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ABSTRACT 

The study and understanding of spatial data sets structured an important part of geostatistics and is, regrettably, highly 

human dependent (Genton and Furrer, 1998). For example, it is finely known with the intention of different individuals will 

acquire different approaches, yielding a large collection of distinct solutions. It is frequently the case where decision and 

experience play a key role in choosing the appropriate spatial interpolation technique for each individual case (England, 

1990). This is somewhat due to the variety of existing spatial interpolation methods, which range from simple intuitive 

predictions to more sophisticated and complex procedures (Cressie, 1991). Approximating both rainfall at unwaged locations 

and mean area rainfall more an area (e.g. a catchment) based on the results of meteorological observations, motivated the 

development of gridded estimates of precipitation to provide inputs to spatially distributed hydrologic and management 

models. 

Although there are numerous articles have been written that are concerned with spatial interpolation, there is little or no 

agreement among the authors on the superiority of some techniques over others. Additionally, the increasing interest in 

Geographic Information Systems (GIS) with their broad usage and popularity, made it crucial to simply investigate the 

credibility and applicability of the different ready-to-use spatial interpolation techniques that are embedded in those systems. 

Generated with that in mind, this work has also been inspired by the Journal of Geographic Information and Decision 

Analysis initiative's special edition on spatial interpolation (Spatial Interpolation Comparison SIC97). 

Keywords: spatial data mining, biculster score, data ranking, spatial query on R- trees 

 

 

 

INTRODUCTION  

Data Mining (the analysis step of the Knowledge Discovery in Databases process, or  KDD), a relatively young 

and interdisciplinary field in astronomy, business, computer science , economics, physics, social sciences and 

others is the process of discovering new patterns from large data sets involving methods from statistics and 

artificial intelligence but also database management. Spatial database systems manage large collections of 

geographic entity, which apart from spatial attributes contain spatial information and non-spatial information 

(e.g., name, size, type, price, location etc.). In this paper, an interesting type of partiality query, which select the 

best spatial location with respect to the excellence of conveniences in its spatial area. Given a set D of 

interesting objects (e.g., candidate locations), a top-k spatial preference query retrieves the k objects in D with 

the highest scores. The score of a location is defined by the kind of quality in its spatial locality. A customer 

may want to rank the contents of this database with respect to the quality of their locations, quantified by 

aggregating non-spatial characteristics of other features (e.g., restaurants, cafes, hospital, market, etc.) in the 

spatial neighbourhood of the flat (defined by a spatial range around it). Quality may be subjective and query-

parametric.  Fig. 1a illustrates the locations of an object data set D (hotels) in white, and two feature data sets: 

the set F1 (restaurants) in gray, and the set F2 (cafes) in black. Quality points are labelled by excellence values 

that can be obtained from rating providers (e.g., http://www.zagat.com/). For the ease of argument, the qualities 

are normalized to values in [0, 1]. The score T (p) of a hotel p is defined in terms of: 1) the maximum quality for 

each feature in the neighbourhood region of p, and 2) the aggregation of those qualities. 

a) Range score 

b) Influence score 
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Fig1. Examples of top-k spatial preference queries 

A simple score instance, called the range score, binds the neighborhood region to a circular region at p with 

radius (shown as a circle), and the aggregate function to SUM. For instance, the maximum quality of gray and 

black points within the circle of p1 are 0.9 and 0.6, respectively, so the score of p1 is T (p1) = 0:9 + 0:6 = 1:5. 

Similarly, we obtain T (p2) = 1:0 + 0:1 = 1:1 and T (p3) = 0:7 +0:7 = 1:4. Hence, the hotel p1 is returned as the 

top result. In detail, the semantics of the combined function is relevant to the Customer’s query. The SUM 

function challenges to set of scales the overall qualities of all features. For the MIN function, the top result 

becomes p3, with the score T (p3) =   min {0:7, 0:7} = 0.7. It ensures that the top result has reasonably high 

qualities in all features. For the MAX function, the top result is p2, with (p2) =   max {1:0, 0:1} = 1:0. It is used 

to optimize the superiority in exacting feature, but not necessarily all of them. The neighborhood region in the 

above spatial preference query can also be defined by other score functions. An important score is the influence 

score. Now, the score of a cafe 𝑆𝑖computed by multiplying its quality with the weight 2−𝑗 , where j is the order 

of the smallest circle containing 𝑆𝑖 . For example, the scores of 𝑆1; 𝑆2; and  𝑆3  are 0.3 21 = 0: 15,  0.9 22 =

0: 225, 𝑎𝑛𝑑 1.0 23 = 0: 125 , respectively. The influence score of p5 is taken as the highest value (0.225). 

