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ABSTRACT: In this paper a Generalized Reynolds equation for power-law lubricant is derived 
and is applied to the squeeze film of parallel plates using stochastic theory. The roughness is 
taken to follow normal distribution. The lubricant consistency is assumed to vary due to the 
thermal effects. q is introduced for this purpose. The expected values of load capacity and time 
of squeezing for parallel plates are obtained analytically for both transversal and longitudinal 
roughness surface. It is deduced for the transversal roughness. These parameters increase as 
the standard deviation parameter increases. The effect of q is to decrease the expected value of 
load capacity and squeezing time. 
 
Key words: Flow behavior index, Thermal effect, Standard deviation 
 
 
 1 INTRODUCTION 
 When we study in many papers the characteristics of power-law lubricants in various 
lubricated systems, it has been assumed that the bearing surfaces are smooth. However, in 
reality bearing surfaces would always have some roughness and it is very natural to study such 
effects on various bearing characteristics. Several attempts have been made to study such 
effects in bearing systems by both deterministic and stochastic approach. 
 In the deterministic approach the profile or roughness asperities are represented by a 
given shape function such as sine or cosine wave and thus modifying the film thickness in the 
usual study of the bearing characteristics. Using this approach, some studies have been 
conducted. It has been pointed out that the load capacity, frictional forces etc. are different 
from the corresponding case of smooth surfaces and they mainly depend upon the amplitude 
and the wave lengths of the representing the roughness surfaces. Recently a new deterministic 
theory has been proposed by Shukla when the mean height of the asperities is of the same 
order as the minimum film thickness.  
 In another method, known as stochastic approach, the film thickness is assumes to be a 
stochastic or random function and hence the corresponding Reynolds equation becomes a 
stochastic differential equation. To study various characteristics, this equation is solved by 
taking the mean or the average of the stochastic variables involved. This concept has been used 
by Tzeng and Saibel to study the effect of surface roughness in an infinite slider bearings and 
short journal bearings. Later Christensen and Tonder derived generalized form of Reynolds 
equation for stochastic lubrication. Further refinement of this theory has been given by 
Christensen, Shukla and Kumar. Since then several models including the effects of viscosity 
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variation have been proposed and their applicability to various bearing systems have been 
investigated. 
 It may be noted that in the above mentioned studies, the lubricant is characterized by a 
Newtonian model. As pointed our earlier when additives of higher concentration are added to 
the base lubricant, it becomes Non-Newtonian and the simplest of these is the power-law 
model which describes the  characteristics of several polymer solutions and silicone fluids. In 
the last two dacades several attempts have been made to study the behavior of power-law 
lubricant in different bearing systems, but no attempt has been made to study the effects of 
surface roughness on bearing characteristics using such lubricants. 
 Keeping the above in view, in this chapter the generalized form of one dimensional 
stochastic form of Reynolds equation has been derived following Christensen, for power-law 
lubricant applicable for two symmetric rough surfaces both in the case of longitudinal and 
transversal roughness. The case of squeeze film between two parallel plates have been 
discussed. It may be noted that the analysis presented here is valid when the mean height of 
the asperities is much smaller than the minimum film thickness. 
 
                      hs       V 
              2h 
 
               v          l 
 

 
 
Fig (1): Squeezing between two rough parallel plates 

 
2 BASIC EQUATION 
 Consider the flow of a power-law lubricant with constant consistency between two 
symmetrically rolling and squeezing rough surfaces. The equation governing the pressure in the 
film is given from equations 

𝑑

𝑑𝑥
 

𝑛

2𝑛+1
 𝐻

2𝑛+1

𝑛   −
1

𝑚
 
𝑑𝑝

𝑑𝑥
 

1
𝑛 

 =  −
𝑑𝐻

𝑑𝑡
− 𝑈

𝑑𝐻

𝑑𝑥
                                                                           (1) 

In the region –X1 ≤ X ≤ X2 , y > 0 , 
𝑑𝑝

𝑑𝑥   
 ≤ 0 and 

𝑑

𝑑𝑥
 

𝑛

2𝑛+1
 𝐻

2𝑛+1

𝑛   
1

𝑚
 
𝑑𝑝

𝑑𝑥
 

1
𝑛 

 =  
𝑑𝐻

𝑑𝑡
+ 𝑈

𝑑𝐻

𝑑𝑥
             (2) 

In the region –  ≤ X ≤ X1 , y > 0 , 
𝑑𝑝

𝑑𝑥   
 ≥ 0  

 where 2H is the total stochastic film thickness , U,V are the rolling and squeezing velocities 
respectively. Since, the film thickness 2H is a stochastic variables, equations (1) and (2) are 
stochastic differential equations for pressure. 
 Taking the stochastic mean of equation (1) and (2) we get, 
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Where 
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∞

−∞
                                                                                                       (5) 

and f(s) , is the distribution of the stochastic variable s. The film thickness function H is given by  
 H = h(x,z) + hs (x,z,ξ )        (6) 

Where 2h is the nominal film thickness and 2hs is the part of the film thickness due to surface 
roughness measured from the nominal level . It is assumed that hs is a function of the random 
variable  ξ , the mean value of which over the bearing surface is zero. 
 To evaluate the terms on the left hand side of equations (3) and (4) we apply the same 
postulates as proposed by Christensen i.e., 

(i) Let S1 be the direction parallel to the roughness and S2 the direction perpendicular to 
it. The pressure gradient in the roughness direction is assumed to be a stochastic 
variable with zero or negligible variance. 

