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Abstract 

 The non-linear study of heat and mass transfer of two immiscible viscous fluids in vertical wavy 

channel which is induced by thermal waves is analyzed. The governing equations in the problem 

are solved by perturbation technique for both hydrodynamic and hydro magnetic cases. The 

contributions of the Hartmann number M
2
, in particular and those of the other parameter G, W, P 

and α in general, to the flow and heat transfer characteristics are found to be quite significant. 
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Introduction  

From a technological point of view, the study of viscous fluid flows bounded by wavy 

walls is of special interest and has practical application to transpiration cooling of re-entry 

vehicles and rocket boosters, cross-hatching on ablative surfaces and film vaporization in 

combustion chambers. In view of these applications, Shankar and Sinha [15] have made a 

detailed study of the Rayleigh problem for a wavy wall and arrived at certain interesting 

conclusions, namely, that at low Reynolds numbers the waviness of the wall quickly ceases to be 

of importance as the liquid is dragged along by the wall, while at large Reynolds numbers the 

effects of viscosity are confined to a thin layer close to the wall, and the known potential solution 

emerges in time. Transient force and free convection along a vertical wavy surface in micro polar 

fluids study has arrived at convincing results done by Cheng [5]. Kathyayani et al [11] had 

studied the effect of chemical reaction and radiation absorption on unsteady mixed convective 

heat and mass transfer flow through a porous medium in a vertical wavy channel with oscillatory 

flux and obtained the significant results. Rajesh Sharma [14] has analyzed the effect of viscous 

dissipation and heat sources on unsteady boundary layer flow and heat transfer past a stretching 

surface embedded in a porous medium using element free Galerkin method. Aziz et al [1] has 

estimated the MHD flow over an inclined radiating plate with the temp-dependent thermal 

conductivity with variable reactive index and heat generation. Malashetty et al [10] has worked 
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on magneto convection of two immiscible fluids in a vertical enclosures.  Prasada rao[12] has 

investigated free convection in hydro magnetic flow in a vertical wavy channel. Alazmi [2] 

analyzed the analysis of fluid flow and heat transfer interfacial conditions between a porous 

medium and a fluid layer. 

In 2009, A J Chamka et al [3]  has analyzed the natural convection flow in a rotating fluid 

on a vertical plate embedded in thermal stratified high –porosity medium. Doufer and Soret 

effects on free convective heat and mass transfer from an arbitrarily inclined plate in a porous 

medium with constant wall temperature and concentration was studied by Cheng [6]. Nabel [16] 

had made the numerical study of viscous dissipation effect on free convection heat and mass 

transfer through a porous medium. Bhuvanavijaya[13] had arrived at a good result on the study 

made on Double diffusive convection of a rotating fluid over a vertical plate embedded in Darcy 

–Forchhermer porous medium with non-uniform heat sources. Dulal pal [9] had analyzed the 

effect of variable viscosity on MHD non-Darcy mixed convective heat transfer over a stretching 

sheet embedded in a porous medium with non-uniform heat source/sink. Recently Devika et al 

[8] have arrived at a satisfactory result made on the research made on the effects of chemical 

reaction made on the effect of chemical reaction on the unsteady convective heat and mass 

transfer flow in a vertical wavy channel with oscillatory flux and heat sources.  

               In [4], the following four different configurations of the wavy channels (see Fig. 1) are 

considered: 

 The crest of a wall corresponds to the crest of the other wall of the channel; 

 (II) One of  the walls considered in (i) has a phase-advance/lag;  

 The crest of the wall corresponds to the trough of the other; and 

 One of the walls considered in (iii) has a phase-advance/lag. 

As the problem is highly nonlinear, it is solved by a perturbation technique wherein the 

solution is assumed to be made up of two parts: a mean part corresponding to the fully developed 

mean flow, and a small perturbed part. The mean part, the perturbed part, and the total solution 

of the problem are evaluated numerically for various values of the free convection parameter G, 

the frequency parameter , the Prandtl number   and the heat source/sink parameter . The 

contributions of these parameters are found to be quite significant. Inspired by this 

hydrodynamics analysis of the unsteady convection problem and types of channels under 

consideration flow configure. The author strongly feels that its hydromantic extension would be 

interesting and have useful applications. 