Traditionally, there are two types of ranking lands: First one spatial ranking, which orders the objects based on 

their distance and score from a reference feature, and second Non spatial ranking, which orders the objects by an 

combined method on their non-spatial values. Our top-k spatial preference query integrates these two types of 

ranking in an spontaneous way. A brute-force approach for evaluating it is to calculate the scores of all objects 

in D and select the top-k land. This technique, however, is expected to be very costly for large input data sets. In 

this paper, we propose alternative techniques that aim at minimizing the I/O accesses to the object and feature 

data sets, while being also computationally efficient. Our techniques apply on spatial-separation access 

functions and work out score bounds for the objects indexed by them, which are used to effectively trim the try 

to find space. Specifically, we contribute the branchand-bound (BB) algorithm and the feature join (FJ) 

algorithm for efficiently processing the top-k spatial preference query. 

An attention to location, spatial interaction, spatial structure and spatial processes lies at the heart of research 

in several sub disciplines in the social sciences. Empirical studies in these fields routinely employ data for which 

locational attributes (the "where") are an important source of information. Such data typically consist of one or a 

few cross sections of observations for either micro-units, such as households, store sites, settlements, or for 

aggregate spatial units, such as electoral districts, counties, states or even countries. Observations such as these, 

for which the absolute location and/or relative positioning (spatial arrangement) is taken into account, are 

referred to as spatial data. In the social sciences, they have been utilized in a wide range of studies, such as 

archeological investigations of ancient settlement patterns (e.g., in Whitley and Clark, 1985, and Kvamme, 

1990), sociological and anthropological studies of social networks (e.g., in White et al., 1981, and Doreian et al., 

1984), demographic analyses of geographical trends in mortality and fertility (e.g., in Cook and Pocock, 1983, 

and Loftin and Ward, 1983), and political models of spatial patterns in international conflict and cooperation 

(e.g., in O’Loughlin, 1985, and O’Loughlin and Anselin, 1991). Furthermore, in urban and regional economics 

and regional science, spatial data are at the core of the field and are studied to model the spatial structure for a 
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range of socioeconomic variables, such as unemployment rates (Bronars and Jansen, 1987), household 

consumer demand (Case, 1991), and prices for gasoline (Haining, 1984) or housing (Dubin, 1992). 

The locational attributes of spatial data (i.e., for the settlements, households, regions, etc.) are formally 

expressed by means of the geometric features of points, lines or areal units (polygons) in a plane, or, less 

frequently, on a surface. This spatial referencing of observations is also the salient feature of a Geographic 

Information System (GIS), which makes it a natural tool to aid in the analysis of spatial data. I return to this 

issue in more detail below. 

The crucial role of location for spatial data, both in an absolute sense (coordinates) and in a relative sense 

(spatial arrangement, distance) has major implications for the way in which they should be treated in statistical 

analysis, as discussed in detail in Anselin (1990a). Indeed, location gives rise to two classes of so called spatial 

effects: spatial dependence and spatial heterogeneity. The first, often also referred to as spatial autocorrelation or 

spatial association, follows directly from Tobler’s (1979) First Law of Geography, according to which 

"everything is related to everything else, but near things are more related than distant things." As a consequence, 

similar values for a variable will tend to occur in nearby locations, leading to spatial clusters. For example, a 

high crime neighborhood in an inner city will often be surrounded by other high crime areas, or a low income 

county in a remote region may be neighboring other low income counties. This spatial clustering implies that 

many samples of geographical data will no longer satisfy the usual statistical assumption of independence of 

observations. 

A major consequence of the dependence in a spatial sample is that statistical inference will not be as efficient 

as for an independent sample of the same size. In other words, the dependence leads to a loss of information[1] 

Roughly speaking, and everything else being the same, this will be reflected in larger, variances for estimates, 

lower significance levels in tests of hypotheses and a poorer fit for models estimated with data from dependent 

samples, compared to independent samples of the same size. I will refer to this aspect of spatial dependence in 

the rest of the paper as a nuisance. The loss in efficiency may be remedied by increasing the sample size or by 

designing a sampling scheme that spaces observations such that their interaction is negligible. Alternatively, it 

may be taken into account by means of specialized statistical methods. In this paper, I will focus on the latter. 