(ii) In the direction perpendicular to the direction of roughness the flux is assumed to 
have zero or negligible variance. 

  Using the above two postulates the Reynolds equations in the following cases are derived.  
 
2.1 LONGITUDINAL ONE-DIMENSIONAL ROUGHNESS 
 In this type of roughness the narrow ridges and valleys of the asperities run parallel to 
the direction of motion . The film thickness in this case is given by 

 H= h(x,z,t) + hs(z, ξ)           (7) 

 Since by first postulate, 
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Where 𝑃 = 𝐸(𝑃) , E(H) = h. 

Similarly for the region 
𝑑𝑝
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 > 0 we get the corresponding Reynolds equation for the longitudinal 

roughness which can be written from equation (4) as follows 
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Equations (9) and (10) are generalized one dimensional form of Reynolds equation applicable 
for two symmetric rough rollers having longitudinal roughness using power-law lubricant. 
 
2.2 TRANSVERSE ONE-DIMENSIONAL ROUGHNESS 
  In this type of roughness, it is noted that the narrow ridges and valleys run 
perpendicular to the direction of motion. The film thickness function in this case is given by, 
 H = h(x,z,t) + hs(x, ξ) 
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 To evaluate the term on the left hand side of equation (3) let us define the flux as 
follows: 
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which can also be written as 
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Using postulate (ii) and taking the expectation of equation (12) we get, 
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Taking again expectation of equation (11) and using equation (13) we get, 
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Which on substituting in equation (3) gives , 
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Similarly for the region 
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 Equations (15) and (16) are generalized one dimensional form of Reynolds equation 
applicable for symmetric rough surfaces in the case of transverse roughness. 

 In equation (15) and (16) the terms 𝐸  −  
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This cannot be done exactly as 
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 is a stochastic function. To get an approximate relation we 

proceed as follows. By keeping U = 0 in equation (11) we get, 
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Using equation (19) in equations (15) and (16) we get the approximate Reynolds equation in the 
case of transverse roughness. 
 In the following we discuss the squeezing between two symmetric rough bearings. 
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3 PARALLEL PLATES (SQUEEZE FILMS) 
 Consider squeezing flow between symmetric parallel plates as shown in fig 1. Here we 
discuss the following cases: 
 
3.1 LONGITUDINAL ONE-DIMENSIONAL ROUGHNESS 
 In this type of roughness it may be noted again that the narrow ridges and valleys run in 
the direction of the flow of the lubricant . The equation governing the mean pressure can be 
written from equation (9) by putting U=0 as follows: 
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Where 2l is the length of the bearing . 
The mean load capacity Wr is defined as 
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Which on using equation(22) gives, 
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Where b is the width of the bearing 
The time of squeezing , tr , for the surface to approach from an initial film thickness, 2hi to a 
final film thickness 2hf is given by, 
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Substituting the value of  E 𝐻
2𝑛+1

𝑛   from equation (appendix) in equation (24) and (25) we can 

write Wr and tr approximately as follows: 
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By keeping 𝜎 = 0 in equation (26) and (27) we get the case of smooth surfaces. If Ws and ts are 
the load capacity and the squeezing time respectively for this case we can write, 
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Where m = m1  
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Equation (28) and (29) are evaluated numerically and graphs of 
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various values in fig. 
 
3.2 TRANSVERSE ONE-DIMENSIONAL ROUGHNESS 
In this type of roughness it may be noted again that the narrow ridges and valleys run 
perpendicular to the direction of the flow of the lubricant. The one dimensional equation 
governing the pressure in this case can be written, from equation (15) and (19) as follows: 
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Integrating the equation (31) and using boundary conditions (21) we get, 
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The mean load capacity Wr and squeezing time tr  can be written by using equations (23) and 
(32) as follows: 
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written approximately as follows: 
By keeping 𝜎 = 0 in equation (35) and (36) we get the case of smooth surfaces. If Ws and ts are 
the load capacity and the squeezing time respectively in this case of smooth surface, then we 
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𝑡𝑟 ,𝑞

 𝑡𝑠,0
= 𝑡 =   

1

1−ℎ 𝑓

𝑛+1
𝑛

   
    1+  𝑛+1   2𝑛+1   

𝜎2

ℎ𝑖
2   

1

ℎ2  

1 𝑛 
ℎ𝑖
ℎ𝑓

ℎ 
2𝑛+1

𝑞
  −𝑞

1

ℎ 𝑓
 𝑑ℎ                             (36) 

Equation (28), (29), (35) and (36) are evaluated numerically and graphs of are plotted for 
various parameters.  
 