The main objective of this paper is to investigate the combined free and forced 

convection in hydromantic flows in vertical wavy channels with traveling thermal waves. Using 

the long wave approximation, the governing equation of the problem are solved by the 

perturbation technique for both hydrodynamic and hydro magnetic cases. At each stage, a 

comparison is made between the hydrodynamic and hydro magnetic cases. The contributions of 
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the Hertmann number 2 , in particular, and those of the other parameters G, , P and , in 

general, to the flow and heat transfer characteristics are found to be quite significant. 

Formulation of the Problem                 

We consider the wavy wall in which x-axis is taken vertically upward, and parallel to the 

direction of buoyancy, and the y-axis is normal to it. The wavy walls are represented by 

cosy d a x   and cosy d a x   , where the latter can be conveniently represented by

cos( )y d a x     . We study the combined convective heat transfer and fluid flow in an 

incompressible electrically conducting vicious fluid confined to the vertical wavy channels in 

four different configurations (as mentioned in the Fig. 1) with the values of 0, / 2,   ,and 

3 / 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Flow of Configuration and Types of Channel under Consideration 
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We make the following assumptions:  

 The fluid properties are assumed to be constant and the Boussinesq approximation will be 

used that the density variation is retained only in the buoyancy term; 

 The flow is Laminar and two-dimensional (that is the flow is identical in vertical layers 

which is a valid assumption); 

 The viscous dissipation and the work done by pressure are sufficiently small in 

comparison with both heat flow by conduction and the wall temperature 

 The volumetric heat source/sink term in the energy equation is constant; 

 The wave length of the wavy walls which is proportional to 1/  is large; the electric 

field is zero; and 

 The induced magnetic field is negligible compared to the applied magnetic field.       

With these assumptions, the unsteady flow and heat transfer in a viscous incompressible 

conducting fluid are governed by the momentum equations, the continuity equation, and the 

energy equation in the form. With these assumptions, the steady flow and heat transfer in a 

viscous incompressible conducting fluid are governed by the momentum equations, the 

continuity equation, and the energy equation in the form, 

Region: I 
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(1) (1)
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(1) (1)
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u v v
x y y

 
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 
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 2

0
u u

u v
x y

  
  

  
        (7) 

   
 

 
 

2
22 2

p

u u
c u v k T

x y


  
   

  
      (8) 

            Where u, v are the velocity components, T is the temperature, P is the pressure, 0B  is the 

transverse magnetic filed,   is the coefficient if the electric conductivity, Q is the constant heat 

addition/absorption, 2  is the two dimensional Lapalcian, and the other symbols have their 

meanings. The relevant boundary conditions of the problems are 

                             1 1
0u v            

   1

1
1 cosT T x    

                                                        at  
   1 1

1
ˆcosy h a x T          (9) 

                          
   1 2

0u u          
 

    2

2
1 cosT T x      

                                                        at  
     2 2

2
ˆcosy h a x T       (10) 

                            
   1 2

u u   ;  
   1 2

v v  ;  
   1 2

T T  at   y=0 

               The boundary conditions on the temperature field physically indicate that there are 

traveling thermal waves moving in the negative x-direction. 

