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ABSTRACT 

             We investigate the convective study of heat and mass transfer flow of a viscous 

electrically conducting fluid in a vertical wavy channel under the influence of an inclined 

magnetic fluid with heat generating sources. The walls of the channels are maintained at 

constant temperature and concentration. The equations governing the flow heat and 

concentration are solved by employing perturbation technique with a slope  of the wavy 

wall. The velocity, temperature and concentration distributions are investigated for different 

values of M, m, N, β, So, and λ . The rate of heat and mass transfer are numerically evaluated 

for different variations of the governing parameters.  

Keywords : Thermo-Diffusion, Hall Currents, Heat and Mass Transfer, Wavy Channel, 

Inclined Magnetic Field. 
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INTRODUCTION 

In recent years, energy and material saving considerations have prompted an expansion of the 

efforts at producing efficient heat exchanger equipment through augmentation of heat 

transfer. It has been established that channels with diverging – converging geometries 

augment the transportation of heat transfer and momentum. As the fluid flows through a 

tortuous path viz., the dilated – constricted geometry, there will be more intimate contact 

between them. The flow takes place both axially (primary) and transversely (secondary) with 

the secondary velocity being towards the axis in the fluid bulk rather than confining within a 

thin layer as in straight channels. Hence it is advantageous to go for converging-diverging 

geometries for improving the design of heat transfer equipment. They have determined an 

increased heat transfer due to wall roughness and provided the mean flow for stability 

anayalsis. In all these studies the authors have taken the wavy wall to be oriented in a 

horizontal direction and studied the effect of the waviness on the flow field. Vajravelu and 

Nayfeh [29] have investigated the influence of the wall waviness on friction and pressure 

drop of the generated coquette flow. Vajravelu and Sastry [28] have analyzed the free 

convection heat transfer in a viscous, incompressible fluid confined between long vertical 

wavy walls is the presence of constant heat source. Later Vajravelu and Debnath [27] have 

extended this study to convective flow is a vertical wavy channel in four different 

geometrical configurations. This problem has been extended to the case of wavy walls by 

McMicheal and Deutsch [13], Deshikachar et al [7] Rao et. al., [15] and Sree Ramachandra 

Murthy [25]. Hyan Gook Won et. al., [8] have analyzed that the flow and heat/mass transfer 

in a wavy duct with various corrugation angles in two dimensional flow regimes. Mahdy et. 

al., [11] have studied the mixed convection heat and mass transfer on a vertical wavy plate 
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embedded in a saturated porous media (PST/PSE) Comini  et. al.,[5] have analyzed the 

convective heat and mass transfer in wavy finned-tube exchangers. Jer-Huan Jang et. al.,[9] 

have analyzed that the mixed convection heat and mass transfer along a vertical wavy 

surface. Rees and Pop [17] studied the free convection process along a vertical wavy channel 

embedded in a Darcy porous media, a wall that has a constant surface temperature or a 

constant surface heat flux [18].Kumar and Gupta  [16] for a thermal and mass stratified 

porous medium and Cheng [4] for a power law fluid saturated porous medium with thermal 

and mass stratification.  The influence of a variable heat flux on natural convection along a 

corrugated wall in a non-Darcy porous medium was established by Shalini and Kumar  [21]. 

Manjulata et.al., [12] have analyzed  Heat and mass Transfer effects in a viscous in 

compressible fluid through a porous medium confined between a long vertical wavy wall and 

a parallel flat wall in an aligned magnetic field.  

 In all these investigations, the effects of Hall currents are not considered. However, in 

a partially ionized gas, there occurs a Hall current [10] when the strength of the impressed 

magnetic field is very strong. These Hall effects play a significant role in determining the 

flow features. Sato [19], Yamanishi [30], Sherman and Sutton [23] have discussed the Hall 

effects on the steady hydromagnetic flow between two parallel plates. Alam et. al.,[2] have 

studied unsteady free convective heat and mass transfer flow in a rotating system with Hall 

currents, viscous dissipation and Joule heating. Taking Hall effects in to account Krishna et. 

al.,[10] have investigated Hall effects on the unsteady hydromagnetic boundary layer flow. 

