b-separation axioms and au^{*b} -Topology

Elvina Mary. L, Assistant Professor in Mathematics, Nirmala College, Coimbatore

Pauline Mary Helen.M, Associate Professor in Mathematics, Nirmala College

Kulandhai Therese .A, Associate Professor in Mathematics, Nirmala College, Coimbaore.

Abstract: In this paper, the characterization of basic open sets and subbasic open sets are introduced and discussed in τ^{*b} - topology

Keywords: Basic open sets and sub-basic open sets in τ^{*b} Topology,b- Compactness modulo an ideal,b-countably compact modulo \mathcal{I} , b-Lindelof modulo an ideal,bT₀ modulo an ideal, bT₁ modulo an ideal, bT₂ modulo an ideal, bT₃ modulo an ideal, b-normal modulo an ideal

1. Introduction: Ideal topological spaces have been first introduced by K. Kuratowski[4] in 1930. R. Vaidyanathaswamy,[8] introduced local function in 1945 and defined a topology τ^* . Andrijevic[2]introduced a new class of b-open sets in a topological space in 1996. Pauline Mary Helen, et.al [6], ,introduced b-local function and obtained τ^{*b} -topology in *b-finitely additive space. In this paper, the characterization of basic open sets and subbasic open sets are introduced and discussed in τ^{*b} - topology.

2. Preliminaries and definitions

Definition 2.1:[3]An ideal \mathcal{I} on a nonempty set X is a collection of subsets of X which satisfies the following properties:(i)A $\in \mathcal{I}$ and B \subset A implies B $\in \mathcal{I}$ (ii)A $\in \mathcal{I}$ and B $\in \mathcal{I}$ implies A \cup B $\in \mathcal{I}$

Definition 2.2:[3]A topological space (X, τ) with an ideal \mathcal{I} on X is called an ideal topological space and is denoted by (X, τ, \mathcal{I}) . Let Y be a subset of X. Then, $\mathcal{I}_Y = \{I \cap Y/I \in \mathcal{I}\}$ is an ideal on Y and $\mathcal{I}_Y = \{G \cap Y/G \in \tau\}$ is a topology on Y. By $(Y, \tau/Y, \mathcal{I}_Y)$ we denote the ideal topological subspace.

Definition 2.3:[9]Let $\mathcal{P}(X)$ be the power set of X, then a set operator ()*: $\mathcal{P}(X) \to \mathcal{P}(X)$, called the local function of A with respect to τ and \mathcal{I} is defined as follows: For $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X/U \cap A \notin \mathcal{I} \text{ for every open set } U \text{ containing } x\}$.

We simply write A^* instead of $A^*(\mathcal{I}, \tau)$ in case there is no confusion. X^* is often a proper subset of X.

Definition 2.4:[3]A Kuratowski closure operator cl*() for a topology $\tau^*(\mathcal{I}, \tau)$, called the τ^* -topology is defined by cl*(A)= AU A*. $\tau^*(\mathcal{I})$ is finer than τ and $\beta(\mathcal{I}, \tau) = \{U\text{-I/U} \in \tau, I \in \mathcal{I}\}$ is a basis for $\tau^*(\mathcal{I})$.

Definition 2.5:[3]A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be τ^* -closed or simply *-closed if $A^*\subseteq A$.

For a subset A of X, cl(A) denotes the closure of A in (X, τ) . Similarly $cl^*(A)$ and int*(A) will represent the closure of A and the interior of A in (X,τ^*) respectively.

Definition 2.6:[2] A subset A of X is said to be b-open if A \subseteq cl int (A) \cup int cl(A). The complement of b- open set is called b- closed. The collection of all b-open sets and b-closed sets are denoted by BO(X, τ) and BC(X, τ).

Note 2.7:[2]

- 1. Arbitrary union of b-open sets is b-open.
- 2. Intersection of b-open sets need not b-open. Equivalently union of b-closed sets need not b-closed.

Definition 2.8:[6]Let (X, τ, \mathcal{I}) be an ideal topological space and A subset of X. Then $A^{*b}(\mathcal{I}, \tau) = \{x \in X/A \cap U \notin \mathcal{I} \text{ for every } U \in BO(X, x)\}$ is called the b-local function of A with respect to \mathcal{I} and τ , where $BO(X, x) = \{U \in BO(X)/x \in U\}.cl^{*b}(A)$ is defined to be $A \cup A^{*b}$.

Remark 2.9:[6]Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X. Then, for the b-local function, the following properties hold:

- 1. If $A \subset B$, then $A^{*b} \subset B^{*b}$.
- 2. $A^{*b} = bcl(A^{*b}) \subset bcl(A)$ and A^{*b} is b-closed in X
- 3. $(A^{*b})^{*b} \subseteq A^{*b}$.
- 4. $(A \cup B)^{*b} \subseteq A^{*b} \cup B^{*b}$.

In general $(A \cup B)^{*b} \neq A^{*b} \cup B^{*b}$.

 $cl^{*b}(A)$ satisfies the following properties.

- 1. $cl^{*b}(\varphi) = \varphi$
- 2. $cl^{*b}(cl^{*b}(A))=cl^{*b}(A)$
- 3. $cl^{*b}(A \cup B) \subseteq cl^{*b}(A) \cup cl^{*b}(B)$
- $4.\,A\subseteq cl^{*b}({\rm A})$

Definition 2.10:[6] An ideal topological space (X, τ, \mathcal{I}) is said to be

- Issue 3, Volume 3 (May-June 2013) ISSN: 2250-1797
- (1) *b- finitely additive if $[\bigcup_{i=1}^{\infty} A_i]^{*b} = \bigcup_{i=1}^{\infty} (A_i)^{*b}$.
- (2) *b-Countably additive if $[\bigcup_{i=1}^{\infty} A_i]^{*b} = \bigcup_{i=1}^{\infty} (A_i)^{*b}$.
- (3) *b –additive if $(\bigcup_{\alpha} A_{\alpha})^{*b} = \bigcup_{\alpha} (A_{\alpha})^{*b}$ for arbitrary collection $\{A_{\alpha}\}$.

Note 2.11: [6] In a *b- finitely additive space,

$$cl^{*b}(A \cup B) = (A \cup B) \cup (A \cup B)^{*b} = (A \cup B) \cup (A^{*b} \cup B^{*b}) = cl^{*b}(A) \cup cl^{*b}(B)$$

If (X, τ, \mathcal{I}) is *b-finitely additive, then $cl^{*b}(A)$ satisfies the Kurtowski closure axiom. Therefore $\tau^{*b} = \{A \ X/cl^{*b}(X-A) = X-A\}$ is a topology on X.

Definition 2.12:[2]Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a map. Then, f is said to be

- (1) b-continuous if f^{-1} (A) is b-open whenever A is open in Y.
- (2) b-open if f (A) is b-open whenever A is open in X.
- (3) Strongly b-continuous if f^{-1} (A) is open in X whenever A is b-open in Y.
- (4) b-irresolute if f^{-1} (A) is b-open in X whenever A is b-open in Y.
- (5) b-resolute if f (A) is b-open whenever A is b-open in X.

Definition 2.13:[7]Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a map. Then, f is said to be b-homeomorphism if f is a i)bijection ii) b-irresolute iii) b-resolute.

Definition 2.14:[7]Any property of X which is entirely expressed in terms of the topology of X yields,(via the b-homeomorphism f) the corresponding property for the space Y is called a b-topological property of X.

Definition 2.15:[4] A subset Y of an ideal topological space (X, τ, \mathcal{I}) is said to be b-compact if for every cover $\{G_{\alpha}/\alpha \in \Omega\}$ of X by b-open sets G_{α} in X, there exist a finite subset Ω_0 of Ω such that $X = \bigcup_{\alpha \in \Omega_0} G_{\alpha}$.

Definition 2.16:[7]A topological space (X, τ) is said to be b- Lindelof if for every b- open cover $\{U_{\alpha}\}_{{\alpha}\in\Omega}$ of X there exists a countable subset Ω_0 of Ω such that $X - \bigcup_{{\alpha}\in\Omega_0} U_{\alpha}$.

Definition 2.17:[8] An ideal topological space (X, τ, \mathcal{I}) is said to be Lindelof modulo \mathcal{I} if for every open $\operatorname{cover}\{U_{\alpha}\}_{\alpha\in\Omega}$ of X there exists a countable subset Ω_0 of Ω such that $X - \bigcup_{\alpha\in\Omega_0} U_{\alpha}\in\mathcal{I}$.

Definition 2.18:[7] A collection \mathcal{B} of b-open sets is said to be a b- basis for X if for every b-open set U and $x \in U$ there exist $B \in \mathcal{B}$ such that $x \in B \subseteq U$. The members of \mathcal{B} are called basic b-open sets.

Definition 2.19:[8] A topological space (X, τ) is said to be bT_0 if for any two points $x \neq y$ in X there exist b-open set G such that $x \in G$, $y \notin G$ or $y \in G$, $x \notin G$.

Definition 2.20:[8]An ideal topological space (X, τ, \mathcal{I}) is said to be T_0 modulo \mathcal{I} if for any two points $x \neq y$ in X, there exist a open set G such that $x \in G$ and $G \cap \{y\} \in \mathcal{I}$ or $y \in G$ and $G \cap \{x\} \in \mathcal{I}$.