We next introduce the non dimensional flow and heat transfer variables as     

    
1

, ,x y x y
d

    ,   2/t t d  , 

   
1

, ,u v u v
d

    ,  

2

/p p
d


  

  
 

,      (11) 

And        1 2 1
ˆ ˆ ˆ/T T T T T    , 

Where /    is the kinematic viscosity. In terms of these non-dimensional variables 

in equation (11), the basic equations (1) - (4) and (5) – (8) the equations can be express in the 

non-dimensional form dropping the asterisks, 

Region: I 
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   11 2 2

2 2

1
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     
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Region: II 
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

      
       
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u v
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       
        (16) 

            

   22 2 2

2 2

r

T T km T T
u v

x y p x y

     
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      
    (17) 

Boundary conditions reduces to, 

  
   1 1

0u v  ,
 1

0T       at  1
1 cosy x      (18) 

   
   2 2

0u v  ,
 2

1T       at    
  2

1 cosy x
h


 

 
    

 
              (19) 

The interfaces conditions are, 

            1 21
u u

rmh
     at    y=0 

           1 21
v v

rmh
     at    y=0                                                                         (20) 

         
 1 2T T          at    y=0       

         

   1 2

2 2

1u v u v

y x rm h y x

      
     

      
      at     y=0 

        

   1 2

T T k T T

y x h y x

      
     

      
          at     y=0 

Where  3 2

2 1
ˆ ˆ /G d g T T   , the Grashof number, /pP C k , Prandtl number, 

  d    , the non dimensional wave number, /a d  , the amplitude   parameter. 

 

 

 

 



International Journal of Emerging Trends in Engineering and Development              Issue 3, Vol.5 (September 2013)                                                                                                    

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm                                         ISSN 2249-6149 

R S. Publication, rspublicationhouse@gmail.com Page 57 

 

Using small perturbation method, 

                   
           0 1, ,
i i i

u x y u y u x y   

                   
       1, ,
i i

v x y v x y  

                   
           0 1, , ,
i i i

p x y p x y p x y      (21) 

                   
           0 1, ,
i i i

T x y T y T x y    

                    where, i = 1, 2 

Numerical Solution 

We next solve the problem by the method of perturbation. We assume that the solution is made 

up of a mean and a perturbed part, so that the velocity and temperature distribution will take the 

forms, respectively 

       0 1, , , ,x y z y x y t     

     0 1, , , ,T x y t T y T x y t      

Where          (22)  

       1 1, , exp cosx y t i x y        

      1 1, , exp cosT x y t i x T y      

And the perturbed quantities  1    and  1T  are small compared to their mean quantities  

0  and  0T  respectively. 

Zeroth order equations are, 

  Region : I    Region : II 

 12

0

2
0

d T

dy
   (23)  

 22

0

2
0

d T

dy
    (25) 

 12

0

2
0

d u

dy
    (24)   

 
 

22
22 2 30

02

d u
G m r h T

dy
   (26)          

  Zeroth order boundary and interface conditions are, 

      
   1

0 1 0u  , 
   1

0 1 0u   ,   
   1

0 1 0T  ,
   1

0 1 0T     (27) 
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Zeroth order interface conditions are, 

   
 21

0 0

1
u u

rmh
  

   1 2

0 0

2 2

1du du

dy rm h dy

   
   

   
      (28)   

   1 2

0 0T T                              

   1 2

0 0dT dTk

dy h dy

   
   

   
 

 

 

First order equations are, 

Region: I 

         

   11 2 2

01 1 1 1
0 1 12 2

uu p u u
u v GT

x y x y x
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       
  (29) 

         

   11 2 2

1 1 1 1
0 2 2

v p v v
u
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     
     

      
    (30) 

         

   11 2
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1

r
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    
    

      
    (31) 

Region: II 

        

   22 2 2
2 2 301 1 1 1

0 1 12 2

uu p u u
u v G m r h T

x y x y x


     
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       
 (32) 

        

   22 2 2

1 1 1 1
0 2 2

v p v v
u

x y y x

     
     

      
    (33) 

       

   22 2

01 1 1
0 1 2 2

r

TT T Tkm
u v

x y P x y
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      
                (34) 
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    First order boundary conditions for region-I & region-II, 

     
   

 1
1 0

1 1 cos
u

u x
y




 


,          
   1

1 1 0v   

      
   

 

 
1

1 0
1 1 cos 1

T
T x

y



 


, 

     
 

 
2

2 0
1

1
1 cos 1

u
u x

h y
 


    


            (35)  

             
     

 