Rao et. al., [15] have analyzed Hall effects on unsteady Hydromagnetic flow. Siva Prasad et. 

al., [24] have studied Hall effects on unsteady MHD free and forced convection flow in a 

porous rotating channel. Recently Seth et. al., [20] have investigated the effects of Hall 

currents on heat transfer in a rotating MHD channel flow 

in arbitrary conducting walls.Anwar Beg et.al., [3] have 

discussed unsteady magneto hydrodynamics Hartmann-

Couette flow and heat transfer in a Darcian channel with 

Hall current,ionslip,Viscous and Joule heating effects 

.Ahmed [ 1 ] has discussed the Hall effects on transient 

flow pas an impulsively  started infinite horizontal porous 

plate in a rotating system. Shanti [22]  has investigated  

effect of Hall current on mixed convective heat  and mass 

transfer flow in a vertical wavy channel with heat 

sources. Leela [14 ]  has studied the effect of Hall 

currents on the convective heat and mass transfer flow in 

a horizontal wavy channel under inclined magnetic field. 

Recently Sreerangavani [26 ] has studied hall effects and radiation on mixed convective heat 

and mass transfer in a vertical wavy channel. 

FORMULATION AND SOLUTION OF THE PROBLEM 

We consider the steady flow of an incompressible, viscous ,electrically conducting 

fluid through a porous medium confined in a vertical channel bounded by two wavy walls 

under the influence of an inclined magnetic field of intensity Ho lying in the plane (x-z).The 

magnetic field is inclined at an angle 1 to the axial direction k and hence  its components are 

))(),(,0( 1010  CosHSinH .In view of the waviness of the wall the velocity field has 

components(u,0,w)The magnetic field in the presence of fluid flow induces the current (

  
                  z 
 
      
     T = T1 
     C = C1 

                              T=T2  
               

        H0                  C=C2  
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),0,( zx JJ .We choose a rectangular cartesian co-ordinate system O(x,y,z) with z-axis in the 

vertical direction and the walls at )(
L

z
fx


 . 

                          When the strength of the magnetic field is very large we include the Hall 

current so that the generalized  Ohm’s law is modified to 

  )( HxqEHxJJ eee                               (1) 

where q is the velocity vector. H is the magnetic field intensity vector. E is the electric field, J 

is the current density vector, e is the cyclotron frequency, e  is the electron collision time, 

is the fluid conductivity and e is the magnetic permeability. Neglecting the electron pressure 

gradient, ion-slip and thermo-electric effects and assuming the electric field E=0,equation (1) 

reduces  

  )()( 1010  wSinHSinJHmj ezx      (2) 

  )()( 1010  SinuHSinJHmJ exz      (3) 

where m= ee  is the Hall parameter. 

On solving equations (2)&(3) we obtain  
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where u, w are the velocity components along x and z directions respectively, 

The Momentum equations are  
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Substituting Jx and Jz from equations (4)&(5)in equations (6)&(7) we obtain  
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The energy equation is  
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The diffusion equation is  
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The equation of state is  

 )()(0 oo CCTT         (12) 
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Where T,C are the temperature and concentration in the fluid. kf is the thermal conductivity, 

Cp is the specific heat constant pressure,D1 is molecular diffusivity,k11 is the cross 

diffusivity,  is the coefficient of thermal expansion,  is the coefficient of volume 

expansion ,Q is the strength of the heat source  

The flow is maintained by a constant volume flux for which a characteristic velocity is 

defined as 

   




Lf

Lf

wdx
L

q
1

                   (13) 

The boundary conditions are 

 u= 0 ,w=0 T=T1 ,C=C1 on )(
L

z
fx


               (14) 

 w=0,   w=0,  T=T2  ,C=C2 on )(
L

z
fx


               (15) 

Eliminating the pressure from equations(2.8)&(2.9) and introducing the Stokes Stream 

function  as  
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the equations (2.8)&(2.9) ,(2.10)&(2.11) in terms of  is 
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On introducing the following non-dimensional variables  
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 )
)()(

()(
22

22

1

4

zxxz
R

x

C
N

xR

G
M






























    (20) 

 


















 2)(
xzzx

PR                              (21) 

 
 22)( 


















N

ScSo
C

x

C

zz

C

x
ScR       (22) 

where 

2

3



 LTg
G e
 (Grashof Number) 

2

222
2



 LH
M oe (Hartman Number) 

2

1

22
2

1
1

)(

m

SinM
M





   



qL
R  (Reynolds Number) 



International Journal of Emerging Trends in Engineering and Development         Issue 4, Vol.4 (June-July 2014)                                                                                                    

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm                                  ISSN 2249-6149 
 

R S. Publication (rspublication.com), rspublicationhouse@gmail.com Page 264 
 

f

p

K

C
P


 (Prandtl Number)  

fTK

QL




2

 (Heat Source Parameter) 

1D
Sc


 (Schmidt Number)  



 

