# ag\*\*-closed sets in topological spaces

Issue 3, Volume 3 (May-June 2013)

ISSN: 2250-1797

### Pauline Mary Helen M

Associate Professor in Mathematics, Nirmala College, Coimbatore, India Mythili. S

PG Student, Nirmala College, Coimbatore, India

#### **ABSTRACT**

In this paper we introduce a new class of sets namely  $\alpha g^{**}$ -closed sets which is settled properly in between the class of  $\alpha$ -closed and the class of  $g^{**}$ -closed sets. The notion of the  $\alpha g^{**}$ -continuous maps and  $\alpha g^{**}$ - irresolute maps are introduced and certain results regarding the above said maps are found.  $T_{\alpha}$  \*\*-space and  $T_{\alpha}$  \*-space are introduced and studied.

**Keywords:**  $ag^{**}$ -closed set,  $ag^{**}$ -continuous map,  $ag^{**}$ -irresolute maps,  $T_{\alpha}^{**}$  - spaces ;  $^{*}T_{\alpha}^{*}$  - spaces

#### 1.INTRODUCTION

Levine [8] introduced the class of generalized closed sets, a super class of closed sets in 1970. Andrijevic[1] defined semi- pre-open sets in 1986. Dontchev[6] introduced on generalizing semi- pre-open sets in 1995. Balachandran[3], Sundaram and Maki introduced on generalized continuous maps in topological spaces in 1991. Arya[2] and Nour defined Characterizations of s-normal spaces in 1990. Pauline Mary Helen [13], PonnuthaiSelvarani and Veronica Vijayan introduced g\*\*-closed sets in topological spaces in 2012. Veerakumar[14] defined g\*-closed sets in 1996.

Levine [9], Njasted[12] introduces semi- open sets, pre-open sets,  $\alpha$ -closed sets. The complement of a semi-open (resp. pre-open,  $\alpha$ -open, semi- pre-open) set in 1963. Maki [11], Devi and Balachandran defined associated topologies of generalized  $\alpha$ -closed sets and  $\alpha$ -generalized closed sets in 1994. Devi [4], Maki and Balachandran introduced Semi-

generalized closed maps and generalized closed maps in 1993. Gnanbambal [7] defined on generalized pre regular closed sets in topological spaces in 1997. Devi [5], Maki and Balachandran introduced Semi-generalized homeomorphisms and generalized semi-homeomorphism in topological spaces in 1995. We proved that  $g^{**}$ - closedness is independent from  $\alpha g^{**}$ -closedness. Applying  $\alpha g^{**}$ -closed sets, two new spaces namely,  $T\alpha^{**}$ -spaces and  ${}_{*}T_{\alpha}$  \*-spaces are introduced. Maragathavalli[10] and Sheik Jhon introduced on  $s\alpha g^{**}$ -closed sets in topological spaces in 2005.

#### 2. Preliminaries

Throughout this paper  $(X,\tau)$ ,  $(Y,\sigma)$  and  $(Z,\eta)$  represent non- empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space  $(X,\tau)$ , cl(A) and int(A) denote the closure and the interior of A respectively.

#### **Definition 2.1:** A subset A of a topological space $(X,\tau)$ is called

- 1) a semi-open set [9] if  $A \subseteq cl(int(A))$  and semi-closed set if  $int(cl(A)) \subseteq A$ .
- 2) a semi-pre-open set [1] if  $A \subseteq cl(int(cl(A)))$  and semi-pre closed set [1] if  $int(cl(int(A))) \subseteq A$ .
- 3) an  $\alpha$ -open set if  $A \subseteq int(cl(int(cl(A))))$  and an  $\alpha$ -closed set [12] if  $cl(int(cl(A))) \subseteq A$ .

#### **Definition 2.2:** A subset A of a topological space $(X,\tau)$ is called

- 1) a generalized closed set (briefly g-closed) [8] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in  $(X, \tau)$ .
- 2) a generalized semi-closed set (briefly gs-closed) [2] if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in  $(X, \tau)$ .
- 3) a  $\alpha$  generalized closed set (briefly  $\alpha$  g-closed) [11]if  $\alpha$  cl(A) $\subseteq$ U whenever A $\subseteq$ U and U is open in  $(X, \tau)$ .