 
1

2 0
1

1
1 cos 1

T
T x

h y
 


    


,      

   2

1 1 0v    

 

 

First order interface conditions are, 

       1 2

1 1

1
u u

rmh
   ,    1 2

1 1

1
v v

rmh
  ,

   1 2

1 1T T   at    y=0 

     

   1 2

1 1 1 1

2 2

1u v u v

y x rm h y x

      
     

      
    at   y=0    

     

   1 2

1 1 1 1T T T Tk

y x h y x

      
     

      
           at   y=0                   (36) 

     
   1 2

2 2 2 2 30 01 1
0 1 1 1 0 1 1 1

u uu u
u v u GT u v u G m r h T

y x x y


     
         

      

 at y=0      

    

   1 2

2 21 1
0 1 0 1

u v
u v u v

x x

    
     

    
                                   at   y=0  

  

Now introducing stream function    defined by 

 
 

 i
i

u
y


 


    and    

 i
i

v
x





               where i = 1, 2 

Substitute in to equations (29)-(34), and (35, 36), and eliminating the non dimensional 

pressure p, we get, 

Region-I 

              
 1

0 1 0 1 0 1 1 1 1 12 0
xyy x xxx yyyy xxyy xxxx y

u u u G T              (37) 

  

 1
2 2

01 1 1
0 1 2 2r

TT T T
p u v

x y x y

     
     

       
               (38) 
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Region-II        

                 
 2

2 2 3

0 1 0 1 0 1 1 1 1 12 0
xyy x xxx yyyy xxyy xxxx y

u u u G m r h T             (39)  

 2
2 2

01 1 1
0 1 2 2

r

TT T Tkm
u v

x y P x y

     
     

       
                  (40) 

Where the subscripts denote partial differentiation. The boundary conditions are written 

in terms of   as 

     0y x   , T=0,    at      1 cosy x                            (41)          

    0y x   , T=1,    at      1 cosy x                         

 

 

Solution of the First Order Equation  

We next solve the problem by the method of perturbation. We assume that the solution is 

made up of a mean and a perturbed part, so that the velocity and temperature distribution taken 

the forms, respectively. 

                                  0 1, , , ,x y t y x y t    ,                             

                                           0 1, , , ,T x y t T y T x y t  ,    where,                    

              
         1 1, exp
i i

x y i x y       , 

                                     
         1 1, exp
i i

T x y i x T y      , 

Where i = 1, 2 

and the perturbed quantities 1  and 1T  are small compared to their mean quantities 0  and 0T , 

respectively. 

            With the help of equations (37) - (40) and (41) and the conditions (42) and yield, 

                                
 1

0 0 0iv GT         (43) 

                                
 1

0 0T          (44) 

                                
 2

2 2 3

0 0 0iv G m r h T        (45) 

                                 
 2

0 0T                    (46) 
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0 0   ,   

0 0  ,    
0 0T  ,      at  y=1  

                       
0 0   ,   

0 0  ,    
0 1T  ,       at  y=-1           (47) 

  to the zeroth order, and 

       
 1

2 3 4 1

1 1 0 1 0 0 12 0iv ii iiiu u i u i GT                     (48) 

     
 

 
 1 12

1 1 0 0 1r rT T p u i ip T                  (49) 

       
 2

2 3 4 2 2 3 1

1 1 0 1 0 0 12 0iv ii iiiu u i u i G m r h T                          (50) 

   

   2 2

2

1 1 0 0 1
r rp p

T T u i i T
km km

   
    

       
    

             (51) 

      01 1 cos 1
u

x
y y







 
,   1 0  ,      

 1

1 0
1 cos

T
T x

y


 
   

 
,        at y=1,       (52)                

        01 1
1 cos 1

u
x

y h y


 


   

 
  ,    1 0  ,       

 1

1 0
1

1
cos

T
T x

h y
 

 
    

 
    (53) 

 at y = -1, to the first-order, where a prime denotes differentiation with respect to y.  