Definition 2.21:[7] A topological space (X, τ) is said to be bT_1 if for every two points $x \neq y$ in X there exist b-open sets $U, V \in \tau$ such that $x \in U \setminus V$, $y \in V \setminus U$. Equivalently, every singleton set is b-closed.

Definition 2.22:[8] An ideal topological space (X, τ, \mathcal{I}) is said to be T_1 modulo \mathcal{I} if for any two points $x \neq y$ in X, there exist a open sets $U, V \in \tau$ such that $x \in U \setminus V, y \in V \setminus U$ and $U \cap \{y\} \in \mathcal{I}$ and $V \cap \{x\} \in \mathcal{I}$.

Definition 2.23:[7] A topological space (X, τ) is said to be bT_2 if for every two points $x \neq y$ in X there exist disjoint b-open sets U, V in X such that $x \in U$, $y \in V$.

Definition 2.24:[8]An ideal topological space (X, τ, \mathcal{I}) is said to be T_2 modulo \mathcal{I} if for every points $x \neq y$ in X, there exist a open sets U, V in X such that $x \in U \setminus V$, $y \in V \setminus U$ and $U \cap V \in \mathcal{I}$.

Definition 2.25:[7]A topological space (X, τ) is said to be a bT_3 space or b-regular space, if

(1)X is b T_1 space and

(2)For any b-closed subset F of X and every point $x \notin F$ there exist disjoint b-open sets G, H in X such that $x \in H$, $F \subseteq G$.

Definition 2.26:[8] An ideal topological space (X, τ, \mathcal{I}) is said to be a T_3 modulo \mathcal{I} space or regular modulo an ideal space. If

- (1) X is T_1 modulo \mathcal{I} and
- (2) For any semi closed subset F of X and every point $x \notin F$ there exist b-open sets G, H such that $x \in H \setminus G$, $F \subseteq G H$ and $G \cap H \in \mathcal{I}$.

Definition 2.27:[7]A topological space (X, τ) is said to be b-normal if

- (1) X is semi T_1 space.
- (2) For any two disjoint semi closed sets G, H in X, there exist disjoint b-open sets

U, V such that $G \subseteq U$, $H \subseteq V$.

Definition 2.28:[8] An ideal topological space (X, τ, \mathcal{I}) is said to be normal modulo \mathcal{I} if

- (1) X is T_1 modulo \mathcal{I} .
- (2) For any two disjoint closed sets G, H in X, there exists open sets U, V such that G $\subseteq U \setminus V$, H $\subseteq V \setminus U$ and G \cap H $\in \mathcal{I}$.

3. Basic open sets and sub-basic open sets in τ^{*b} Topology

Definition 3.1[7]: A topological space (X, τ) is said to be

- (1) finitely b-additive if finite union of b-closed sets is b-closed.
- (2) Countablyb-additive if finite union of b-closed sets is b-closed.
- (3) b-additive if arbitrary union of b-closed sets is b-closed.

Remark 3.2[7]: b-additive \Rightarrow Countably b-additive \Rightarrow Finitely b-additive.

Example 3.3:Let (X, τ) be an infinite cofinite topological space. Then, $\tau = {\phi, X, A/A^c \text{ isfinite}}$, BO(X)= ${\phi, X, A/A \text{ is infinite}}$. In this space a set A is b-closed $\Leftrightarrow A^c$ is infinite.

This space is not finitely b-additive and hence it is not countably b-additive andb-additive.

Theorem 3.4:If (X, τ, \mathcal{I}) is finitely *b-additive and finitely b-additive space then $\mathcal{B} = \{V - I / V \in BO(X), I \in \mathcal{I}\}$ is a basis for the topology τ^{*b} .

Proof:If (X, τ, \mathcal{I}) is *b-finitely additive then τ^{*b} is a topology. $U \in \tau^{*b} \Leftrightarrow X$ -U is τ^{*b} -closed $\Leftrightarrow (X - U)^{*b} \subseteq X$ -U $\Leftrightarrow U \subseteq X$ - $(X - U)^{*b} : x \in U \Rightarrow x \notin (X - U)^{*b} \Rightarrow$ there exist $V \in BO(X, x)$ such that $V \cap (X - U) \in \mathcal{I}$. Let $I = V \cap (X - U)$ then $x \notin I$ which implies $x \in V - I \subseteq U$.

It is enough to prove: Intersection of two members of \mathcal{B} is again in \mathcal{B} .Let $x \in (V_1 - I_1) \cap (V_2 - I_2)$ where V_1 , $V_2 \in BO(X)$ and I_1 , $I_2 \in \mathcal{I}$.Then, $(V_1 - I_1) \cap (V_2 - I_2) = V_1 \cap I_1^c \cap V_2 \cap I_2^c$ = $(V_1 \cap V_2) \cap (I_1 \cup I_2)^c = (V_1 \cap V_2) - (I_1 \cup I_2) \in \mathcal{B}$, since $V_1 \cap V_2$ is b-open and $I_1 \cup I_2 \in \mathcal{I}$. \mathcal{B} is a basis for τ^{*b} .

Note 3.5:If (X, τ, \mathcal{I}) is finitely *b-additive and not finitely b-additive then \mathcal{B} is only a sub basis for τ^{*b} .

Example 3.6:Let(X, τ) be an infinite cofinite topological space and $\mathcal{I} = \mathcal{P}(X)$. Then $A^{*b} = \phi$ for any subset A and BO(X) = { ϕ , X, all infinite subsets}. Therefore (X, τ) is not finitely badditive. But $cl^{*b}(A) = A \cup A^{*b} = A$ for all $A \subseteq X$. Therefore (X, τ , \mathcal{I}) is finitely *b additive. So in this space B need not be a subbasis for τ^{*b}

Theorem 3.7: In (X, τ) a set is b-open if and only if it is union of b-basic open sets.

Proof:Let U be b-open. For every $x \in U$ there exist $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq U$. Therefore $U = U_{x \in U} B_x$. Conversely ,union of b-basic open sets is b-open, since every b-basic open set is b-open and union of b-open sets is b-open.

4.b-COMPACTNESS MODULO AN IDEAL

Definition4.1:An ideal topological space (X, τ, \mathcal{I}) is said to be b-compact modulo \mathcal{I} if for every b-open cover $\{G_{\alpha}/\alpha \in \Omega\}$ of X there exists a finite subset Ω_0 of Ω such that $X - \bigcup_{\alpha \in \Omega_0} G_\alpha \in \mathcal{I}$.

Remark 4.2:

- (1) Every finite ideal topological space (X, τ, \mathcal{I}) is b-compact modulo \mathcal{I} .
- (2) Every b-compact modulo \mathcal{I} space is compact modulo \mathcal{I} , since every open set is b-open.

(3) Every b-compact space is b-compact modulo \mathcal{I} , for any ideal \mathcal{I} since $\varphi \in \mathcal{I}$ but not conversely as seen in the following example.

Example 4.3:Consider an infinite discrete space (X, τ) and an ideal $\mathcal{P}(X)$. In this space $BO(X)=\{\text{all subsets}\}.\{\{x\}/x\in X\}$ is a b-open cover which has no finite sub cover. $\therefore(X, \tau)$ is not b-compact. On the other hand if $\{G_{\alpha}/\alpha\in\Omega\}$ is a b-open cover for X, and Ω_0 is any finite subset of Ω , then $X-\bigcup_{\alpha\in\Omega_0}G_\alpha\in\mathcal{P}(X)...(X, \tau, \mathcal{P}(X))$ is b-compact modulo $\mathcal{P}(X).But(X, \tau)$ is not b-compact

Theorem 4.4:Let (X, τ, \mathcal{I}) be a b-compact modulo \mathcal{I} space. Then every b-closed subset of X is b-compact modulo \mathcal{I} .

Proof: Let A be a b-closed subset of X and $\{G_{\alpha}\}_{\alpha \in \Omega}$ be a cover for A by b-open sets in X. Then $\{\{G_{\alpha}\}_{\alpha \in \Omega}, X-A\}$ is a b-open cover for X. By the hypothesis there exist a finite sub cover such that $X - \{G_{\alpha_1} \cup \ldots \cup G_{\alpha_n} \cup (X-A)\} \in \mathcal{I}$. Then $A - \{G_{\alpha_1} \cup \ldots \cup G_{\alpha_n}\} \in \mathcal{I}$. \therefore A is b-compact modulo \mathcal{I} .

Theorem 4.7: If $f: X \rightarrow Y$ is a bijection then J is an ideal in Y, $\Leftrightarrow f^{-1}(J)$ is an ideal in X.

Proof: Obvious from the definition.