When spatial dependence is considered to be a nuisance, one only wants to make sure that the interpretation of 

the results of a statistical analysis are valid. One is thus not really interested in the source of the spatial 

association, i.e., in the form of the spatial interaction, the characteristics of the spatial structure, or the shape of 

the spatial and/or social processes that led to the dependence. When the latter is the main concern, I will use the 

term substantive spatial dependence instead. 

The second type of spatial effect, spatial heterogeneity, pertains to the spatial or regional differentiation which 

follows from the intrinsic uniqueness of each location. This is a special case of the general problem of structural 

instability. As is well known, in order to draw conclusions with a degree of general validity from the study of a 

spatial sample, it is necessary that this sample represents some type of equilibrium. In the analysis of cross-

sectional data in the social sciences this assumption is typically made. However, this assumption is considered 

with respect to the time dimension only, and systematic instability or structural variation that may be exhibited 

across different locations in space is mostly ignored. Such spatial heterogeneity may be evidenced in various 

aspects of the statistical analysis: it may occur in the form of different distributions holding for spatial, subsets 

of the data, or more simply, in the form of different means, variances or other parameter values between the 

subsets. I will refer to discrete changes over the landscape, such as a difference in mean or variance between 

inner city and suburb, or between northern and southern states as spatial regimes, where each regime 

corresponds to a well-defined subset of locations. Alternatively, I will call a continuous variation with location 

spatial drift. This would be the case if the parameters of a distribution vary in a smooth fashion with location, 

for example, when their mean follows a polynomial expression in the x and y coordinates (this is referred to as a 

trend surface). As is the case for spatial dependence, spatial heterogeneity can also be considered either as a 

nuisance or as substantive heterogeneity 
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SPATIAL DATA ANALYSIS 

In Anselin and Griffith (1988), it is shown in some detail how the results of data analyses may become invalid 

if spatial dependence and/or spatial heterogeneity are ignored. Consequently, specialized techniques must be 

used instead of those that follow the standard assumptions of independence and homogeneity. By now, a large 

body of such techniques has been developed, which appears in the literature under the rubrics of spatial 

statistics, geostatistics, or spatial econometrics. The differences between these "fields" are subtle and to some 

extent semantic. Spatial statistics is typically considered to be the most general of the three, with geostatistics 

focused on applications in the physical (geological) sciences, and spatial econometrics finding application in 

economic modeling. 

A useful taxonomy for spatial data analysis was recently suggested by Cressie (1991). He distinguishes 

between three broad classes of spatial data and identifies a set of specialized techniques for each. Crressie’s 

taxonomy consists of lattice data (discrete variation over space, with observations associated with regular or 

irregular areal units), geostatistical data (observations associated with a continuous variation over space, 

typically in function of distance), and point patterns (occurrences of events at locations in space). In the 

remainder of this paper, I will focus exclusively on the first category (lattice data), due to space limitations, but 

also because I have found it to be the most appropriate perspective for applications in the social sciences that 

utilize GIS. I chose not to discuss geostatistics, since the requirement of continuous variation with distance in an 

isotropic space is typically not satisfied by spatial samples in the social sciences. Such samples are mostly 

limited to data for areal units, which are often defined in a rather arbitrary fashion, making an assumption of 

continuity tenuous at best. Recent reviews of geostatistical techniques can be found in Davis (1986), Isaaks and 

Srivastava (1989), Webster and Oliver (1990), and Cressie (1991). In contrast to the geostatistical data 

viewpoint, point patterns represent a very appropriate perspective for the study of many phenomena in the social 

sciences, such as the analysis of the spatial arrangement of settlements, of store locations, occurrences of crime, 

infectious diseases, etc. I elected not to discuss them in this paper because their study does not require much in 

terms of the functionality of a GIS, once the coordinates of the locations have been determined. A very readable 

introduction to point pattern analysis is given in Boots and Getis (1988) and Upton and Fingleton (1985). More 

advanced treatments can be found in Getis and Boots (1978), Ripley (1981) and Diggle (1983), as well as in 

Cressie (1991). 

Unfortunately, the need for specialized spatial data analysis techniques is not commonly appreciated in 

empirical work, as illustrated by an analysis of the contents of recent journal issues in regional science and 

urban economics in Anselin and Hudak  (1992). [2] Over 200 empirical articles were reviewed, of which 

slightly more than one fifth employed spatial data, roughly evenly divided between purely cross-sectional and 

pooled cross-section and time series data. Of those, only one considered spatial dependence in a rigorous 

fashion. This absence of a strong dissemination of the methodological findings to the practice of empirical 

research is often attributed to the lack of operational software for spatial data analysis, e.g., as argued in Haining 

(1989, p. 201). While this may have been the case in the past, several recent efforts have added features for 

spatial analysis to many existing statistical and econometric software packages, in the form of macros and 

special subroutines. A small number of dedicated spatial data analysis software packages have become available 

as well, which should greatly facilitate the use of these techniques by a wider range of social scientists. 