 We consider small values of   and then expand 1  and 1T  as 

                  1 1

0

, r

r

r

y   




   ,     1 1

0

, r

r

r

T y T 




 .   (54) 

Substituting (54) into (48) - (53), we obtain the following sets of ordinary differential 

equations and the boundary conditions, to the order of 2 . 

          
 1

10 10 0iv GT           (55) 

         
 1

10 0T           (56) 

       

(1)
2

11
0 10 10 02

0r r

d T
iu p T ip T

dy


 
   

 
      (57) 

         
 2

2 2 3

10 10 0iv G r m h T          (58) 
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 
 2

10 0T                      (59)                                                   

(2)
4

2 2 311
0 10 0 10 114

0
d

iu iu G m r h T
dy


  

 
      

 
           (60) 

           

(2)
2

11
0 10 10 02

0r rd T p p
iu T i T

dy km km


 
   

 
              (61) 

   and 

 

 
1

10 0(1) cos 1
u

x
y y




 
 

 
,

   1

10 1 0  , 
   1

11 1 0   ,
   1

11 1 0   

 1

(1) 0
10 cos

T
T x

y


 
   

 
,

   1

11 1 0T                             at   y=1  (62)                                                                                                                                                                        

 

   
2

10 01
( 1) cos 1

u
x

y h y


 

 
    

 
,

   2

10 1 0    ,
   2

11 1 0    ,
   2

11 1 0      

 
 2

(2) 0
10

cos T
T x

h y
 

  
     

   
,

   2

11 1 0T      at     y=-1                  (63)  

    

   21

10 101

y rmh y

   
  

  
,    1 2

10 10

1

rmh
  ,

   1 2
2 2

10 10

2 2 2 2

1

y rm h y

     
    

    
 

    

   1 2
3 3

2 2 310 10
103 3

GT G m r h
y y

 


    
     

    
 ,   

   1 2
3 3

2 2 310 10
103 3

GT G m r h
y y

 


    
     

    
 

 
   1 2

10 10T T , 
   1 2

10 10dT dTk

dy h dy
 ,    1 2

11 11

1

rmh
  ,                               (64)                   

   1 2
2 2

11 11

2 2 2 2

1

y rm h y

     
    

    
,

   1 2

11 11T T           

   1 2
3 3

2 2 310 1011 11
0 0 10 11 0 0 10 113 3

d dd d
iu iu GT iu iu G m r h T

dy dy dy dy

  
    

   
            

   
  

 at y=0 

4.1. The zeroth-order solution (mean part)   

 The solution for zeroth-order stream function 0u and the zeroth-                      order 

temperature 0T  satisfying the ordinary differential equation (43) - (47) are obtained as 
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 1 3 2

0 1 2 1 2u l y l y d y d         (65) 

  
 1

0 1 2T c y c         (66) 

  
 2 3 2

0 3 4 3 4u l y l y d y d         (67) 

 2

0 3 4T c y c         (68) 

 The expression for 0  and
0T for various values of y are numerically evaluated for several 

sets of the parameters G, m  

 The set of equations (65) - (68), subject to the conditions (62) - (64) are solved exactly 

for 10  and 10T .They are. 

                    1 4 3 25 6
10 5 7 8

6 2

d d
l y y y d y d          (69) 

                   
 1

10 5 6T c y c         (70) 

                   2 4 3 29 10
10 6 11 12

6 2

d d
l y y y d y d          (71) 

                   
 2

10 7 8T c y c         (72) 

4.2. The first-order solution (Perturbed part) 

The set of equations (69) - (72), subject to the conditions (62) - (64) are solved exactly 

1r  and  1 1,2rt r   and the solutions are not presented here for brevity. 

The equations             

     
2

1 1

0

r

r

r

  


     ,        
2

1 1

0

r

r

r

T T


                                          (73) 

used along with (42) to calculate the expression for the perturbed quantities 1  and 1T  which 

after simplification take the forms, 

                   1 1 1, , cos sinr ix y t y x y x           ,        (74) 

                  1 1 1, , cos sinr iT x y t T y x T y x        ,          (75) 

            1 1 1r ii           and          
1 1 1r iT T iT  .           (76) 

The solution takes the form for first order equations. 