- Issue 3, Volume 3 (May-June 2013) ISSN: 2250-1797
- 4) a generalized \* closed set (briefly g\*-closed) [14] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is g-open in  $(X, \tau)$ .
- 5) a generalized \*\* closed set (briefly g\*\*-closed) [13] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is g\*-open in  $(X, \tau)$ .
- 6) a generalized semi-pre closed set (briefly gsp-closed) [9] if  $spcl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in  $(X, \tau)$ .
- 7) a semi  $\alpha$  generalized \* closed set (briefly s  $\alpha$  g\*-closed)[10] if  $\alpha$  cl(A) $\subseteq$ U whenever A $\subseteq$ U and U is g\*-open in (X, $\tau$ ).

### **Definition 2.3:** A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

- 1) a continuous if the inverse image of every closed set in  $(Y, \sigma)$  is closed in  $(X, \tau)$ .
- 2) an  $\alpha g$  continuous [7] if the inverse image of every closed set in  $(Y, \sigma)$  is  $\alpha g$  closed in  $(X, \tau)$ .
- 3) ags-continuous [5] if the inverse image of every closed set in  $(Y, \sigma)$  is gs-closed in  $(X, \tau)$ .
- 4) agsp-continuous [6] if the inverse image of every closed set in  $(Y, \sigma)$  is gsp-closed in  $(X, \tau)$ .
- 5) a g\*-continuous [14] if the inverse image of every closed set in  $(Y, \sigma)$  is g\*-closed in  $(X, \tau)$ .
- 6) a sag\*-continuous [14] if the inverse image of every closed set in  $(Y, \sigma)$  is sag\*-closed in  $(X, \tau)$ .
- 7) a g\*-irresolute [14] if the inverse image of every g\*-closed set in  $(Y, \sigma)$  is g\*-closed in  $(X, \tau)$

#### Issue 3, Volume 3 (May-June 2013) ISSN: 2250-1797

### **Definition 2.4:** A topological space $(X,\tau)$ is said to be

- 1)  $aT_{1/2}$  \*-space [14] if every g\*-closed set in  $(X, \tau)$  is closed in  $(X, \tau)$ .
- 2) an  $_{\alpha}T_{c}$  space [14] if every  $\alpha g$  closed set in  $(X, \tau)$  is g\*-closed in  $(X, \tau)$ .
- 3)  $aT_b$  space [4] if every gs-closed set in  $(X, \tau)$  is closed in  $(X, \tau)$ .
- 4)  $a_{\alpha}T_{b}$  space [11] if every  $\alpha g$  closed set in  $(X,\tau)$  is closed in  $(X,\tau)$ .
- 5)  $a_{\alpha}T_{b}$  space [3] if every  $\alpha g$  closed set in  $(X,\tau)$  is closed in  $(X,\tau)$ .

### 3.Basic properties of ag\*\*-closed sets

We now introduce the following definition.

**Definition 3.1:** A subset A of  $(X,\tau)$  is said to be a  $\alpha g^{**}$ -closed set if  $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $g^{**}$ -open in X.

The class of  $\alpha g^{**}$ -closed subset of  $(X,\tau)$  is denoted by  $\alpha g^{**}C(X,\tau)$ .

**Proposition 3.2:** Every *closed set* is  $\alpha g^{**}$ -closed.

Proof follows from the definition.

The converse of the above proposition need not be true in general as seen in the following example.

**Example 3.3:**Let  $X = \{a,b,c\}$  and  $\tau = \{\Phi,X,,\{b\},\{b,c\}\}$ . Let  $A = \{c\}$ , then A is  $\alpha g^{**}$ -closed but not closed.

So, the class of  $\alpha g^{**}$ -closed setg is properly contained in the class of closed sets.

**Proposition 3.4:** Every  $g^*$ -closed set is  $\alpha g^{**}$ -closed.

Proof follows from the definition.