SPATIAL QUERY EVALUATION ON R-TREES 

The most popular spatial access method is the R-tree [3], which indexes minimum bounding rectangles 

(MBRs) of objects. Fig. 2 shows a set D=(p1, . . . , p8) of spatial objects(e.g., points) and an R-tree that indexes 

them. R-trees can efficiently process main spatial query types, including spatial range queries, nearest neighbor 

queries, and spatial joins. 

Given a spatial region W, a spatial range query retrieves from D the objects that intersect W. For instance, 

consider a range query that asks for all objects within the shaded area in Fig. 2. Starting from the root of the tree, 

the query is processed by recursively following entries, having MBRs that intersect the query region. 
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(a)                                          (b) 

Fig.2. Spatial queries on R-trees. a) MBRs 

b)R-tree representation 

 

For instance, 𝑒1  does not intersect the query region, thus the subtree pointed by 𝑒1 cannot contain any query 

result. In contrast, 𝑒2 is followed by the algorithm and the points in the corresponding node are examined 

recursively to find the query result 𝑝7. A nearest neighbor query takes as input a query object q and returns the 

closest object in D to q. For instance, the nearest neighbor of q in Fig. 2 is 𝑝7. Its generalization is the k-NN 

query, which returns the k closest objects to q, given a positive integer k. NN (and k-NN) queries can be 

efficiently processed using the best-first (BF) algorithm of [4], provided that D is indexed by an R-tree. A min-

heap H, which organizes R-tree entries based on the (minimum) distance of their MBRs to q is initialized with 

the root entries. In order to find the NN of q in Fig. 2, BF first inserts to H entries  𝑒1𝑒2, 𝑒3, and their distances to 

q. Then, the nearest entry  𝑒2 is retrieved from H and objects p1, p7, p8 are inserted to H. The next nearest entry 

in H is p7, which is the nearest neighbor of q. In terms of I/O, the BF algorithm is shown to be no worse than 

any NN algorithm on the same R-tree [4]. 

The aggregate R-tree (aR-tree) [5] is a variant of the R-tree, where each non leaf entry augments an aggregate 

measure for some attribute value (measure) of all points in its sub tree. As an example, the tree shown in Fig. 2 

can be upgraded to a MAX aR-tree over the point set, if entries e1,e2,e3 contain the maximum measure values 

of sets (p2,p3), (p1,p8, p7), (p4, p5, p6), respectively. Assume that the measure values of p4, p5, p6 are 0.2, 0.1, 

and 0.4, respectively. In this case, the aggregate measure augmented in e3 would be max (0.2, 0.1, 0.4) = 0.4. In 

this paper, we employ MAX aR-trees for indexing the feature data sets (e.g., restaurants), in order to accelerate 

the processing of top-k spatial preference queries. 

Given a feature data set F and a multidimensional region R, the range top-k query selects the tuples (from F) 

within the region R and returns only those with the k highest qualities. Hong et al. [6] indexed the data set by a 

MAX aR-tree and developed an efficient tree traversal algorithm to answer the query. Instead of finding the best 

k qualities from F in a specified region, our (range score)query considers multiple spatial regions based on the 

points from the object data set D, and attempts to find out the best k regions (based on scores derived from 

multiple feature data sets Fc). 

SPATIAL PREFERENCE QUERIES 

It formally defines the top-k spatial preference query problem and describes the index structures for the data 

sets. Section 3.2 studies two baseline algorithms for processing the query. Section 3.3 presents an efficient 

branch-and-bound algorithm for the query, and its further optimization is proposed in Section 3.4. Section 3.5 

develops a specialized spatial join algorithm for evaluating the query [7]. Finally, Section 3.6 extends the above 

algorithms for answering top-k spatial preference queries involving other aggregate functions. 