 1 9 8 7 6 5 4 3 213 14
11 7 8 9 10 11 12 15 16

6 2

d d
m y m y m y m y m y m y y y d y d               (77)    

 1 6 5 4 3 2

11 1 2 3 4 5 9 10T e y e y e y e y e y c y c                      (78)   
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   2 9 8 7 6 5 4 3 217 18
11 7 8 9 10 11 12 19 20

6 2

d d
S y S y S y S y S y S y y y d y d                    (79)      

     
 2 6 5 4 3 2

11 1 2 3 4 5 11 12T f y f y f y f y f y c y c                                         (80) 

Expression for  
 1

11  , 
 2

11 , 
 1

11T , and 
 2

11T  are called first-order solution or the disturbed 

(or perturbed) part. In the similar way, the total stream function   and the total temperature T 

are obtained, but the sake of brevity, they are not presented here. For several sets of values if the 

non-dimensional parameters G, M, Pr, , , and  . 

From these solutions the first order quantities can be put in the forms,  

          1 sin cos ,i ru x x       

         1 sin cos ,r iv x x                (81) 

   1 cos sinr iT T x T x   , 

Where          

  
2

0

i

r i i

i

i   


   , 

2

,

0

i

r i i

i

T T iT 


   , 

We obtain the expression for real part of 1u , 1v and 1T  by using  (77) - (80) and (81),  

Skin Friction and Nusselt Number 

The shearing stress 
xy  at any point in the fluid is given, in non-dimensional form, by

 

     

2

2

0 1 1 ,

xy xy

i x i x

d

u y e u y i e v y 

 


 

 
  
 

   

 

xy  at the wavy wall  cosy x  ,   cosy x     and at the flat wall  y = 1           y = -1, 

are given by 

            1 1 1 1

0 10 11
Re 1 1

i x

w
e u u


         , 

            2 2 2 2

0 10 11
Re 1 1

i x

w
e u u


           , 

Where Re represent the real part of  

 
 1

0 1c  , 
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    

   

1 2

1

1 2 1 7 8 9 10 11 12 13 14

13 14 5 5 6

cos 6 cos 2

3 2 cos sin 72 56 42 30 20 12

cos cos cos cos 12

w

x l x l

l l d x x m m m m m m d d

x x d d x x l d d

 

     

    

  
 

            
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Results and Discussion 

Analytical solutions for the stands mixed convection of two immiscible viscous fluids in 

a vertical wavy channels, the non linear equations are solved by linearization techniques where 

in the flow is assumed to be in two parts, a mean part and a perturbed part exact solutions are 

obtained for the mean part and the perturbed part is solved using long wave approximation. 

Zeroth order solution  

The solution of zeroth order velocity 0U  and the zeroth order temperature 0T  are 

applicable to the case of whose walls are flat, but with constant wall temperature. The solutions 

for the mean and perturbed parts are evaluated numerically and represented graphically for 

various governing parameters in Figs. (all graphs). In all graphs the parameters such as Prandtl 

number Grashof number, viscosities ratio, width ratio, conductivity ratio & thermal temperature 

are fixed as 0.7, 5, 1, 1, 1, & 0.785398 respectively for all graphs except for the varying one 

among them.  

The behaviors of the non-dimensional zeroth order velocity with different Gr shown in 

(Fig. 2). It is seen that the zeroth order velocity 0U  (see Fig. (Gr on 0U ,) with the increase in Gr. 

The effect of viscosity ratio is similar as width ratio, that is m on zeroth order velocity 

0U  is not significant in region I compared to region II whereas as velocity ratio increases in 



International Journal of Emerging Trends in Engineering and Development              Issue 3, Vol.5 (September 2013)                                                                                                    

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm                                         ISSN 2249-6149 

R S. Publication, rspublicationhouse@gmail.com Page 66 

 

region II and decreases in region I (i.e., from  1.0 1.0y   . The effect of viscosity ratio (m) on 

01U  is observed in (fig. m on U01). 