Theorem 4.8: Let $f:(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, f(\mathcal{I}))$ be a bijection. Then

- (1) X is b-compact modulo \mathcal{I} and f is b-irresolute \Rightarrow Y is b-compact modulo $f(\mathcal{I})$.
- (2) X is b-compact modulo \mathcal{I} and f is b-continuous \Rightarrow Y is compact modulo f(\mathcal{I}).
- (3) X is compact modulo \mathcal{I} and f is strongly b-continuous \Rightarrow Y is b-compact modulo \mathcal{I} .
- (4) Y is b-compact modulo $f(\mathcal{I})$ and f is b-resolute $\Rightarrow X$ is b-compact modulo \mathcal{I} .
- (5) Y is b-compact modulo $f(\mathcal{I})$ and f is b-open \Rightarrow X is compact modulo \mathcal{I} .

Proof:Let $\{G_{\alpha}\}_{\alpha\in\Omega}$ be a b-open cover for Y. Since f is b-irresolute, $f^{-1}(G_{\alpha})$ is b-open in X for all $\alpha\in\Omega$. $\therefore \{f^{-1}(G_{\alpha})\}_{\alpha\in\Omega}$ is a b-open cover for X. Since X is b-compact modulo \mathcal{I} , there exists a finite subset Ω_0 of Ω such that $X-\bigcup_{\alpha\in\Omega_0}f^{-1}(G_{\alpha})\in\mathcal{I}$. \therefore Y- $\bigcup_{\alpha\in\Omega_0}(G_{\alpha})\in f(\mathcal{I})$. \therefore Y is b-compact modulo $f(\mathcal{I})$.

Proof of (2) to (4) are similar.

Remark 4.9: From Theorem 4.8 (1) and (4) ,it follows that 'b-compact modulo \mathcal{I} ' is a b-topological property.

Theorem 4.10:Let \mathcal{I}_F denote the ideal of all finite subsets of X. Then (X,τ) is b-compact if and only if (X,τ,\mathcal{I}_F) is b-compact modulo \mathcal{I}_F .

Proof: Let (X, τ) be b-compact. Then by the remark 4.2(3), (X, τ, \mathcal{I}_F) is b-compact modulo \mathcal{I}_F .

Conversely let (X, τ, \mathcal{I}_F) be b-compact modulo \mathcal{I}_F . Let $\{G_\alpha\}_{\alpha \in \Omega}$ be a b-open covering for X.

Then there exist a finite subset Ω_0 of Ω such that $X - \bigcup_{\alpha \in \Omega_0} (G_\alpha) \in \mathcal{I}_F$. Let $X - \bigcup_{\alpha \in \Omega_0} (G_\alpha) = \{x_1, x_2, \dots, x_n\}$ and let $x_i \in G_{\alpha_i}$ for $i=1,2,3,\dots,n$. Then $X = \{\bigcup_{\alpha \in \Omega_0} G_\alpha\} \cup \{\bigcup_{i=1}^n G_{\alpha_i}\}$. \therefore (X, τ) is b-compact.

5. b-COUNTABLY COMPACT MODULOJ

Definition 5.1 : A subset A of a topological space (X, τ) is said to be b-countably compact if every countable b-open covering of A has a finite sub cover.

Definition 5.2: An ideal topological space (X, τ, \mathcal{I}) is said to be b-countably compact modulo \mathcal{I} if for every countable b-open cover $\{G_{\alpha}/\alpha \in \Omega\}$ of X, there exists a finite subset Ω_0 of Ω such that $X - \bigcup_{\alpha \in \Omega_0} G_{\alpha} \in \mathcal{I}$.

All the results from remark (4.2) to theorem (4.10) are true in the case when (X, τ, \mathcal{I}) is b-countably compact modulo \mathcal{I} .

Remark 5.3:

- (1) b-compact modulo \mathcal{I} implies b-countably compact modulo \mathcal{I} for $\varphi \in \mathcal{I}$
- (2) Every finite ideal topological space (X, τ, \mathcal{I}) is b- countably compact modulo \mathcal{I} .
- (3) Every b- countably compact modulo \mathcal{I} space is countably compact modulo \mathcal{I} , since every open set is b-open.
- (4) Every b-countably compact space is b-countably compact modulo \mathcal{I} , for any ideal \mathcal{I} since $\varphi \in \mathcal{I}$

Theorem 5.4:Let (X, τ, \mathcal{I}) be a b-countably compact modulo \mathcal{I} space. Then every b-closed subset of X is b-countably compact modulo \mathcal{I} .

Proof: Proof is similar to the proof of theorem (4.4)

Theorem 5.5: If $f: X \rightarrow Y$ is a bijection then J is an ideal in $Y, \Leftrightarrow f^{-1}(J)$ is an ideal in X.

Proof: Obvious from the definition.

Theorem 5.6: Let $f:(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, f(\mathcal{I}))$ be a bijection. Then

(1) X is b-countably compact modulo \mathcal{I} and f is b-irresolute \Rightarrow Y is b- countably compact modulo $f(\mathcal{I})$.

(2) X is b- countably compact modulo \mathcal{I} and f is b-continuous \Rightarrow Y is countably compact modulo

 $f(\mathcal{I})$.

(3) X is countably compact modulo \mathcal{I} and f is strongly b-continuous \Rightarrow Y is b- countably compact

modulo \mathcal{I} .

(4) Y is b- countably compact modulo $f(\mathcal{I})$ and f is b-resolute $\Rightarrow X$ is b- countably compact

modulo \mathcal{I} .

(5) Y is b- countably compact modulo $f(\mathcal{I})$ and f is b-open \Rightarrow X is countably compact modulo \mathcal{I} .

Proof: Proof is similar to the proof of theorem (4.8).

Remark 5.7: From (1) and (4) of theorem 5.6, it follows that 'b-countably compact modulo \mathcal{I} ' is

a b- topological property.

Theorem 5.8: Let \mathcal{I}_F denote the ideal of all finite subsets of X. Then (X,τ) is b-countably compact

if and only if (X, τ, \mathcal{I}_F) is b-countably compact modulo \mathcal{I}_F .

Proof: Proof is similar to theorem (4.10)

6.b-LINDELOF MODULO AN IDEAL

Definition 6.1: An ideal topological space (X, τ, \mathcal{I}) is said to be b-Lindelof modulo \mathcal{I} if for

every b-open cover $\{U_{\alpha}\}_{{\alpha}\in\Omega}$ there exists a countable subset Ω_0 of Ω such that $X - \bigcup_{{\alpha}\in\Omega_0} U_{{\alpha}} \in \mathcal{I}$.

Remark 6.2:

If (X, τ) is b-Lindelof then (X, τ, \mathcal{I}) is b-Lindelof modulo \mathcal{I} for any ideal \mathcal{I} , since (1)

 $\{\phi\}\in\mathcal{I}.$

(2) If (X, τ, \mathcal{I}) is b-compact modulo \mathcal{I} then (X, τ, \mathcal{I}) is b-Lindelof modulo \mathcal{I} . It follows

from the definition.

- (3) (X, τ) is b-Lindelof \Leftrightarrow (X, τ, φ) is b-Lindelof modulo $\{\varphi\}$. It follows from the definition.
- (4) If (X, τ, \mathcal{I}) is b- Lindelof modulo \mathcal{I} then (X, τ, \mathcal{I}) is Lindelof modulo \mathcal{I} since every open set is b-open.

Theorem 6.3:Let \mathcal{I}_c be the ideal of countable subsets of X. Then (X, τ) is b-Lindelof (X, τ, \mathcal{I}_c) is b-Lindelof modulo \mathcal{I}_c .

Proof:Proof is similar to theorem 4.10

Corollary 6.4:If (X, τ, \mathcal{I}_c) is b-compact modulo \mathcal{I}_c then (X, τ) is b-Lindelof.

Proof: Follows from remark 6.2 (2) and theorem 6.5.

Theorem 6.5: A topological space (X, τ, \mathcal{I}) is b- Lindelof modulo \mathcal{I} if and only if every b-basic open cover $\{B_{\alpha}\}$ has a countable sub collection $\{B_{\alpha_i}\}$ such that $X - \bigcup_{i=1}^{\infty} B_{\alpha_i} \in \mathcal{I}$.

Proof: Necessity: Obvious since b-basic open sets are b-open.

Sufficiency:Let $\{U_{\alpha}\}_{\alpha\in\Omega}$ be a b-open cover for X. By theorem (3.7), each U_{α} is a union of b-basic open sets $B_{\mathcal{B}}'$ s. So the collection of all such $B_{\mathcal{B}}'$ s is a b-basic open cover for X. By hypothesis, there exists a countable sub collection $\{B_{\mathcal{B}_i}/i=1,2,\ldots\}$ such that X- $\bigcup_{i=1}^{\infty}B_{\mathcal{B}_i}\in\mathcal{I}$.

For each set $B_{\mathcal{B}_i}$ in this countable collection, select a U_{α_i} which contains it. Then $\{U_{\alpha_i}\}_{i=1}^{\infty}$ is a countable sub cover of the collection $\{U_{\alpha}\}_{\alpha\in\Omega}$ and $X - \bigcup_{i=1}^{\infty} U_{\alpha_i} \subseteq X - \bigcup_{i=1}^{\infty} B_{\mathcal{B}_i} \in \mathcal{I}$. Therefore (X, τ, \mathcal{I}) is b- Lindelof modulo \mathcal{I} .