The converse of the above proposition need true and in general it can be seen from the following example.

Issue 3, Volume 3 (May-June 2013) ISSN: 2250-1797

**Example 3.5:**Let  $X = \{a,b,c\}$ ,  $\tau = \{\Phi,X,\{a\},\{a,b\}\}$ . Let  $A = \{b\}$  is  $\alpha g^{**}$ -closed but not  $g^{*}$ -closed.

**Proposition 3.6:** Every  $\alpha g^{**}$ -closed set is gs-closed.

Proof follows from the definition.

The converse of the above proposition need true and in general it can be seen from the following example.

**Example 3.7:**Let  $X = \{a,b,c\}$ ,  $\tau = \{\Phi,X,\{a\},\{b,c\}\}$ . let  $A = \{c\}$  &  $\{a,c\}$  is gs-closed but not  $\alpha g^{**}$ -closed.

**Proposition 3.8:** Every αg\*\*-closed set is αg-closed.

Proof follows from the definition.

The converse of the above proposition need true and in general it can be seen from the following example.

**Example 3.9:** Let  $X = \{a,b,c\}$ ,  $\tau = \{\Phi,X,\{a\},\{b,c\}\}$ . let  $A = \{a,c\}$  is  $\alpha g$ -closed but not  $\alpha g^{**}$ -closed.

**Proposition 3.10:** Every  $\alpha g^{**}$ -closed set is gsp-closed.

Proof follows from the definition.

The converse of the above proposition need true and in general it can be seen from the following example.

**Example 3.11:**Let  $X=\{a,b,c\}$ ,  $\tau=\{\Phi,X,\{a\}\}$ . Let  $A=\{a,c\}$  then A is gsp-closed but not  $\alpha g^{**}$ -closed.

**Proposition 3.12:** Every  $\alpha g^{**}$ -closed set is  $\alpha g^*$ -closed.

Proof follows from the definition.

The converse of the above proposition need true and in general it can be seen from the following example.

**Example 3.13:**Let  $X = \{a,b,c\}$ ,  $\tau = \{\Phi,X,\{a\},\{b,c\}\}$ . let  $A = \{b\}$  is  $s\alpha g^*$ -closed but not  $\alpha g^{**}$ -closed.

**Theorem 3.14:** For each  $x \in X$  either  $\{x\}$  is  $g^{**}$ -closed (or)  $\{x\}^c$  is  $\alpha g^{**}$ -closed in X.

**Proof:** If  $\{x\}$  is not  $g^{**}$ -closed then the only  $g^{**}$ -open set containing  $\{x\}^c$  is X.

 $\therefore \alpha cl\{x\}^c \subseteq X$  and hence  $\{x\}^c$  is  $\alpha g^{**} - closed$ .

**Theorem 3.15:** A is a  $\alpha g^{**}$  – *closed* set of  $(X, \tau)$  if  $\alpha cl(A) \setminus A$  does not contains any non-empty  $g^{**}$ -closed set.

**Proof:** Let F be a g\*\*-closed set of  $(X, \tau)$  such that  $F \subseteq \alpha cl(A) \setminus A$ . Then  $A \subseteq X \setminus F$  since A is  $\alpha g **-closed$  and  $X \setminus F$  is g \*\*-open,  $\alpha cl(A) \subseteq X \setminus F$ . This implies  $F \subseteq X \setminus \alpha cl(A)$  so  $F \subseteq (X \setminus \alpha cl(A)) \cap (\alpha cl(A) \setminus AS) \subseteq (X \setminus \alpha cl(A)) \cap \alpha cl(A) = \phi \Rightarrow F = \phi$ 

**Remark 3.16:**  $g^{**}$  – closedness and  $\alpha g^{**}$  – closedness are independent.

In example (3.5) A={b} is  $\alpha g^{**}$ -closed but not  $g^{**}$ -closed.

In example (3.10)  $A = \{c\}$  is  $g^{**} - closed$  but not  $\alpha g^{**} - closed$ .

The above results can be represented in the following figure.