First order solution and Total solution  

The behavior of the non-dimensional first order velocities with different rG are shown in 

fig (Gr on u10 u11). It is shown that with the increases in Gr the first order velocity 
10

increases in region I  1 0y y     decreases in region II  0 1.0y   approximately.  

The effect of increasing Grashof number Gr is to decrease the fluid motion for first order 

velocity of 11T  as shown in Fig. (gr on t11). It is also observed that in region I the variation of Gr 

values is gradually increasing the value  0.25 1.0y    approximately, hence velocity is 

reduced in region I when compared to region II. 

For first order non-linear equation for temperature of T11 (Fig. on T11) it up of parabolic 

form at r = -0.1 it will not effect to first order equation in region II and slight increment in region 

I (0 to 0.3) from the graphs it is seen that increasing the density it will decrease in region I and 

increases in region I for higher value (R = 3.0) if increases in region II then increases in region I. 

The effect of Prandtl number  pc k  on first order velocity (Fig. Pr on 11 ).               T first 

order velocity 11  decreases while Pr increases from y = 0.044 to 7 (-1 to -10) approximately onwards 

seen in Fig. (pr on 11 ). The viscous velocity 11  increases in region I near the left wavy wall and 

increases in interface conditions as shown in Fig.The effect of Prandtl number on first order 

temperature steadily decrease in region II for increasing the Prandtl number and steadily 

increasing in region I  1.0 1.0y y    . It depict the behavior of perturbed (first order 

solution) quantities. When r = h = m = k = 1 and when Prandtl number is 0.7 and 7 from this we 

observe that in presence of viscous fluid the velocity is decreasing steadily for a fixed y up to y = 

-0.55 approximately i.e., in the first half of the channel. While in the other half of the channels 

11  is a increasing function of y we notice that when 0   an increase in the frequency 

parameter   is constant. 

Total Solution 

The behavior of viscosity ratio     1 2
m    on the total solution (considering only real 

part and we ignored imaginary part) of U1 and V1 as shown in Fig. (U1r and V1r of m). As the 

viscosity ratio m increases on V1 for higher value it is more effective in region II for lower value 

of viscosity i.e., (0.1, 1, 2) is a approximately equal. Similarly for region I there is no effect. It is 

a steady motion of the viscous fluid from (y = -1 to 1) approximately for higher value of the 

viscosity ratio steadily decrease (y = 25 to -0.5) in total solution of V1 in region I and constant 

flow of viscous fluid in region I.The velocity profile is similar to those of the viscosity ratio 
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when m up on small values is approximately equal flow in region I and region II but for the 

higher value of viscosity on U1 i.e., (y = 3 and above) it is steadily increase in region II (y = -15 

to 4) approximately and slight decrease in region I at (y is 0 to 1.0).The velocity profile for 

conductivity ratio     2 1
k k k  from the Fig. (U1 and V1) It is shown that when the 

conductivity ratio k increases for total solution U1 for smaller value it decrease from (-0.3 to 

0.15) at y and for higher value it is significantly decrease from (0.4 to -0.5) on left wall (region 

II) similarly in region I steadily decreasing from higher value to smaller value for right wall 

(region I). Totally the conductivity ratio on U1r is highly increases in region II and highly 

decreases in region I. Similarly, the conductivity for total solution V1 it is totally different from 

U1. In total solution of V1 we find that in region I while increasing conductivity ratio the effect 

on region II is steadily decreasing for higher conductivity ratio  0.2 0.0y   and for the value 

k = 0.1 it is highly decreases i.e. (0.55 to 0.0 approximately) at the left wall (region II) but in 

right wall it constant flow of viscous fluid in region I (overlap on each other) 
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Table 1: G=5; k =m= Sig=  =0.1 

 

 

Table 2: G=5; h=m=Sih=  =0.1 

 