4.1. Definitions and Index Structures 

Given an object data set D and m feature data sets F1,F2 . . . Fm, the top-k spatial preference query retrieves 

the k points in D with the highest score. Here, the overall score of an object point p ∈ D is defined as  

𝑇 𝑝 =  𝐴𝐺𝐺 𝑇𝑐 𝑝  𝑐 𝜖  1,𝑚   
 

 (1) 
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Where AGG is an aggregate function (e.g.: SUM, MIN, MAX etc) 

𝑇𝑐 𝑝   is the 𝑐𝑡ℎ  component score of p with respect to the neighborhood condition and m is the number of 

feature data sets. The cth component score of p i.e., 𝑇𝑐 𝑝  can be computed as follows  

𝑇𝑐 𝑝 = max  𝑤 𝑠  𝑠 𝜖 𝐹𝑐
∧𝑑𝑖𝑠𝑡 𝑝, 𝑠 ≤ 𝜖 𝑈 0  . 

 

(2) 

4.2. Algorithms 

We develop various algorithms for processing top-k spatial preference queries. We first introduce a brute-

force solution that computes the score of every point 𝑝 𝜖 𝐷 in order to obtain the query results [8]. Then, we 

propose a group evaluation technique that computes the scores of multiple points concurrently. 

1) Simple Probing Algorithm 

For a point 𝑝 𝜖 𝐷, where not all its component scores are known, its upper bound score 𝑇𝑢 𝑝  defined as  

𝑇𝑢 𝑝 =  {𝑇𝑐 𝑝 ,   𝑖𝑓 𝑇𝑐 𝑝  𝑖𝑠 𝑘𝑛𝑜𝑤𝑛 
𝑚

𝑐=1
 

(3) 

 

 

 1, otherwise  

It is guaranteed that the upper bound 𝑇𝑢 𝑝  is greater than or equals to the actual score 𝑇 𝑝 . 

Algorithm 1 is a pseudo code of the simple probing (SP) algorithm, which retrieves the query results by 

computing the score of every object point. The algorithm uses two global variables: 𝑊𝑘 is a minheap for 

managing the top-k results and 𝛾 represents the top-k score so far (i.e., lowest score in Wk). Initially, the 

algorithm is invoked at the root node of the object tree (i.e., N =D.root)[9]. The procedure is recursively applied 

(at Line 4) on tree nodes until a leaf node is accessed. When a leaf node is reached, the component score 

𝑇𝑐 𝑒  (at Line 8) is computed by executing a range search on the feature tree 𝐹𝑐 for range score queries. Lines 

6-8 describe an incremental computation technique, for reducing unnecessary component score computations. In 

particular, the point 𝑒 is ignored as soon as its upper bound score  𝑇𝑢 𝑒  (see (3)) cannot be greater than the best-

k score  𝛾. The variables 𝑊𝑘  and 𝛾 are updated when the actual score 𝑇 𝑒  is greater than ɣ .  

    Algorithm1. Simple Probing Algorithm 

Algorithm 𝑆𝑃 𝑁𝑜𝑑𝑒 𝑁  

1) for each entry 𝑒 𝜖 𝑁 do 

2) If 𝑁 is nonleaf then 

3) read the child node 𝑁 ′pointed by 𝑒; 

4) 𝑆𝑃 𝑁 ′ ; 
5) else 

6) for 𝑐 =  1 to 𝑚 do 

7) If 𝑇𝑢 𝑒 >  ɣ  then 

//if upper bound is greater than ɣ 

8) compute 𝑇𝑐 𝑝  using tree  𝐹𝑐; update 𝑇𝑢 𝑒 ; 
9) If 𝑇 𝑒 >  ɣ  then 

10) Update Wk and ɣ by e; 

Drawbacks 

1) it is very expensive because it comutes score for all 

    objects. 

2) No concurrency 

3) It is not efficient method for larger input data sets. 
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2) Group Probing Algorithm 

Due to separate score computations for different objects, SP is inefficient for large-object data sets. In view of 

this, we propose the group probing (GP) algorithm, a variant of SP that reduces I/O cost by computing scores of 

objects in the same leaf node of the R-tree concurrently. In GP, when a leaf node is visited, its points are first 

stored in a set V and then their component scores are computed concurrently at a single traversal of the  𝐹𝑐 

tree[10]. 

We now introduce some distance notations for MBRs. Given a point 𝑝 and an MBR 𝑒, the value 

𝑚𝑖𝑛𝑑𝑖𝑠𝑡 𝑝, 𝑒  [4] denotes the minimum possible distance between 𝑝 and any point in𝑒. Similarly, given two 

MBRs  𝑒𝑎  and 𝑒𝑏 , the value 𝑚𝑖𝑛𝑑𝑖𝑠𝑡 𝑒𝑎 , 𝑒𝑏  denotes the minimum possible distance between any point in 𝑒𝑎 

and any point in 𝑒𝑏. 