Where  $A \to B(\text{resp. A} \Leftrightarrow B)$  represents A implies B (resp. A & B are independent)

## 4.ag\*\*-CONTINUOUS MAPS AND ag\*\*-IRRESOLUTE MAPS.

We now introduce the following definitions.

 $\therefore f$  is  $\alpha g^{**}$ -continuous in  $(X, \tau)$ .

**Definition 4.1:** A map  $f:(X,\tau)\to (Y,\sigma)$  from a topological space  $(X,\tau)$  to a topological space  $(Y,\sigma)$  is called  $\alpha g^{**}-continuous$  if the inverse image of every closed set in  $(Y,\sigma)$  is  $\alpha g^{**}-closed$  in  $(X,\tau)$ .

**Theorem 4.2:** Every *continuous map* is  $\alpha g^{**}$ -continuous.

**Proof:** Let  $f:(X,\tau) \to (Y,\sigma)$  be *continuous*. Let F be closed set in  $(Y,\sigma)$  then  $f^{-1}(F)$  is closed in  $(X,\tau)$ . Since every closed set is  $\alpha g^{**}$ -closed,  $f^{-1}(F)$  is  $\alpha g^{**}$ -closed in  $(X,\tau)$ .

The converse of the above theorem need not be true and in general it can be seen from the following example.

**Example 4.3:** Let  $X=Y=\{a,b,c\}$ ,  $\tau=\{\Phi,X,\{a,b\}\},\sigma=\{\Phi,Y,\{a\}\}\}$   $f:(X,\tau)\to (Y,\sigma)$  is defined as the identity map. The inverse image of all the closed sets in  $(Y,\sigma)$  are  $\alpha g^{**}$ -closed in  $(X,\tau)$ . But  $f^{-1}(\{b,c\})=\{b,c\}$  is not closed in  $(X,\tau)$ . Therefore f is  $\alpha g^{**}$ -continuous but not continuous.

**Theorem 4.4:** Every  $g^*$ -continuous map is  $\alpha g^{**}$ -continuous.

**Proof:** Let  $f:(X,\tau)\to (Y,\sigma)$  be g\*-continuous. Let F be closed set in  $(Y,\sigma)$  then  $f^{-1}(F)$  is g\*-closed in  $(X,\tau)$ . Since every g\*-closed set is  $\alpha g^{**}$ -closed,  $f^{-1}(F)$  is  $\alpha g^{**}$ -closed in  $(X,\tau)$ .  $\therefore f$  is  $\alpha g^{**}$ -continuous in  $(X,\tau)$ .

The converse of the above theorem need not be true and in general it can be seen from the following example.

**Example:** 4.5: Let  $X = Y = \{a,b,c\}$  and  $\tau = \{X,\Phi,\{a\},\{a,b\}\}, \sigma = \{Y,\Phi,\{b,c\},\{a\}\}\}$ .  $f:(X,\tau) \rightarrow (Y,\sigma)$  is defined as f(a)=b; f(b)=a; f(c)=c. The inverse image of all the closed sets in  $(Y,\sigma)$ 

are  $\alpha g^{**}$ -closed in  $(X,\tau)$ . But  $f^{-1}(\{a\}) = \{b\}$  is not  $g^{*}$ -closed in  $(X,\tau)$ . Therefore f is  $\alpha g^{**}$ -continuous but not  $g^{*}$ -continuous.

**Theorem 4.6:** Every  $\alpha g^{**}$ - continuous map is gs-continuous.

**Proof:** Let  $f:(X,\tau) \to (Y,\sigma)$  be sg\*\*-continuous. Let F be closed set in  $(Y,\sigma)$  then  $f^{-1}(F)$  is  $\alpha g^{**}$ -closed in  $(X,\tau)$ . Since every  $\alpha g^{**}$ -closed set is gs-closed,  $f^{1}(F)$  is  $\alpha g^{**}$ -closed in  $(X,\tau)$ .  $\therefore$  fis gs-continuous in  $(X,\tau)$ .

The converse of the above theorem need not be true and in general it can be seen from the following example.