 

Table 3: G=5; h=m=Sih=  =0.1 

 
 

 

 

 

y 

T0 T10 T11 

h=0.1 h=1 h=2 h=3 h=0.1 h=1 h=2 h=3 h=0.1 h=1 h=2 h=3 

+0.1 0 0 0 0 0.90909 0.5 0.33333 0.25 0 0 0 0 

+0.5 0.45455 0.25 0.1667 0.125 0.4955 0.37489 0.27773 0.21872 -0.2059 -0.11157 0.20389 0.95106 

0 0.90909 0.5 0.33333 0.25 0.08191 0.24978 0.22212 0.18744 -0.12884 -0.2678 0.3584 1.57223 

0 0.90909 0.5 0.33333 0.25 0.08191 0.24978 0.22212 0.18744 -0.12884 -0.2678 0.3584 1.57223 

-0.5 0.95455 0.75 0.66667 0.625 0.04055 0.12466 0.11091 0.09361 -0.06314 -0.25623 0.2863 1.3779 

-1 1 1 1 1 -8.1E-4 -4.5E-4 -3E-4 -2.2E-4 0 0 0 0 

y 

T0 T10 T11 

k=0.1 k=1 k=2 k=3 k=0.1 k=1 k=2 k=3 k=0.1 k=1 k=2 k=3 

+0.1 1 0 0 0 0.90901 0.5 0.66667 0.75 0 0 0 0 

+0.5 0.45455 0.25 0.33333 0.375 0.08674 0.37489 0.44435 0.46867 -0.18235 -0.11157 -0.02807 0.02598 

0 0.90901 0.5 0.66667 0.75 0.08257 0.24978 0.22202 0.18733 -0.36603 -0.2678 -0.15655 -0.89 

0 0.90901 0.5 0.66667 0.75 0.08257 0.24978 0.22202 0.18733 -0.36603 -0.2678 -0.15655 -0.89 

-0.5 0.54545 0.75 0.83333 0.875 0.04088 0.12466 0.11086 0.09355 -0.94814 -0.25623 -0.13679 -0.0789 

-1 1 1 1 1 -8.1E-4 -4.5E-4 -3E-4 -2.2E-4 0 0 0 0 
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Table 4: k=h=m=Sih=  =0.1 

 
 

 

Table 5: G=5:=m=Sih=  =0.1 

 

 

Table 6: G=5:=m=Sih=  =0.1 

 

 

 

y 

U1r V1r 

h=0.1 h=1 h=2 h=3 h=0.1 h =1 h=2 h =3 

+0.1 -0.11607 0.02125 -0.78987 -54.76411 0.01588 0.00211 -0.0531 -0.25082 

+0.5 -0.02614 0.0696 0.19945 15.29557 0.00137 -4E-5 -0.00456 -0.02286 

0 -0.00599 0.08678 0.36743 30.4341 0 0 0 0 

0 -9E-4 0.13016 1.10229 136.9534 0 0 0 0 

-0.5 -0.02296 0.15653 -1.26376 -62.1159 0.0079 0.03418 -0.0916 37.35529 

-1 -0.08882 0.23245 -5.42186 0 0.03161 0.11859 4.22099 6661.1129 

y 

U1r V1r 

K=0.1 K=1 K=2 k=3 K=0.1 h =1 K=2 K=3 

+0.1 -0.14596 0.02125 0.03022 0.03345 0.00182 0.00211 0.00264 0.00309 

+0.5 0.05471 0.0696 0.09979 0.11848 1.7E-4 -4E-5 -3.4E-4 -5.8E-4 

0 0.09114 0.08678 0.12374 0.14677 0 0 0 0 

0 0.13672 0.13016 0.18561 0.22015 0 0 0 0 

-0.5 -0.00208 0.15653 0.22726 0.26934 0.05162 0.03418 0.04954 0.05982 

-1 -0.27995 0.23245 0.34743 0.41363 0.5671 0.11859 0.16327 0.20052 
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