Definition 6.6: A subset A of (X, τ, \mathcal{I}) is said to be b –Lindelof modulo \mathcal{I} if every cover

 $\{U_{\alpha}/\alpha\in\Omega\}$ of A by b-open sets in X has a countable sub cover $\{U_{\alpha_i}\}_{i=1}^{\infty}$ such that A- $\bigcup_{i=1}^{\infty}U_{\alpha_i}\in\mathcal{I}$.

Theorem 6.7: Let (X, τ, \mathcal{I}) be b- Lindelof modulo \mathcal{I} space. Then every b-closed subset of X is b-Lindelof modulo \mathcal{I} .

Proof:Similar to proof of theorem (4.4)

Theorem 6.8: Let $f:(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, f(\mathcal{I}))$ be a bijection. Then

1) X is b-Lindelof modulo \mathcal{I} and f is b-irresolute \Rightarrow Y is b-Lindelof modulo $f(\mathcal{I})$.

2)X is b-Lindelof modulo \mathcal{I} and f is b-continuous \Rightarrow Y is Lindelof modulo $f(\mathcal{I})$.

3)X is Lindelofmodulo \mathcal{I} and f is strongly b-continuous \Rightarrow Y is b-Lindelof modulo \mathcal{I} .

4)Y is b-Lindelofmodulo $f(\mathcal{I})$ and f is b- resolute $\Rightarrow X$ is b-Lindelof modulo \mathcal{I} .

Proof:Similar to proof of theorem 4.8

Remark 6.9: From theorem 6.8(1) and (4) it follows that 'b-Lindelof modulo \mathcal{I} ' is a b-topological property.

Theorem 6.10:Let (X, τ, \mathcal{I}) be finitely *b additive space. Then if $(X, \tau^{*b}, \mathcal{I})$ is Lindelof modulo \mathcal{I} then (X, τ, \mathcal{I}) is b- Lindelof modulo \mathcal{I} . The converse is true if X is also finitely b-additive and \mathcal{I} is closed under countable union.

Proof: Necessity: Under the given hypothesis τ^{*b} is a topology. Let $\{U_{\alpha}\}_{\alpha \in \Omega}$ be a b-open cover for X. Since BO(X) $\subseteq \tau^{*b}$ and $(X, \tau^{*b}, \mathcal{I})$ is Lindelof modulo \mathcal{I} , there exist a countable subset Ω_0 of Ω such that $X - \bigcup_{\alpha \in \Omega_0} U_{\alpha} \in \mathcal{I}$. Hence (X, τ, \mathcal{I}) is b- Lindelof modulo \mathcal{I} .

Sufficiency:Since (X, τ) is finitely b- additive, $\{U\text{-}I/U \in BO(X) \text{ and } I \in \mathcal{I}\}$ is a basis for τ^{*b} .Let $\{U_{\alpha}/\alpha \in \Omega\}$ be a cover for X by basic τ^{*b} -open sets.Then $U_{\alpha} = G_{\alpha}$ - I_{α} where $G_{\alpha} \in BO(X)$ and $I_{\alpha} \in \mathcal{I}$.Here $\{G_{\alpha}\}$ is a b-open cover for X. Then there exists $\{G_{\alpha_i}/i=1,2,\ldots\}$ such that X- $\bigcup_{i=1}^{\infty} G_{\alpha_i} \in \mathcal{I}$. \dot{X} - $\bigcup_{i=1}^{\infty} U_{\alpha_i} = (X - \bigcup_{i=1}^{\infty} G_{\alpha_i}) \cup (\bigcup_{i=1}^{\infty} I_{\alpha_i}) \in \mathcal{I}$. Since \mathcal{I} is closed under countable union.) \dot{x} ($X, \tau^{*b}, \mathcal{I}$) is Lindelof modulo \mathcal{I}

7.bT₀ MODULO AN IDEAL OR b-KOLMOGROV MODULO AN IDEAL

Definition 7.1: An ideal topological space (X, τ, \mathcal{I}) is said to be bT_0 modulo \mathcal{I} if for any two points $x \neq y$ in X, there exist $G \in BO(X)$ such that $x \in G$ and $G \cap \{y\} \in \mathcal{I}$ or $y \in G$ and $G \cap \{x\} \in \mathcal{I}$

Remark 7.2:

- (1)Every T_0 space is bT_0 , since every open set is b-open. Converse need not be true which follows from example (7.3)
- (2)Every T_0 modulo \mathcal{I} space is bT_0 modulo \mathcal{I} , since every open set is b-open which follows from example (7.4)
 - (3)If (X, τ) is a bT_0 space then (X, τ, \mathcal{I}) is bT_0 modulo \mathcal{I} for any ideal \mathcal{I} on X, since the open sets are b-open and $\phi \in \mathcal{I}$. The converse is not true.

Example 7.3:Let X={ a,b,c,d} $\tau = \{\phi, X, \{a,b\}\}$.

Then BO(X)= $\{a\},\{b\},\{a,b\},\{a,c\},\{a,d\},\{b,c\},\phi,X$. Therefore (X,τ) is not T_0 but bT_0

Example 7.4: Let X={ a,b,c,d} $\tau = \{\phi, X, \{a,b\}\} \mathcal{I} = \{\phi, \{a\}, \{b\}, \{a,b\}\}\}$ is not T_0 modulo \mathcal{I} but it is bT_0 modulo \mathcal{I} space

Theorem 7.5: Let (X, τ, \mathcal{I}) be bT_0 modulo J and J an ideal in X with $\mathcal{I} \subseteq J$. Then (X, τ, J) is bT_0 modulo J.

Proof:It is obvious.

Theorem 7.6:Let (X, τ, \mathcal{I}) be finitely *b-additive. Then (X, τ, \mathcal{I}) is bT_0 modulo $\mathcal{I} \Rightarrow (X, \tau^{*b})$ is a T_0 space. The converse is true if (X, τ, \mathcal{I}) is finitely b-additive.

Proof: Let (X, τ, \mathcal{I}) be bT_0 modulo \mathcal{I} and $x\neq y$ be two points in X. Then there exist $G \in BO(X)$ such that $x \in G$ and $G \cap \{y\} \in \mathcal{I}$ or $y \in G$ and $G \cap \{x\} \in \mathcal{I}$. Without loss of generality, assume that $x \in G$ and $G \cap \{y\} \in \mathcal{I}$. If $G \cap \{y\} = \varphi$, put G' = G. If $G \cap \{y\} = \{y\}$, put $G' = G - \{y\}$. In both cases, G' is a sub basic open set int^{*b} topology ... $G' \in \tau^{*b}$, $x \in G'$ and $y \notin G' ...$ (X, τ^{*b}) is a T_0 space. Conversely, Let (X, τ, \mathcal{I}) be finitely b-additive and let (X, τ^{*b}) be a T_0 space and $x \neq y$ be two points in X. Then \mathcal{B} is a basis for τ^{*b} . Therefore there exist G' = G - I $\in \tau^{*b}$ such that $x \in G'$ and $y \notin G'$ or $y \in G'$ and $x \notin G'$ where $G \in BO(X)$ and $G \cap \{y\} \in \mathcal{I}$. Suppose $G \cap \{y\} = \{y\}$, then $G \cap \{y\} \in \mathcal{I}$. Suppose $G \cap \{y\} = \{y\}$, then $y \in I$ which implies $\{y\} \in \mathcal{I}$. Hence, G is a b-open set containing X and $G \cap \{y\} \in \mathcal{I}$. X is $X \cap Y$ is $X \cap$

Theorem 7.7: Let (X, τ, \mathcal{I}) be finitely *b-additive T_0 space then (X, τ^{*b}) is a T_0 space.

Proof:It follows from the theorem (7.6) and (1) and (2) of remark (7.2).But the converse need not be true as seen from the following example.

Example 7.8:Consider an infinite discrete space (X, τ) and an ideal $\mathcal{P}(X)$. Then $\tau^{*b} = \{\text{all subsets}\}$. This space is *b-additive and (X, τ^{*b}) is T_0 but (X, τ) is not T_0 .

Theorem 7.9: Let (X, τ, \mathcal{I}) be finitely *b-additive then (X, τ, \mathcal{I}) is bT_0 modulo $\mathcal{I} \Rightarrow \tau^{*b}$ closure of distinct points are distinct. The converse is true if (X, τ, \mathcal{I}) is finitely b-additive.

Proof: Let (X, τ, \mathcal{I}) be bT_0 modulo \mathcal{I} . By theorem (7.6), (X,τ^{*b}) is a T_0 space. If $x \neq y$ be two points in X, then there exist $U \in \tau^{*b}$ such that $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$.w.l.g., assume that $x \in U$ and $y \notin U$. Then $y \in U^c$ which is τ^{*b} closed. $\therefore x \notin cl^{*b}(y)$ which implies $cl^{*b}(x) \neq cl^{*b}(y)$. Conversely, let $x \neq y$ imply $cl^{*b}(x) \neq cl^{*b}(y)$. $G = [cl^{*b}(y)]^c$ is τ^{*b} open. Now, $G \in \tau^{*b}$, $x \in G$ and $y \notin G$ implies that (X,τ^{*b}) is a T_0 space. By theorem (7.6), (X, τ, \mathcal{I}) is bT_0 modulo \mathcal{I} .