 11k
So (Soret parameter) 

 
)(

)(

21

21

TT

CC
N











(Buoyancy ratio) 

The corresponding boundary conditions are 
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ANALYSIS OF THE FLOW 

 

 Introduce the transformation such that  
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Using the above transformation the equations (20)-( 22) reduce to  
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Substituting (26) in equations (23)-(25) and using (27) and equating the like powers of  the 

equations and the respective boundary conditions to the zeroth order are 
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and to the first order are 

 )()( 0000

11

2

2

1

2




































zz
RfPf      (32) 

 
2

1

2

0000

2

1

2

)(












 


























N

SoScC

zz

C
ScRf

C
      (33) 

 

)(

)()(

2

0

3

0

3

0

3

0

11

3

2

1

2
22

14

1

4

zxzz
Rf

C
N

R

Gf
fM
























































    (34) 

with 

 

10.0,0,0

10,0,0,0

0)1()1(

11
11

11
11

11







































atC
z

atC
z

   (35) 

The equations 28 – 30 & 32-34 are solved algebraically subject to the Boundary conditions 

31 & 35. 

 

NUSSELT NUMBER and SHERWOOD NUMBER 

 

The rate of heat transfer (Nusselt Number) on the walls has been calculated using the formula 

1)(
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1
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The rate of mass transfer (Sherwood  Number) on the walls has been calculated using the 

formula 

1)(
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1
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5.0 dCCm  
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RESULTS AND DISCUSSION OF THE NUMERICAL RESULTS 

                        In this analysis we investigate the effect of hall currents, thermo diffusion on 

the convective heat and mass transfer flow of a viscous electrically conducting fluid through 

a porous medium in a vertical wavy channel under the influence of a inclined magnetic field. 

The non-linear coupled differential equations governing the flow heat & mass are solved by 

using a regular perturbation technique with a slope δ of the wavy wall as a perturbation 

parameter .The axial velocity (w) for different values of  M, m, Sc, N, β, 0S ,& λ  It is found 

that the axial flow is in the vertically downward direction and hence u>0 represents the 

reversal flow.  Fig. 1 represents w with M and m, it can be seen that |w| depreciates with 

increase in M and enhances with increase in the hall parameter m. The effect of hall waviness 

on w is shown in (fig 2), it is observed that higher constriction of channel walls larger the 

magnitude of w. With respect to the buoyancy ratio N, it can be seen from the profiles that 

when the molecular buoyancy force dominates over the thermal buoyancy force |w| enhances 

when the buoyancy forces act in same direction and for the forces acting in opposite direction 

|w| depreciates in the flow region (fig 3).  The effect of Soret parameter 0S  on w is shown in 

(fig 4). |w| enhances with increase in 0S >0 and depreciates with increase | 0S |<0. The effect 

of inclination magnetic field on w is shown in (fig 5) higher the inclination of the magnetic 

field smaller |w| in the flow region.  

         The secondary velocity  (u) which is due to the waviness of the boundary  (6-10) for 

different parametric values . Fig.6 represents u with M & m. It is found that higher the 

Lorentz force smaller |u| in the flow region also |u| depreciates with increase in m. Fig 7 

represents u with β, it is found that higher the constriction of channel walls smaller |u| in the 

flow region. |u| enhances with increase in N>0 and reduces with increase in |N| (fig. 8). With 

respect to 0S  it is observed that the magnitude of u enhances with increase in 0S >0 and 

reduces with | 0S |<0 (fig 9). Fig 10 represents u with λ. Higher the inclination of the magnetic 

field larger |u| in the flow region. 

                 The non - dimensional temperature (θ) is shown in figures (11-14) for different 

parametric values. It is found that the non - dimensional temperature is always positive for 

different variations. That is the actual temperature is greater than the temperature on the left 

wall =-1.From fig.11 we find that the actual temperature enhances with increase in M and 

m. The effect of wall waviness of θ is shown in fig.12. Higher the constriction of the channel 

walls smaller the actual temperature. When the molecular buoyancy force dominates over the 

thermal buoyancy force the actual temperature experiences an enhancement irrespective the 

directions of buoyancy forces (fig.13). fig.14 we notice that the higher the inclination of the 

magnetic field (λ≤0.75) larger the actual temperature and for further higher inclination the 

actual temperature enhances in the left half and reduces in the right half. 