**Example: 4.7:** Let  $X = Y = \{a,b,c\}$  and  $\tau = \{X,\Phi,\{a\},\{b,c\}\}, \sigma = \{Y,\Phi,\{a\},\{a,b\}\}\}$ .  $f:(X,\tau) \to (Y,\sigma)$  is defined as f(a)=b; f(b)=c; f(c)=a. The inverse image of all the closed sets in  $(Y,\sigma)$  are gs-closed in  $(X,\tau)$ . But  $f^{-1}(\{c\}) = \{b\}$  is not  $\alpha g^*$ -closed in  $(X,\tau)$ . Therefore f is g-continuous but not  $\alpha g^*$ -continuous.

**Theorem: 4.8** Every  $\alpha g^{**}$ - continuous map is  $\alpha g$ -continuous.

**Proof:** Let  $f: (X,\tau) \to (Y,\sigma)$  be  $\alpha g^{**}$ -continuous. Let F be closed set in  $(Y,\sigma)$  then  $f^{-1}(F)$  is  $\alpha g^{**}$ -closed in  $(X,\tau)$ . Since every  $\alpha g^{**}$ -closed set is  $\alpha g$ -closed,  $f^{-1}(F)$  is  $\alpha g$ -closed in  $(X,\tau)$ .  $\therefore f$  is  $\alpha g$ -continuous in  $(X,\tau)$ .

The converse of the above theorem need not be true and in general it can be seen from the following example.

**Example: 4.9:** Let  $X = Y = \{a,b,c\}$  and  $\tau = \{X,\Phi,\{a\},\{b,c\}\},\sigma = \{Y,\Phi,\{a\}\}\}$ .  $f:(X,\tau) \to (Y,\sigma)$  is defined as f(a)=c; f(b)=a; f(c)=b. The inverse image of all the closed sets in  $(Y,\sigma)$  are  $\alpha g$ -closed in  $(X,\tau)$ . But  $f^{-1}(\{b,c\}) = \{a,c\}$  is not  $\alpha g^*$ -closed in  $(X,\tau)$ . Therefore f is  $\alpha g$ -continuous but not  $\alpha g^*$ -continuous.

**Theorem: 4.10:**Every αg\*\*- continuous map is gsp-continuous.

**Proof:** Let  $f:(X,\tau) \to (Y,\sigma)$  be  $\alpha g^{**}$ -continuous. Let F be closed set in  $(Y,\sigma)$  then  $f^{-1}(\mathbf{F})$ is  $\alpha g^{**}$ -closed in  $(X,\tau)$ . Since every  $\alpha g^{**}$ -closed set is gsp-closed,  $f^{I}(F)$  is gsp-closed in  $(X,\tau)$ .  $\therefore f$  is gsp-continuous in  $(X,\tau)$ .

The converse of the above theorem need not be true and in general it can be seen from the following example.

**Example:** 4.11: Let  $X = Y = \{a,b,c\}$  and  $\tau = \{X,\Phi,\{a\}\},\sigma = \{Y,\Phi,\{a\},\{b,c\}\}\}$ .

 $f:(X,\tau)\to (Y,\sigma)$  is defined as the identity map. The inverse image of all the closed sets in  $(Y,\sigma)$  are gsp-closed in  $(X,\tau)$ . But  $f^{-1}(\{b,c\}) = \{a,c\}$  is not  $\alpha g^*$ -closed in  $(X,\tau)$ . Therefore f is gsp-continuous but not αg\*\*-continuous.

**Theorem 4.12:** Every  $\alpha g^{**}$ - continuous map is  $s\alpha g^{*}$ -continuous.

**Proof:** Let  $f:(X,\tau)\to (Y,\sigma)$  be  $\alpha g^{**}$ -continuous. Let F be closed set in  $(Y,\sigma)$  then <sup>1</sup>(F) is  $\alpha g^{**}$ -closed in  $(X,\tau)$ . Since every  $\alpha g^{**}$ -closed set is  $\alpha g^{*}$ -closed,  $f^{-1}(F)$  is sag\*closed in  $(X,\tau)$ .  $\therefore f$  is  $s\alpha g^*$ -continuous in  $(X,\tau)$ .