Theorem 7.10: Any b-homeomorphic image of bT_0 modulo \mathcal{I} space is bT_0 modulo $f(\mathcal{I})$ where f is the corresponding b-homeomorphism.

Proof: $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, f(\mathcal{I}))$ is a b-homeomorphism. Let $y_1 \neq y_2$ be two points in Y. Then $y_1 = f(x_1)$, $y_2 = f(x_2)$ for some points $x_1 \neq x_2 \in X$. There exist $G \in BO(X)$ such that $x_1 \in G$ and $G \cap \{x_2\} \in \mathcal{I}$ or $x_2 \in G$ and $G \cap \{x_1\} \in \mathcal{I}$. Then, f(G) is b-open in Y. $f(x_1) \in f(G)$, $f(G) \cap f(x_2) \in f(\mathcal{I})$ or $f(x_2) \in f(G)$, $f(G) \cap f(x_1) \in f(\mathcal{I})$. $f(G) \cap f(G) \cap f(G)$ is b-open in f(G).

Theorem 7.11: Let $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, f(\mathcal{I}))$ be a bijection.

- (1) f is b-open and X is T_0 modulo $\mathcal{I} \Rightarrow Y$ is bT_0 modulo $f(\mathcal{I})$
- (2) f is b-resolute and X is bT_0 modulo $\mathcal{I} \Rightarrow Y$ is bT_0 modulo $f(\mathcal{I})$
- (3) f is b-continuous and Y is T_0 modulo $f(\mathcal{I}) \Rightarrow X$ is bT_0 modulo \mathcal{I} .
- (4) f is b-irresolute and Y is bT_0 modulo $f(\mathcal{I}) \Rightarrow X$ is bT_0 modulo \mathcal{I} .
- (5) f is strongly b-continuous and Y is bT_0 modulo $f(\mathcal{I}) \Rightarrow X$ is T_0 modulo \mathcal{I} .

Proof:Obvious from the definition.

Note 7.11: The property of being 'bT₀ modulo \mathcal{I} ' is a b-topological property as from (2) and (4) of theorem (7.11).

8.bT₁ MODULO AN IDEAL OR b-QUASI-SEPARATED MODULO AN IDEAL

Definition 8.1: An ideal topological space (X,τ,\mathcal{I}) is said to be bT_1 modulo \mathcal{I} if for any two points $x \neq y \in X$, there exist b-open sets $U,V \in \tau$ such that $x \in U$, $y \in V$, $U \cap \{y\} \in \mathcal{I}$ and $V \cap \{x\} \in \mathcal{I}$.

Example 8.2: Any discrete ideal topological (X,τ,\mathcal{I}) is bT_1 modulo \mathcal{I} for any ideal \mathcal{I} since all subsets are b-open.

Example 8.3:Let
$$X = \{a,b,c,d\}$$
, $\tau = \{\varphi, X, \{a\}\}$.

Then BO(X) = $\{\{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,c,d\}, \{a,b,d\}, \varphi, X\}$. Since $\{a\}$ is not b-closed, (X, τ) is bT_0 but it is not bT_1 . So (X, τ, \mathcal{I}) is not bT_1 modulo \mathcal{I} when $\mathcal{I} = \{\varphi\}$

Theorem 8.4:Every bT_1 space is bT_1 modulo \mathcal{I} for any ideal \mathcal{I} .

Proof:Obvious since $\varphi \in \mathcal{I}$

Theorem 8.5:Let (X, τ, \mathcal{I}) be bT_1 modulo J and J an ideal in X with $J \subseteq \mathcal{I}$. Then (X, τ, \mathcal{I}) is bT_1 modulo \mathcal{I} .

Proof:Obvious

Theorem 8.9:Let (X, τ, \mathcal{I}) be finitely *b-additive space. Then (X, τ, \mathcal{I}) is bT_1 modulo $\mathcal{I} \Rightarrow$ (X, τ^{*b}) is a T_1 space. The converse is true if (X, τ, \mathcal{I}) is a finitely b-additive space.

Proof:Similar to proof of theorem (7.6).

Theorem 8.10:Let (X, τ, \mathcal{I}) be finitely *b-additive space. Then X is bT_1 modulo $\mathcal{I}\Rightarrow$ every singleton set is τ^{*b} closed. The converse is true if (X, τ, \mathcal{I}) is also finitely b-additive.

Proof:X is a bT_1 modulo $\mathcal{I}\Rightarrow(X, \tau^{*b})$ is T_1 space. (By theorem (8.9))

 \Rightarrow every singleton set is τ^{*b} closed.Conversely, every singleton set is τ^{*b} closed \Rightarrow (X, τ^{*b}) is a T_1 space,under the given hypothesis, (X, τ , \mathcal{I}) is bT_1 modulo \mathcal{I} . (By theorem (8.9))

Theorem 8.11:Every space which is bT_1 modulo \mathcal{I} is bT_0 modulo \mathcal{I} .

Proof: The proof is obvious from the definition. Converse need not be true as seen from the following example.

Example 8.12: In example 8.3, (X,τ,ϕ) is not bT_1 modulo ϕ but it is bT_0 modulo ϕ

Theorem 8.13:Let (X, τ, \mathcal{I}) be finitely *b-additive, then (X, τ, \mathcal{I}) is bT_1 modulo $\mathcal{I} \Rightarrow$ every

finite subset of X is τ^{*b} -closed. Converse is true if (X, τ, \mathcal{I}) is also finitely b-additive.

Proof: By theorem (8.4), in a bT₁ modulo \mathcal{I} space, every singleton set is τ^{*b} closed and hence every finite subset is τ^{*b} closed since τ^{*b} is a topology. Conversely let every finite subset of X be τ^{*b} closed. Then in particular every singleton set is τ^{*b} closed. Therefore by theorem(8.10) (X, τ, \mathcal{I}) is bT₁ modulo \mathcal{I} .

Theorem 8.14: Let (X, τ, \mathcal{I}) be finitely *b-additive. Then (X, τ, \mathcal{I}) is bT_1 modulo $\mathcal{I} \Rightarrow \tau^{*b}$ contains the cofinite topology for X. The converse is true if (X, τ, \mathcal{I}) is also finitely b-additive.

Proof: Let (X, τ, \mathcal{I}) be bT_1 modulo \mathcal{I} and A finite subset of X. By theorem (8.13), A is τ^{*b} closed. A^c is τ^{*b} open. This shows that the complements of finite sets are τ^{*b} open and hence τ^{*b} contains the cofinite topology for X. Conversely, if τ^{*b} contains the cofinite topology for X

then for each $x \in X, X - \{x\}$ is τ^{*b} open. $\cdot \cdot \cdot \{x\}$ is τ^{*b} closed. $\cdot \cdot \cdot By$ theorem (8.13), (X, τ, \mathcal{I}) is bT_1 modulo \mathcal{I} .

Theorem 8.15:Let (X, τ, \mathcal{I}) be a finitely *b-additive, finite,bT₁ modulo \mathcal{I} space ,then τ^{*b} is discrete topology.

Proof: By theorem (8.14) ,since every subset of X is τ^{*b} open and hence τ^{*b} is discrete topology.

Definition 8.16: Let(X, τ , \mathcal{I}) be an ideal topological space and A \subseteq X. We say x is a b-

limit point of A modulo $\mathcal I$ if every τ^{*b} neighborhood of x contains at least one point of A other than x.

Theorem 8.17:Let(X, τ , \mathcal{I}) be finitely *b-additive, bT₁ modulo \mathcal{I} space .Then x is a b-limit point of A modulo \mathcal{I} every τ^{*b} neighborhood of x contains infinitely many points of A.

Proof: If every τ^{*b} neighborhood of x contains infinitely many points of A then it contains at least one point of A other than x.: x is a b- limit point of A modulo \mathcal{I} . Conversely, let x be a b-limit point of A modulo \mathcal{I} . Suppose that there exist a τ^{*b} neighborhood U of x which contains only finitely many points of A, then U \cap {A-{x}} is finite .Let U \cap {A-{x}} = {x_1, x_2, ..., x_n}. : X-{x_1, x_2, ..., x_n} is τ^{*b} open(by theorem (8.13).: U \cap [X-{x_1, x_2, ..., x_n}] is τ^{*b} open neighborhood of x and it does not intersect A which is a contradiction.

Theorem 8.18: Every finite subset of a finitely *b-additive bT₁ modulo \mathcal{I} space has no b-limit point modulo \mathcal{I} .

Proof: The proof follows from theorem (8.17).

Theorem 8.19: If (X, τ, \mathcal{I}) is a finitely *b-additive, T_1 space then (X, τ^{*b}) is a T_1 space.

Proof: The proof follows from the theorem (8.9), since every T_1 space is bT_1 modulo \mathcal{I} . But, the converse is not true.

Example 8.20:Let (X, τ, \mathcal{I}) be an indiscrete ideal topological space where $\mathcal{I} = \mathcal{P}(X)$.

Then,cl*b(A)= A \forall A \subseteq X. \because τ *b is discrete topology and hence (X, τ *b) is a *b-additive T₁space .But, (X, τ) is not a T₁ space.