International Journal of Emerging Trends in Engineering and Development         Issue 4, Vol.4 (June-July 2014)                                                                                                    

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm                                  ISSN 2249-6149 
 

R S. Publication (rspublication.com), rspublicationhouse@gmail.com Page 267 
 

 The concentration distribution (C) is shown in figures (15-19) for different parametric 

values we follow the convention that the non - dimensional concentration is positive or 

negative according as the actual concentration is greater- lesser than 1C . The variation of C 

with M and m shows that an increase in M≤4 reduces the actual concentration in the entire 

flow region and for higher M≥6 it depreciates in the left half and enhances in the right half of 

the channel. An increase in the hall parameter m reduces the actual concentration in the left 

half and enhances in the right half (fig 15).  
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       Fig. 1  : Variation of w with M, m 
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Fig. 2 : Variation of w with        Fig. 3 : Variation of w with N 
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Fig. 2 : Variation of w with        Fig. 3 : Variation of w with N 
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      Fig. 4 : Variation of w with S0 
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Fig.5 : Variation of w with        

  I II III IV       

 0.25 0.5 0.75 1       

-1

0

1

2

3

4

5

6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1



u

I

II

III

IV

V

 
       Fig.6 : Variation of u with M, m 
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Fig. 7 : Variation of u with                Fig. 8 : Variation of u with N 
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      Fig. 9 : Variation of u with S0 
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Fig.10 : Variation of u with        
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      Fig.11 : Variation of T with M, m 
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Fig. 12 : Variation of T with       Fig.13 : Variation of T with N 
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Fig. 12 : Variation of T with       Fig.13 : Variation of T with N 
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      Fig. 14 : Variation of T with     
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Fig.15 : Variation of C with M, m      Fig.16 : Variation of C with  
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From fig.16 we find that higher the constriction of the channel walls larger the concentration 

in the left half and smaller in the right half and for higher constriction of the channel walls 

smaller the actual concentration in the left half and larger in the right half. When the 

molecular buoyancy force dominates over the thermal buoyancy force the actual 

concentration reduces in the left half and enhances in the right half irrespective of the 

directions of the buoyancy forces (fig 17). From fig 18 we notice that the actual concentration 

reduces in the left half and enhances in the right half  with increase in 0S >0,while a reversed 

effect is observed in the behavior of C with increase in | 0S |. From fig 19 we notice that an 

increase in smaller and higher values of λ, larger the actual concentration in the left half and 

smaller in the right half. While for an intermediate value λ=0.75 the actual concentration 

reduces in the left half and enhances in the right half. 

 

                 The rate of heat transfer at η=±1 is evaluated numerically for different parametric 

equations and are executed in tables 1&2. The variation of Nu with D
-1

 and M shows that 

lesser the molecular diffusivity higher the Lorentz force smaller |Nu| at η=+1.At η=-1 |Nu| 

enhances with increase in M≤4 and depreciates with higher  M≥6.An increase in the hall 

parameter m enhances at η=+1  and depreciates at η=-1. The variation of |Nu| with β shows 

that higher the constriction of the channel walls  larger |Nu| at η=+1 and smaller at η=-1 and 

for higher constriction (β≥0.7) smaller |Nu| at both the walls.With respect to the buoyancy 

ratio N. It is found that when the molecular buoyancy force dominates over the thermal 
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Fig.17 : Variation of C with N       
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Fig. 18 : Variation of C with S0      Fig. 19 : Variation of C with  
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Fig. 18 : Variation of C with S0      Fig. 19 : Variation of C with  
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buoyancy force the rate of heat transfer enhances at η=+1 and smaller at η=-1 for G>0and for 

G<0 |Nu| enhances at both the walls. The variation of |Nu| with the inclination λ of the 

magnetic field shows that higher the inclination of the magnetic field smaller |Nu| at η=+1 

and larger at η=-1 in the heating case while in the cooling case larger |Nu| at η=-1.   

                The rate of mass transfer (Sherwood number (sh)) at the boundaries η=±1 are 

executed in tables 3-4 for different parametric variations.With respect to  M it can be seen 

that lesser the permeability of the porous medium higher the Lorentz force larger |Sh| for G>0 

and for G<0 smaller |Sh| at both the walls. The variation of Sh with hall parameter  m the rate 

of mass transfer at η=+1 enhances with m≤1.5 and depreciates with m≥2.5 while at η=-1 it 

enhances with m. The variation of Sh with β shows that higher the constriction of the channel 

walls smaller |Sh| at η=+1 and larger at η=-1 and for higher |β|≥0.7 larger |Sh| at both the 

walls. With respect to the buoyancy ratio |N| it is observed that the rate of mass transfer 

enhances at η=+1 and depreciates at η=-1 for G>0 and for G<0 |Sh| enhances at η=±1 when 

the buoyancy forces act in the same direction and for the forces act in opposite direction |Sh| 

depreciates at η=+1 and enhances at η=-1 in the heating case and reduces in the cooling case 

at both the walls. An increase in the inclination of magnetic field enhances |Sh| moving along 

the axial direction of the channel walls.    