The converse of the above theorem need not be true and in general it can be seen from the following example.

**Example 4.13:** Let  $X = Y = \{a,b,c\}$  and  $\tau = \{X,\Phi,\{a\},\{b,c\}\}, \sigma = \{Y,\Phi,\{a\}\}\}$ .

 $f:(X,\tau)\to (Y,\sigma)$  is defined as f(a)=c; f(b)=a; f(c)=b. The inverse image of all the closed sets in  $(Y,\sigma)$  are sag\*-closed in  $(X,\tau)$ . But  $f^{-1}(\{b,c\}) = \{a,c\}$  is not ag\*-closed in  $(X,\tau)$ . Therefore *f is sαg\*-continuous* but not αg\*\*-continuous.

We now introduce the following definition.

**Definition 4.14:** A function  $f:(X,\tau)\to (Y,\sigma)$  is said to be  $\alpha g^{**}-irresolute$  if the inverse image of every  $\alpha g^{**}$  - closed set in  $(Y, \sigma)$  is  $\alpha g^{**}$  - closed in  $(X, \tau)$ 

**Theorem 4.15:** Let  $f:(X,\tau) \to (Y,\sigma)$  and  $g:(Y,\sigma) \to (Z,\eta)$  be any two functions then,

- Issue 3, Volume 3 (May-June 2013) ISSN: 2250-1797
- (i)  $g \circ f: (X, \tau) \to (Z, \eta)$  is  $\alpha g **-continuous$  if f is  $\alpha g **-irresolute$  and g is  $\alpha g **-continuous$ .
- (ii)  $g \circ f: (X, \tau) \to (Z, \eta)$  is  $\alpha g **-irresolute$  if f and gare  $\alpha g **-irresolute$ .
- (iii)  $g \circ f: (X, \tau) \to (Z, \eta)$  is  $\alpha g **-continuous$  if f is  $\alpha g **-irresolute$  and g is continuous.

Proof follows from the definitions.

**Theorem 4.16:** Every g\*-irresolute map is  $\alpha g^{**}$ -continuous

Proof follows from the definitions.

The above results can be represented in the following figure.



Where  $A \to B$  (resp.  $A \Leftrightarrow B$ ) represents A implies B (resp. A & B are independent)

### 5. APPLICATIONS OF sg\*\*-CLOSED SET.

As applications of  $\alpha g^{**}$ -closed sets , new spaces namely,  $T_{\alpha}^{**}$ -space and  $^*T_{\alpha}^{*}$ -space are introduced.

We introduce the following definitions.

**Definition 5.1:** A space  $(X, \tau)$  is said to be  $T_{\alpha}^{**}$  – space, if every  $\alpha g^{**}$ -closed set in  $(X, \tau)$  is closed in  $(X, \tau)$ .

**Definition 5.2:** A space  $(X, \tau)$  is said to be  ${}^*T_{\alpha}{}^* - space$ , if every  $\alpha g^{**}$ -closed set in  $(X, \tau)$  is  $g^*$ -closed in  $(X, \tau)$ .

**Theorem5.3:** Every  $T_{\alpha}^{**}$  – space is  $T_{1/2}^{*}$  – space but not conversely.

Proof follows from the definitions.

The converse of the above theorem need not be true in general as seen in the following example.

**Example 5.4:** In example (3.11), where  $X = \{a,b,c\}$   $\tau = \{\phi,X,\{a\}\}$  every  $g^*$ -closed set is closed...:  $(X,\tau)$  is a  $T_{1/2}^*$  – space. In this space  $\{b\}$  is  $\alpha g^{**}$ -closed but not closed in  $(X,\tau)$ . Therefore every  $\alpha g^{**}$ -closed set is not closed in  $(X,\tau)$ :  $(X,\tau)$  is not a  $T_{\alpha}^{**}$  – space.

**Theorem5.5:** Every  $T_{1/2}^*$  – space and  ${}_{\alpha}T_{c}$  – space is  $T_{\alpha}^{**}$  – space.

Proof follows from the definitions.