Theorem 8.21:Let $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, f(\mathcal{I}))$ be a bijection.

- (1) f is b-open and X is T_1 modulo $\mathcal{I}\Rightarrow Y$ is bT_1 modulo $f(\mathcal{I})$
- (2) f is b-resolute and X is bT_1 modulo $\mathcal{I} \Rightarrow Y$ is bT_1 modulo $f(\mathcal{I})$
- (3) f is b-continuous and Y is T_1 modulo $f(\mathcal{I}) \Rightarrow X$ is bT_1 modulo \mathcal{I} .
- (4) f is b-irresolute and Y is bT_1 modulo $f(\mathcal{I}) \Rightarrow X$ is bT_1 modulo \mathcal{I} .
- (5) f is strongly b-continuous and Y is bT_1 modulo $f(\mathcal{I}) \Rightarrow X$ is T_1 modulo \mathcal{I} .

Proof:Similar to the proof of theorem (7.11).

Remark 8.22: The property of being a 'bT₁ space modulo \mathcal{I} 'is a b-topological property by

(2) and (4) of theorem (8.21).

9.bT₂Modulo an ideal or b-Hausdorff space

Definition 9.1: An ideal topological space (X, τ, \mathcal{I}) is said to be $bT_2 \mod \mathcal{I}$ if for every $x \neq y \in X$, there exist b-open sets U,V in X such that $x \in U \setminus V$, $y \in V \setminus U$ and $U \cap V \in \mathcal{I}$.

Example 9.2:Let X be infinite set and τ -cofinite topology, $\mathcal{I} = \mathcal{P}(X)$.

Then BO(X)= { φ , X ,A/ A is infinite}. Let $x \neq y \in X$ and let $U = X - \{x\}$; $V = X - \{y\}$; U, V are

b-open in X, $y \in U$, $x \in V$ and $U \cap V = \{X - \{x\} \cap Y - \{y\}\} = X - \{x,y\} \in \mathcal{I}$. \therefore X is bT_2 modulo \mathcal{I} .

Example 9.3: In example (8.3), (X,τ,φ) is not bT_2 modulo φ .

Remark 9.4:

- (1) Every T_2 space is T_2 modulo \mathcal{I} for any ideal \mathcal{I} .
- (2) A space is bT_2 space \Leftrightarrow it is bT_2 modulo $\{\phi\}$
- (3) (X, τ, \mathcal{I}) is bT_2 modulo \mathcal{I} and $\mathcal{I} \subseteq J \Rightarrow (X, \tau, J)$ is bT_2 modulo J.
- (4) (X, τ, \mathcal{I}) is T_2 modulo $\mathcal{I} \Rightarrow (X, \tau, \mathcal{I})$ is bT_2 modulo \mathcal{I} .

Theorem 9.5:Let (X, τ, \mathcal{I}) be finitely *b-additive. Then (X, τ, \mathcal{I}) is bT_2 modulo $\mathcal{I} \Rightarrow (X, \tau^{*b})$ is a T_2 space. The converse is true if (X, τ, \mathcal{I}) is finitely b-additive.

Proof: Similar to the proof of theorem (8.9).

Theorem 9.10: Every bT_2 modulo \mathcal{I} space is bT_1 modulo \mathcal{I} space.

Proof:Obvious from the definition

Example 9.11: An indiscrete space (X, τ) is not T_2 but it is bT_2 and bT_2 modulo \mathcal{I} for any ideal \mathcal{I}

Theorem 9.12: Every finite subset of a finitely *b-additive, bT₂ modulo \mathcal{I} space (X, τ, \mathcal{I}) is τ^{*b} closed.

Proof:By the theorem (9.10), (X, τ, \mathcal{I}) is bT_1 modulo \mathcal{I} and by the theorem (8.9), (X, τ^{*b}) is a T_1 space and hence every singleton set is τ^{*b} –closed, since X is finitely *b-additive, every finite subset is τ^{*b} –closed.

Definition 9.13:

1. A τ^{*b} -open set U containing x is called a τ^{*b} neighborhood of x.

2. Let (X, τ, \mathcal{I}) be an ideal topological space and $\{x_n\}$ a sequence in X. We say $x_n \xrightarrow{b} x$ (modulo \mathcal{I}) if for every τ^{*b} neighborhood U of x there exist positive integer N such that $x \in U$ for all $n \ge N$

In this case we say x is b- limit modulo \mathcal{I} of the sequence $\{x_n\}$.

Theorem 9.14:Let(X, τ , \mathcal{I}) be a finitely *b-additive T_2 modulo \mathcal{I} space and $\{x_n\}$ a sequence in X. If b- limit modulo \mathcal{I} of the sequence $\{x_n\}$ exists then it is unique.

Proof: Suppose that $x_n \stackrel{b}{\to} x \mod \mathcal{I}$ and $x_n \stackrel{b}{\to} y \mod \mathcal{I}$ and $x \neq y$, since X is bT_2 modulo \mathcal{I} there exist U, V in BO (X) such that $x \in U \setminus V, y \in V \setminus U, U \cap V \in \mathcal{I}$

Let $I = U \cap V$, then $V - I \in \tau^{*b}$ (since V-I is a sub basic open set in τ^{*b} topology) and $U \cap (V - I) = \varphi$. $\therefore U$ contains all the elements of $\{x_n\}$ except finite number of points. Hence,

 $V-I \ contain \ only \ finite \ number \ of \ points \ of \ \{x_n\}. Therefore, \ it \ is \ a \ contradiction \ to \ the \ fact$ $x_n \ \stackrel{b}{\to} \ y \ modulo \ \mathcal{I}.$

Theorem 9.15: If (X, τ, \mathcal{I}) is a finitely *b additive, T_2 space, then (X, τ^{*b}) is a T_2 space.

Proof:Since(X, τ , \mathcal{I}) is finitely *b-additive, τ^{*b} is a topology.For x \neq y \in X, there exist

 $U,V \text{ in} \tau \text{ such that } x \in U, y \in V \text{ and } U \cap V = \varphi. \\ \text{Since } \tau \subseteq \tau^{*b}, U, V \in \tau^{*b}. \\ \therefore (X,\tau^{*b} \text{) is a } T_2 \text{ space.}$

Remark 9.16:Converse of the above theorem need not be true as seen from the following example

Example 9.17 :Consider(X, τ , \mathcal{I}) where τ is an indiscrete topology and $\mathcal{I}=\mathcal{P}(X)$

Then $A^{*b} = \varphi$ for all $A \subseteq X$. $cl^{*b}(A) = A \cup A^{*b} = A$. Therefore, every subset is closed in τ^{*b}

topology. τ^{*b} is discrete topology. $\div(X,\tau^{*b}$) is a finitely *b-additive, T_2 space.But (X,τ) is not a T₂ space.

Theorem 9.18: Let (X, τ, \mathcal{I}) be a finitely *b additive, bT_2 modulo \mathcal{I} space then,

- (1) For each pair x, y \in X there exist closed τ^{*b} neighbourhood N_y of y such that $x \notin N_y(N_y)$ is said to be a closed τ^{*b} neighbourhood, if N_y is τ^{*b} -closed and there exist a τ^{*b} -open set $V = V_y(N_y)$
- (2) For $x \in X$, $\{x\} = \cap N_x$ where the intersection is over τ^{*b} closed neighbourhood N_x of x.

Proof:

- (1) X is $bT_2 \mod 0$ space $\Rightarrow (X, \tau^{*b})$ is a T_2 space (by theorem (9.5))

 Let $x \neq y \in X$. Then there exist U,V in τ^{*b} such that $x \in U, y \in V$ and $U \cap V = \varphi$ Then, $N_y = X \setminus U$ is a τ^{*b} -closed set such that $y \in V \subseteq N_y$ and $x \notin N_y$
- (2) Let $x \in X$, $y \neq x$. Then by (1), there exist a τ^{*b} closed neighborhood N_x of x such that $y \notin N_x$.

 Therefore, $y \notin$ intersection of all closed τ^{*b} neighborhood of x. Therefore, $\{x\} = \cap N_x$.

Theorem 9.19:Let f: $(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, f(\mathcal{I}))$ be a bijection.

- (1) f is b-open and X is T_2 modulo $\mathcal{I}\Rightarrow Y$ is bT_2 modulo $f(\mathcal{I})$
- (2) f is b-resolute and X is bT_2 modulo $\mathcal{I}\Rightarrow Y$ is bT_2 modulo $f(\mathcal{I})$
- (3) f is b-continuous and Y is T_2 modulo $f(\mathcal{I}) \Rightarrow X$ is bT_2 modulo \mathcal{I} .
- (4) f is b- irresolute and Y is bT_2 modulo $f(\mathcal{I}) \Rightarrow X$ is bT_2 modulo \mathcal{I} .
- (5) f is strongly b-continuous and Y is bT_2 modulo $f(\mathcal{I}) \Rightarrow X$ is T_2 modulo \mathcal{I} .

Proof:Similar to the proof of theorem (7.11).

Remark 9.20: The property of being "bT₂modulo \mathcal{I} " is a b-topological property by (2) and (4) of theorem (9.20).

