in (Y, σ) is αg^{**} - closed in (X, τ) **Theorem 4.15:** Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ be any two functions then, - Issue 3, Volume 3 (May-June 2013) ISSN: 2250-1797 - (i) $g \circ f: (X, \tau) \to (Z, \eta)$ is $\alpha g **-continuous$ if f is $\alpha g **-irresolute$ and g is $\alpha g **-continuous$. - (ii) $g \circ f: (X, \tau) \to (Z, \eta)$ is $\alpha g **-irresolute$ if f and gare $\alpha g **-irresolute$. - (iii) $g \circ f: (X, \tau) \to (Z, \eta)$ is $\alpha g **-continuous$ if f is $\alpha g **-irresolute$ and g is continuous. Proof follows from the definitions. **Theorem 4.16:** Every g*-irresolute map is αg^{**} -continuous Proof follows from the definitions. The above results can be represented in the following figure. Where $A \to B$ (resp. $A \Leftrightarrow B$) represents A implies B (resp. A & B are independent) ### 5. APPLICATIONS OF sg**-CLOSED SET. As applications of αg^{**} -closed sets , new spaces namely, T_{α}^{**} -space and $^*T_{\alpha}^{*}$ -space are introduced. We introduce the following definitions. **Definition 5.1:** A space (X, τ) is said to be T_{α}^{**} – space, if every αg^{**} -closed set in (X, τ) is closed in (X, τ) . **Definition 5.2:** A space (X, τ) is said to be ${}^*T_{\alpha}{}^* - space$, if every αg^{**} -closed set in (X, τ) is g^* -closed in (X, τ) . **Theorem5.3:** Every T_{α}^{**} – space is $T_{1/2}^{*}$ – space but not conversely. Proof follows from the definitions. The converse of the above theorem need not be true in general as seen in the following example. **Example 5.4:** In example (3.11), where $X = \{a,b,c\}$ $\tau = \{\phi,X,\{a\}\}$ every g^* -closed set is closed...: (X,τ) is a $T_{1/2}^*$ – space. In this space $\{b\}$ is αg^{**} -closed but not closed in (X,τ) . Therefore every αg^{**} -closed set is not closed in (X,τ) : (X,τ) is not a T_{α}^{**} – space. **Theorem5.5:** Every $T_{1/2}^*$ – space and ${}_{\alpha}T_{c}$ – space is T_{α}^{**} – space. Proof follows from the definitions. **Theorem 5.6:** Every $T_b - space$ is $T_{\alpha}^{**} - space$. Proof follows from the definitions. **Theorem 5.7:** Every $_{\alpha}T_{b}$ - space is T_{α}^{**} - space. Proof follows from the definitions. **Theorem 5.8:** Let $f:(X,\tau)\to (Y,\sigma)$ be a $\alpha g^{**}-continuous$ map. If (X,τ) is $T_{\alpha}^{**}-space$ then f is continuous. **Proof:** Let $f:(X,\tau)\to (Y,\sigma)$ be $\alpha g^{**}-continuous$. Let F be closed in (Y,σ) then since f is $\alpha g^{**}-continuous$ $f^{-1}(F)$ is $\alpha g^{**}-closed$ in (X,τ) Also since (X,τ) is a $T_{\alpha}^{**}-space$, $f^{-1}(F)$ is closed in (X,τ) The inverse image $f^{-1}(F)$ is closed in (X,τ) : f is continuous. **Theorem 5.9:** Every $_{\alpha}T_{c}$ - space is $^{*}T_{\alpha}^{\ *}$ - space. **Proof:** Let (X, τ) be ${}_{\alpha}T_{c}$ - space Let A be αg^{**} -closed in (X, τ) **Theorem 5.10:** Every $T_c - space$ is ${}^*T_{\alpha}^{\ \ *} - space$. Proof follows from the definition. #### **BIBLIOGRAPHY** - 1. D. Andrijevic, "Semi- per open sets", Mat. Vesnik, 38(1) (1986), 24-32. - S.P. Arya and T. Nour, "Characterizations of s-normal spaces", Indian J. Pure. Appl. Math., 21(8)(1990), 717-719. - 3. K. Balachandran, P. Sundaram and H.Maki, "On generalized continuous maps in topological spaces", Mem. Fac. Kochi Univ. Ser. A. Math., 12(1991), 5-13. - 4. R. Devi H. Maki and K. Balachandran, "Semi-generalized closed maps and generalized closed maps", Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 14(1993), 41-54. - R. Devi H. Maki and K. Balachandran, "Semi-generalized homeomorphisms and generalized semi-homeomorphism in topological spaces", Indian J. Pure. Appl. Math., 26(3)(1995), 271-284. - J. Dontchev, "On generalizing semi- pre open sets", Mem. Fac. Sci. Kochi Ser. A, Math., 16 (1995), 35-48. - 7. Y. Gnanbambal, "On generalized pre regular closed sets in topological spaces", Indian j. Pure. Appl. Math., 28 (3) (1997), 351-360. - Issue 3, Volume 3 (May-June 2013) ISSN: 2250-1797 - 8. N. Levine, "Generalized closed sets in topology", Rend. Circ. Math. Palermo, 19 (2) (1970), 89-96. - 9. N. Levine, "Semi-open sets and semi-continuity in topological spaces", Amer. Math. Monthly, 70 (1963), 36-41. - S. Maragatharalli and M. Sheik Jhon, "On sag**-closed sets in topological spaces", ACTA CIENCIA INDICA, Vol XXXI 2005 No.3, (2005), 805-814. - 11. H. Maki, R. Devi and K. Balachandran, "Associated topologies of generalized α-closed sets and α-generalized closed sets", Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 15 (1994), 51-63. - 12. O. Njasted, "On some classes of nearly open sets", Pacific J. Math., 15(1965), 961-970 - 13. M. Pauline Mary Helen, PonnuthaiSelvarani. S, Veronica Vijayan, "g**-closed sets in topological spaces", IJMA, 3 (5), 2012, 1-15. - 14. M.K.R.S. Veerakumar, "Between closed sets and g-closed sets", Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17 (1996), 33-42.