**Theorem 5.6:** Every  $T_b - space$  is  $T_{\alpha}^{**} - space$ .

Proof follows from the definitions.

**Theorem 5.7:** Every  $_{\alpha}T_{b}$  - space is  $T_{\alpha}^{**}$  - space.

Proof follows from the definitions.

**Theorem 5.8:** Let  $f:(X,\tau)\to (Y,\sigma)$  be a  $\alpha g^{**}-continuous$  map. If  $(X,\tau)$  is  $T_{\alpha}^{**}-space$  then f is continuous.

**Proof:** Let  $f:(X,\tau)\to (Y,\sigma)$  be  $\alpha g^{**}-continuous$ . Let F be closed in  $(Y,\sigma)$  then since f is  $\alpha g^{**}-continuous$   $f^{-1}(F)$  is  $\alpha g^{**}-closed$  in  $(X,\tau)$  Also since  $(X,\tau)$  is a  $T_{\alpha}^{**}-space$ ,  $f^{-1}(F)$  is closed in  $(X,\tau)$ 

The inverse image  $f^{-1}(F)$  is closed in  $(X,\tau)$ : f is continuous.

**Theorem 5.9:** Every  $_{\alpha}T_{c}$  - space is  $^{*}T_{\alpha}^{\ *}$  - space.

**Proof:** Let  $(X, \tau)$  be  ${}_{\alpha}T_{c}$  - space Let A be  $\alpha g^{**}$ -closed in  $(X, \tau)$ 

**Theorem 5.10:** Every  $T_c - space$  is  ${}^*T_{\alpha}^{\ \ *} - space$ .

Proof follows from the definition.

#### **BIBLIOGRAPHY**

- 1. D. Andrijevic, "Semi- per open sets", Mat. Vesnik, 38(1) (1986), 24-32.
- S.P. Arya and T. Nour, "Characterizations of s-normal spaces", Indian J. Pure. Appl. Math., 21(8)(1990), 717-719.
- 3. K. Balachandran, P. Sundaram and H.Maki, "On generalized continuous maps in topological spaces", Mem. Fac. Kochi Univ. Ser. A. Math., 12(1991), 5-13.
- 4. R. Devi H. Maki and K. Balachandran, "Semi-generalized closed maps and generalized closed maps", Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 14(1993), 41-54.
- R. Devi H. Maki and K. Balachandran, "Semi-generalized homeomorphisms and generalized semi-homeomorphism in topological spaces", Indian J. Pure. Appl. Math., 26(3)(1995), 271-284.
- J. Dontchev, "On generalizing semi- pre open sets", Mem. Fac. Sci. Kochi Ser. A, Math., 16 (1995), 35-48.
- 7. Y. Gnanbambal, "On generalized pre regular closed sets in topological spaces", Indian j. Pure. Appl. Math., 28 (3) (1997), 351-360.

- Issue 3, Volume 3 (May-June 2013) ISSN: 2250-1797
- 8. N. Levine, "Generalized closed sets in topology", Rend. Circ. Math. Palermo, 19 (2) (1970), 89-96.
- 9. N. Levine, "Semi-open sets and semi-continuity in topological spaces", Amer. Math. Monthly, 70 (1963), 36-41.
- S. Maragatharalli and M. Sheik Jhon, "On sag\*\*-closed sets in topological spaces",
  ACTA CIENCIA INDICA, Vol XXXI 2005 No.3, (2005), 805-814.
- 11. H. Maki, R. Devi and K. Balachandran, "Associated topologies of generalized α-closed sets and α-generalized closed sets", Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 15 (1994), 51-63.
- 12. O. Njasted, "On some classes of nearly open sets", Pacific J. Math., 15(1965), 961-970
- 13. M. Pauline Mary Helen, PonnuthaiSelvarani. S, Veronica Vijayan, "g\*\*-closed sets in topological spaces", IJMA, 3 (5), 2012, 1-15.
- 14. M.K.R.S. Veerakumar, "Between closed sets and g-closed sets", Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17 (1996), 33-42.