Theorem 9.21: Let (X, τ, \mathcal{I}) be finitely b-additive, bT_2 modulo \mathcal{I} , $x \in X$ and C a b-compact subspace of X not containing x, then there exist U,V such that $V \in BO(X)$, U is a finite intersection of b-open sets such that, $x \in U$, $C \subset V$ and $U \cap V \in \mathcal{I}$.

Proof: For every $y \in C$, there exists G_v , $H_v \in BO(X)$ such that $x \in G_v \setminus H_v$, $y \in H_v \setminus G_v$,

 $G_v \cap H_v \in \mathcal{I}$.: $\{H_v / y \in C\}$ is a b-open cover for C.Since C is b-compact there exist

 $H_{y_i}, \ldots, H_{y_n} \text{ such that } C \subseteq \bigcup_{i=1}^n H_{y_i}. Let \ G_{y_1}, \ldots, G_{y_n} \text{ be the corresponding b-}$

open sets containing x. Let $U=\bigcap_{i=1}^n G_{y_i}$; $V=\bigcup_{i=1}^n H_{y_i}$. Finite union of b-open sets is b-

open. : V is b-open. Now, $x \in V \setminus U$, $C \subseteq U \setminus V$; Put $G_{y_i} = G_i$ and $H_{y_i} = H_i$. Then, $U \cap V$

$$= (\bigcap_{i=1}^{n} G_i) \cap (\bigcup_{i=1}^{n} H_i) = (G_1 \cap G_2 \cap \dots \cap G_n) \cap (H_1 \cup H_2 \cup \dots \cup H_n)$$

$$=\{(G_1\cap G_2\cap\ldots\ldots\cap G_n)\cap H_1\}\cup \{(G_1\cap G_2\cap\ldots\ldots\cap G_n)\cap H_2\}\cup\ldots\ldots\cup$$

$$(G_1\cap G_2\cap\ldots\ldots\cap G_n)\cap H_n\}\subseteq (G_1\cap H_1)\cup (G_2\cap H_2)\cup\ldots\ldots\cup (G_n\cap H_n)=\bigcup_{i=1}^n(G_i\cap H_i)$$

 $\in \mathcal{I}$. $: U \cap V \in \mathcal{I}$.

Remark 9.22: In the above theorem, suppose (X, τ, \mathcal{I}) is finitely b-additive then U in the above proof is b-open.

Theorem 9.23: Let (X, τ, \mathcal{I}) be a finitely *b-additive,bT₂ modulo \mathcal{I} space. Then every b-compact subspace of X is τ^{*b} closed.

Proof: Let C be a b-compact subspace of a bT_2 modulo $\mathcal I$ finitely *b-additive space X.

Claim:C is τ^{*b} closed.(i.e) To prove: C^c is τ^{*b} open.Let $x \in C^c$, by theorem (9.21), there exist U,V such that $V \in BO(X)$ and U is finite intersection of b-open sets, $x \in U \setminus V$, $C \subseteq V \setminus U$ and $U \cap V \in \mathcal{I}$. Let $U \cap V = I$. Now, U-I is a basic b-open set and hence $U - I \in \tau^{*b}$. Now, $U = \bigcap_{i=1}^n G_i$ where $G_i \in BO(X)$

Now, $x \in U \setminus I \subseteq X \setminus V \subseteq X \setminus C$. $\therefore X - C$ is τ^{*b} open and hence C is τ^{*b} closed.

Remark 9.24: The following example shows that, the converse of the above theorem is not true

Example 9.25:Let (X, τ) be an infinite discrete space and $\mathcal{I} = \mathcal{P}(X)$. Then BO(X)={all subsets} and $\tau^{*b} = \{\text{all subsets}\}\$. This space is finitely *b-additive, bT₂ modulo \mathcal{I} . An infinite subset B of X is τ^{*b} -closed but not b-compact since $\{\{x\}/x \in X\}$ is a b-open cover for B which has no finite sub cover.

10.bT₃modulo an idealor b-regular modulo an ideal

Definition 10.1: An ideal topological space (X, τ, \mathcal{I}) is said to be a bT_3 modulo \mathcal{I} space or bregular modulo an ideal space, if

(1)X is bT_1 modulo \mathcal{I} and

(2)For any b-closed subset F of X and every point $x \notin F$ there exist G, H \in BO(X) such that $x \in H \setminus G$, F $\subseteq G$ -H and $G \cap H \in \mathcal{I}$.

Note 10.2: (X, τ) is b-regular $\Leftrightarrow (X, \tau, \mathcal{I})$ is b-regular modulo $\{\phi\}$.

Theorem 10.3:Let (X, τ, \mathcal{I}) be a finitely *b additive. Then (X, τ, \mathcal{I}) is b-regular modulo \mathcal{I} $\Rightarrow (X, \tau^{*b})$ is regular. The converse need not be true.

Proof: (X, τ, \mathcal{I}) is bT_1 modulo $\mathcal{I}\Rightarrow(X, \tau^{*b})$ is a T_1 space. Let F be b-closed set in X and $x \notin F$, then by definition there exist $G,H\in BO(X)$ such that $F\subseteq G\backslash H$ and $x\in H\backslash G$ and $G\cap H\in \mathcal{I}$. Let $G\cap H$ = G and G = G are G and G = G and G = G and G = G and G = G are G and G = G and G = G are G are G are G are G and G = G are G are G are G are G and G = G are G and G are G and G are G and G are G

Example 10.4: Let (X, τ, \mathcal{I}) be an indiscrete ideal topological space where $\mathcal{I}=\mathcal{P}(X)$. Then τ^{*b} is discrete topology .Then BO(X) = {All subsets}. τ^{*b} = {All subsets}. (X, τ, \mathcal{I}) is finitely *b additive .So, (X, τ^{*b}) is regular .

Example 10.5: Let (X, τ) be a discrete ideal topological space thenBO $(X) = \mathcal{P}(X)$. Then (X, τ) is b-regular. So, (X, τ, \mathcal{I}) is b-regular modulo \mathcal{I} for any ideal \mathcal{I} .

Theorem 10.6: Every b- regular modulo \mathcal{I} space is bT_2 modulo \mathcal{I} for any ideal \mathcal{I} .

Proof: Let (X, τ, \mathcal{I}) be b-regular modulo \mathcal{I} . To Prove: (X, τ, \mathcal{I}) is a bT_2 modulo \mathcal{I} . Let $x \neq y \in X$, (X, τ, \mathcal{I}) is b-regular modulo $\mathcal{I} \Rightarrow (X, \tau, \mathcal{I})$ is bT_1 modulo \mathcal{I} . Then there exists b-open sets U and V such that $x \in U \setminus V$ and $y \in V \setminus U$, $U \cap V \in \mathcal{I}$. X-V is a b-closed set and $y \notin X \setminus V$.

Since (X, τ, \mathcal{I}) is b-regular modulo \mathcal{I} , there exists b-open sets W_1, W_2 such that $y \in W_1 \setminus W_2, x \in X$ -V $\subseteq W_2$ - W_1 and $W_1 \cap W_2 \in \mathcal{I}$. Hence (X, τ, \mathcal{I}) is bT_2 modulo \mathcal{I} .

Theorem 10.7:Let (X, τ, \mathcal{I}) be finitely *b additive. If X is b-regular modulo \mathcal{I} then given a point $x \in X$ and a b-open set U containing x, there exist b-open set V containing x such that $x \in V$ $\subseteq cl^{*b}(V) \subseteq U$.

Proof: Let X be finitely semi *b additive space. Then τ^{*b} is a topology.Let X be b-regular modulo \mathcal{I} ; Let $U \in BO(X)$ and $x \in U$. Then F=X-U is b-closed and $x \notin F$. By definition, there

exist G, $H \in BO(X)$ such that $F \subseteq G-H$, $x \in H \setminus G$, $G \cap H \in \mathcal{I}$. Let $G \cap H = I$. Put G' = G-I, H' = H-I. Then G' and H' are sub-basic open sets in τ^{*b} —topology. $\therefore G'$ and $H' \in \tau^{*b}$ and $G' \cap H' = \varphi$ Now, $x \in H' \subseteq cl^{*b}(H')$. To prove: $cl^{*b}(H') \subseteq U$. If $y \in F$ then $y \in G'$ which is disjoint from $H' \therefore G'$ is a τ^{*b} neighborhood of y, disjoint from $H' \therefore y \notin cl^{*b}(H')$. $\therefore F \subseteq X-cl^{*b}(H')$. $\therefore U \supseteq cl^{*b}(H')$. $\therefore X \in H' \subseteq cl^{*b}(H') \subseteq U$. Hence the proof.

Remark 10.8:Let $f:(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, f(\mathcal{I}))$ be a bijection.