Table 1 : Average Nusselt number (Nu) at η=+1 

G I II III IV V VI VII VII IX X XI 

103 0.6426 0.613 0.6064 0.6449 0.6487 0.5644 0.1101 -0.2222 0.6426 0.6066 0.5869 

3x10
3
 0.5921 0.5386 0.5294 0.5968 0.6045 0.5316 0.4399 0.02662 0.5921 0.5294 0.5014 

-10 0.7203 0.7537 0.7643 0.718 0.7145 0.628 0.6966 0.3902 0.7203 0.7636 0.7648 

-3x10
3
 0.7509 0.8201 0.8452 0.7464 0.7395 0.6588 0.6416 0.3047 0.7509 0.8435 0.8472 

M 2 4 6 2 2 2 2 2 2 2 2 

m 0.5 0.5 0.5 1.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 

Β -0.5 -0.5 -0.5 -0.5 -0.5 -0.3 -0.7 -0.9 -0.5 -0.5 -0.5 

Λ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.75 1 

 

Table 2 : Average Nusselt number (Nu) at η=-1 

G I II III IV V VI VII VII IX X XI 

103 -0.8464 -0.9573 0.7771 -0.8055 -0.7491 -1.5642 -0.6849 -0.393 -0.8464 1.1172 0.7246 

3x103 -0.4334 -0.6772 0.3661 -0.413 -0.3849 -1.2815 -0.2982 -0.1254 -0.4334 0.858 0.5909 

-10 0.8054 0.9632 -0.867 0.7643 0.7079 1.5667 0.1555 0.1274 0.8054 -1.1285 -0.5103 

-3x103 0.3924 0.683 -0.456 0.3719 0.3437 1.284 0.2042 0.1098 0.3924 -0.8703 -0.5766 

M 2 4 6 1.5 2.5 2 2 2 2 2 2 

m 0.5 0.5 0.5 1.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 

Β -0.5 -0.5 -0.5 -0.5 -0.5 -0.3 -0.7 -0.9 -0.5 -0.5 -0.5 

Λ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.75 1 

Table 3 : Average  Sherwood number  (Sh)  at η=-1 

G I II III IV V VI VII VII IX X XI 

103 -0.1694 -0.1764 -0.2008 -0.1699 -0.1685 -0.182 -0.2054 -0.4098 -0.1694 -0.3758 -0.4247 

3x103 -0.1598 -0.1675 -0.1706 -0.1556 -0.1546 -0.1471 -0.1954 -0.3916 -0.1552 -0.2572 -0.3827 

-10 -0.1256 -0.1211 -0.1201 -0.1259 -0.1244 -0.9605 -0.1716 -0.3474 -0.1256 -0.3213 -0.42 

-3x103 -0.1335 -0.1306 -0.1224 -0.1338 -0.1332 -0.1679 -0.1782 -0.3596 -0.1335 -0.3306 -0.4646 

M 2 4 6 1.5 2.5 2 2 2 2 2 2 

m 0.5 0.5 0.5 1.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 

β -0.5 -0.5 -0.5 -0.5 -0.5 -0.3 -0.7 -0.9 -0.5 -0.5 -0.5 

λ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.75 1 
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Table 4 : Average  Sherwood number  at η=-1 

G I II III IV V VI VII VII IX X XI 

103 0.1581 0.16 0.1715 0.1583 0.1585 0.1393 0.2022 0.408 0.1581 0.169 0.1819 

3x10
3
 0.1578 0.1597 0.1711 0.158 0.1582 0.139 0.2018 0.3991 0.1578 0.1686 0.1815 

-10 0.1573 0.159 0.1704 0.1575 0.1577 0.1384 0.2015 0.4002 0.1573 0.1679 0.1807 

-3x10
3
 0.1576 0.1593 0.1707 0.1577 0.158 0.1387 0.2019 0.401 0.1576 0.1682 0.1811 

M 2 4 6 1.5 2.5 2 2 2 2 2 2 

m 0.5 0.5 0.5 1.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 

β -0.5 -0.5 -0.5 -0.5 -0.5 -0.3 -0.7 -0.9 -0.5 -0.5 -0.5 

λ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.75 1 
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