4 RESULTS AND DISCUSSION 
 Here the results are shown for the graphs from (2) to (13) 

Fig (2) is plotted for load capacity with 
𝜎

ℎ𝑖
 for different values of q in the case of 

longitudinal roughness. From this we can say with the increase of  
𝜎

ℎ𝑖
  the load capacity 

decreases also decreases with the increase of q. Fig (3) is plotted for load capacity with 
𝜎

ℎ𝑖
 for 

different values of q in the case of transversal roughness. From this we can say with the 

increase of  
𝜎

ℎ𝑖
  the load capacity increases and decreases with the increase of q. 

 

Fig (4) is plotted for load capacity with 
𝜎

ℎ𝑖
 for different values of flow behavior index n in 

the case of longitudinal roughness. From this we can say with the increase of  
𝜎

ℎ𝑖
  the load 

capacity decreases also decreases with the increase of n. Fig (5) is plotted for load capacity with 
𝜎

ℎ𝑖
 for different values of n in the case of transversal roughness. From this we can say with the 

increase of  
𝜎

ℎ𝑖
  the load capacity increases and increases with the increase of q. 

 

Fig (6) is plotted for load capacity with q for different values of 
𝝈

𝒉𝒊
 in the case of 

longitudinal roughness. From this we can say with the increase of q the load capacity decreases 

and decreases with the increase of 
𝝈

 𝒉𝒊
 . 

 

Fig (7) is plotted for squeezing time with 
𝜎

ℎ𝑖
 for different values of flow behavior index n 

in the case of longitudinal roughness. From this we can say with the increase of  
𝜎

ℎ𝑖
  the 

squeezing time decreases also decreases with the increase of n. Fig (8) is plotted for squeezing 

time with 
𝜎

ℎ𝑖
 for different values of flow behavior index n in the case of transversal roughness. 

From this we can say with the increase of  
𝜎

ℎ𝑖
  the squeezing time increases also increases with 

the increase of n. 
 

Fig (9) is plotted for squeezing time with 
𝜎

ℎ𝑖
 for different values of ℎ f in the case of 

longitudinal roughness. From this we can say with the increase of  
𝜎

ℎ𝑖
  the squeezing time 

decreases also decreases with the increase of ℎ f. Fig (10) is plotted for squeezing time with 
𝜎

ℎ𝑖
 

for different values of ℎ f in the case of transversal roughness. From this we can say with the 

increase of  
𝜎

ℎ𝑖
  the squeezing time increases also increases with the increase of ℎ f. 
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5 GRAPHS 
Case of longitudinal Roughness 

 
Fig (2): Load capacity Vs 

𝝈

𝒉𝒊
 for various q 

Case of transversal Roughness 
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Fig (3): Load capacity Vs 
𝝈

𝒉𝒊
 for various q 

Case of longitudinal Roughness 

 
Fig (4): Load capacity Vs 

𝝈

𝒉𝒊
 for various n 
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Fig (5): Load capacity Vs 
𝝈

𝒉𝒊
 for various n 

Case of longitudinal Roughness 

 
Fig (6): Load capacity Vs q for various 

𝝈
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Case of longitudinal Roughness 
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Fig (7): Squeezing time Vs  
𝝈

𝒉𝒊
  for various n 

 
Case of transversal Roughness 

 
Fig (8): Squeezing time Vs  

𝝈

𝒉𝒊
  for various n 

 
Case of longitudinal Roughness 
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Fig (9): Squeezing time Vs  
𝝈

𝒉𝒊
  for various 𝒉 f 

 
Case of transversal Roughness 

 
Fig (10): Squeezing time Vs  

𝝈

𝒉𝒊
  for various 𝒉 f 

 
6 CONCLUSION 

In this chapter a generalized form of one dimensional Stochastic Reynolds equation by 
considering thermal effect is applicable for rough surfaces has been derived for transverse and 
longitudinal roughness using power law fluid as a lubricant. The cases of squeeze films have 
been investigated for parallel plates. 

It is noted that for all n the load capacity and time of squeezing increase as the surface 
roughness increases in the case of transverse roughness and this increase is enhanced as the 
flow behavior index increases. However in the case of longitudinal roughness the load capacity 
and time of squeezing decreases as surface roughness increases for all values of the flow 
behavior index. 
 

NOMENCLATURE 
b  Width of the bearing 
c  Half range random film thickness variable 
E  Expectation operator 
H  Half film thickness random variable 
2h   Deterministic part of film thickness (nominal film thickness) 
2hi  Initial film thickness 
2hs  Random part of the film thickness 
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2  Length of the bearing 
m  Consistency of the fluid 
n   Flow behavior index 
p  Hydrodynamic pressure, a random variable 
𝑝                 Mean Hydrodynamic pressure 
2q        Flow flux       
x,y,z        Coordinate system 
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