- (1) f is b-open and X is regular modulo $\mathcal{I} \Rightarrow Y$ is b-regular modulo $f(\mathcal{I})$
- (2) f is b-resolute and X is b-regular modulo $\mathcal{I} \Rightarrow Y$ is b-regular modulo $f(\mathcal{I})$
- (3) f is b-continuous and Y is regular modulo $f(\mathcal{I}) \Rightarrow X$ is b-regular modulo \mathcal{I} .
- (4) f is b-irresolute and Y is b-regular modulo $f(\mathcal{I}) \Rightarrow X$ is b-regular modulo \mathcal{I} .
- (5) f is strongly b-irresolute and Y is b-regular modulo $f(\mathcal{I}) \Rightarrow X$ is b-modulo \mathcal{I} .

Proof: Similar to the proof of theorem (7.12).

Remark 10.9:From(2) and (3) of theorem (10.8) it follows that 'b-regular modulo \mathcal{I}' is a b-topological property.

11. b-NORMAL MODULO AN IDEAL

Definition 11.1: An ideal topological space (X, τ, \mathcal{I}) is said to be b-normal modulo \mathcal{I} if

- (1) X is $bT_1 modulo \mathcal{I}$.
- (2) For any two disjoint b-closed sets G, H in X, there exist U, $V \in BO(X)$ such

that $G \subseteq U \setminus V$, $H \subseteq V \setminus U$ and $G \cap H \in \mathcal{I}$.

Example 11.2:Let (X, τ, \mathcal{I}) be a discrete ideal topological space where $\mathcal{I} = \{\phi\}$. Then

 $BO(X) = \{all \text{ subsets}\}...This space is b-normal modulo }\mathcal{I}.$

Example 11.3: In example (8.3), (X,τ,\mathcal{I}) is not bT_1 modulo \mathcal{I} and hence it is not b-normal

Modulo \mathcal{I} .

Remark 11.4:

- (1) (X, τ, \mathcal{I}) is b-normal modulo \mathcal{I} and $\mathcal{I} \subseteq J \Rightarrow (X, \tau, J)$ is b-normal modulo J.
- (2) (X, τ) is b-normal $\Rightarrow (X, \tau, \mathcal{I})$ is b-normal modulo \mathcal{I} for any ideal.
- (3) (X, τ) is b-normal $\Leftrightarrow (X, \tau, \varphi)$ is b-normal modulo $\{\varphi\}$

Theorem 11.5:Let (X, τ, \mathcal{I}) be finitely *b additive, b-normal modulo \mathcal{I} space. Then (X,τ^{*b}) is normal.

Proof: By definition, (X, τ, \mathcal{I}) is a bT_1 modulo \mathcal{I} space. Under the given hypothesis, τ^{*b} is a topology and $\mathcal{B} = \{V\text{-I/V} \in BO(X), I \in \mathcal{I}\}$ is a sub-basis for the topology. By the theorem (3.6), every singleton set is τ^{*b} -closed.Let G, H be two disjoint b-closed sets. Then by the hypothesis there exist U, $V \in BO(X)$ such that $G \subseteq U \setminus V$, $H \subseteq V \setminus U$ and $U \cap V \in \mathcal{I}$. Let $U \cap V = I$, Put G' = U-I and H' = V-I, then G', H' are sub-basic open sets in τ^{*b} -topology. $\therefore G'$ and $H' \in \tau^{*b}$. Now, $G \subseteq G'$, $H \subseteq H'$ and $G' \cap H' = \phi$. \therefore (X, τ^{*b}) is normal.

Remark 11.6: Let $f:(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, f(\mathcal{I}))$ be a bijection.

- (1) f is b-open and X is normal modulo $\mathcal{I} \Rightarrow Y$ is b-normal modulo $f(\mathcal{I})$
- (2) f is b-resolute and X is b-normal modulo $\mathcal{I} \Rightarrow Y$ is b-normal modulo $f(\mathcal{I})$

- (3) f is b-continuous and Y is normal modulo $f(\mathcal{I}) \Rightarrow X$ is b-normal modulo \mathcal{I} .
- (4) f is b-irresolute and Y is b-normal modulo $f(\mathcal{I}) \Rightarrow X$ is b-normal modulo \mathcal{I} .
- (5) f is strongly b-irresolute and Y is b-normal modulo $f(\mathcal{I}) \Rightarrow X$ is normal modulo \mathcal{I} .

Proof: Similar to the proof of theorem (7.11)

Note 11.7: The property of being 'b-normal modulo \mathcal{I} ' is b-topological property.

Theorem 11.8:Let (X, τ, \mathcal{I}) be finitely *b additive, finitely b-additive, b-compact space which is bT_2 modulo \mathcal{I} . Then (X, τ, \mathcal{I}) is b-normal modulo \mathcal{I} .

Proof: Let (X, τ) be b-compact and bT_2 modulo \mathcal{I} . Then, X is bT_1 modulo \mathcal{I} . Let G, H be disjoint b-closed sets in X. First let us prove G and H are b-compact. Let $\{A_{\alpha}\}$ be a b-open cover for G. Then, $\{\{A_{\alpha}\}/X-G\}$ is a b-open cover for X. Since X is b-compact, there exist $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that $X = A_{\alpha_1} \cup \ldots \cup A_{\alpha_n} \cup X$ -G.

Note 11.9:But converse need not be true as seen from the following example.

Example 11.10:Let (X, τ, \mathcal{I}) be an infinite discrete ideal topological space where

 $\mathcal{I}=\mathcal{P}(X)$. Then BO(X) = {all subsets}, τ^{*b} = {all subsets}.: (X, τ, \mathcal{I}) is finitely *b additive, finitely b-additive. (X, τ, \mathcal{I}) is a bT2modulo \mathcal{I} . But it is not b-compact $\{\{x\}/x \in X\}$ is a b-open cover for X which has no finite subcover.

Theorem 11.11:Let (X, τ, \mathcal{I}) is finitely *b additive space. Then if X is b-normal modulo \mathcal{I} then given a b-closed set A and a b-open set U containing A, there exist a b-open set G containing A, such that $A \subseteq G \subseteq cl^{*b}G \subseteq U$.

Proof: Under the given hypothesis, τ^{*b} is a topology and $\mathcal{B} = \{V\text{-I/V} \in BO(X), I \in \mathcal{I}\}$ is a sub basis for τ^{*b} . A and X-U are two disjoint τ^{*b} —closed sets. Since X is b-normal modulo \mathcal{I} there exist V and W \in BO(X) such that A \subseteq V\W, X\U \subseteq W\V and V \cap W = I \in \mathcal{I} . Put G = V-I and H = W-I. Then G and H are sub basic open sets and hence G and H are in τ^{*b} . Now, A \subseteq G and X-U \subseteq H and $G \cap H = \emptyset$. $\therefore G \subseteq X\text{-H} \subseteq U$. X-H is τ^{*b} —closed.

 $::cl^{*b}(X-H)=X-H$. A ⊆ G ⊆ cl^{*b} (G) ⊆ X-H ⊆U.Hence the proof.

Theorem 11.12:Let (X, τ, \mathcal{I}) be finitely *b additive space with the following conditions.

- (1) $\tau^{*b} = BO(X)$.
- (2) (X, τ, \mathcal{I}) is a bT_1 modulo \mathcal{I} .
- Given a b- closed set A and a b-open set U containing A, there exist a b-open set G containing A, such that $A \subseteq G \subseteq cl^{*s}G \subseteq U$.

Then (X, τ, \mathcal{I}) is b-normal modulo \mathcal{I} .

Proof: Let A and B be two disjoint b-closed sets in X.Then U=X-B is a b-open set containing A. By the hypothesis, there exist a b-open set G such that $A \subseteq G \subseteq cl^{*b}G \subseteq U$ since $\tau^{*b} = BO(X),G$

and $H=X-cl^{*b}G$ are b-open. Now, $A\subseteq G$, $B\subseteq H$ and $G\cap H=\varphi\in\mathcal{I}$. $\therefore(X,\,\tau,\,\mathcal{I})$ is b- normal modulo \mathcal{I} .

REFERENCES

- [1] M.E. Abd EI Morsef. E.F.Lashinen and A.a. Nasef, Some topological operators Via Ideals, Kyungpook Mathematical Journal, Vol-322(1992).
- [2] D.Andrijevic, "On b-open sets", MatehmatichkiVesnik, Vol.48, no 1-2, pp 59-64,1996.
- [3] K. Kuratowski, ToplogyI.Warrzawa, 1933.
- [4] MetinAkdag, "On bI open sets and bI-continuous functions", International Journal of Mathematics and Mathematical Sciences, volume 2007, Article ID 75721
- [5] R.L. Newcomb "topologies which are compact modulo are Ideal". Ph.D dissertation, University of California, Santa Barbana, Calif, USA, 1967.
- [6] Pauline Mary Helen, PonnuthaiSelvarani, Veronica Vijayan, A new topology τ^{*b} via b-local functions in ideal topological spaces,IJMA-3(7),2012,2480-2488.
- [7] PonnuthaiSelvarani.S,Poongothai.K ,Generalization of Urysohn's lemma and Tietze extension theorem in finitely b-additive space IJCA,[accepted].
- [8] PonnuthaiSelvarani, Benita Nancy, Semi separation axioms and topology in *s-finitely additive spaces, International Journal of computer applications, (Accepted).
- [9] R. Vaidyanathaswamy, The localization theory in set topology.Proc-Indian Acad. Sci.,20(1945)51-61.