Algorithm 2 shows the procedure for computing the 𝑐𝑡ℎ  component score for a group of points. Consider a 

subset Vof D for which we want to compute their component score at feature tree 𝐹𝑐. 

Initially, the procedure is called with 𝑁 being the root node of 𝐹𝑐. If e is a nonleaf entry and its mindist from 

some point 𝑝𝜖 𝑉 is within the range, then the procedure is applied recursively on the child node of e, since the 

subtree of 𝐹𝑐 rooted at 𝑒 may contribute to the component score of 𝑝. In case 𝑒 is a leaf entry (i.e., a feature 

point), [11] the scores of points in 𝑉 are updated if they are within distance 𝜖 from 𝑒. 

Algorithm 2. Group Probing Algorithm 

algorithm 𝐺𝑃 𝑁𝑜𝑑𝑒 𝑁, 𝑆𝑒𝑡 𝑉 , 𝑉𝑎𝑙𝑢𝑒 𝑐, 𝑉𝑎𝑙𝑢𝑒 𝜖   

1: for each entry 𝑒 𝜖 𝑁 do 

2: If 𝑁  is nonleaf then 

3: If  𝜖 𝑉 , 𝑚𝑖𝑛𝑑𝑖𝑠𝑡 𝑝, 𝑒 ≤  𝜖 then 

4: read the child node 𝑁′ pointed by 𝑒; 

5: 𝐺𝑃 𝑁 ′, 𝑉 , 𝑐, 𝜖  ; 

6: else 

7: for each 𝑝 𝜖 𝑉 such that 𝑑𝑖𝑠𝑡 𝑝, 𝑒 ≤  𝜖 do 

8: 𝑇𝑐 𝑝 = 𝑚𝑎𝑥 𝑇𝑐 𝑝 , 𝑤 𝑒  ;                 

 

Drawbacks  

1. It is also expensive because it computes score for all objects but concurrently. 

4.3. Branch-and-Bound Algorithm 

GP is still expensive as it examines all objects in 𝐷 and computes their component scores. We now propose 

an algorithm that can significantly reduce the number of objects to be examined [12]. The key idea is to 

compute, for nonleaf entries 𝑒 in the object tree 𝐷, an upper bound 𝑇𝑢 𝑝  of the score 𝑇 𝑝  for any point 𝑝 in the 

subtree of 𝑒. If 𝑇𝑢 𝑒 ≤  ɣ  then we need not access the subtree of 𝑒, thus we can save numerous score 

computations. 

Algorithm 3 is a pseudocode of our BB algorithm, based on this idea. BB is called with 𝑁 being the root node 

of 𝐷. If  𝑁 is a nonleaf node, Lines 3-5 is used to compute the scores 𝑇 𝑒  for nonleaf entries 𝑒 concurrently. 

Recall that 𝑇𝑢 𝑒  is an upperbound score for any point in the subtree of 𝑒. If 𝑇𝑢 𝑒 ≤  ɣ, then the subtree of 𝑒 
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cannot contain better results than those in 𝑊𝑘 and it is removed from V. In order to obtain points with high 

scores early, we sort the entries in descending order of 𝑇 𝑒  before invoking the above procedure recursively on 

the child nodes pointed by the entries in𝑉. If 𝑁 is a leaf node, we compute the scores for all points of 𝑁 

concurrently and then update the set 𝑊𝑘 of the top-k results [13]. Since both 𝑊𝑘 and ɣ are global variables, 

their values are updated during recursive call of BB. 

Algorithm 3. Branch-and-Bound Algorithm 

𝑊𝑘 =  𝑛𝑒𝑤 𝑚𝑖𝑛 − ℎ𝑒𝑎𝑝 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑘  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 𝑒𝑚𝑝𝑡𝑦 ; = 0; 

Algorithm 𝐵𝐵 𝑁𝑜𝑑𝑒 𝑁  

1) 𝑉 = {𝑒| 𝑒 𝜖 𝑁}; 
2) If 𝑁 is nonleaf then 

3) for 𝑐 =  1 𝑡𝑜 𝑚 do 

4) compute 𝑇𝑐 𝑒  for all 𝑒 𝜖 𝑉 concurrently; 

5) remove entries e in V such that 𝑇𝑢 𝑒 ≤  ɣ ; 

6) sort entries 𝑒 𝜖 𝑉 in descending order of 𝑇 𝑒 ; 
7) for each entry 𝑒 𝜖 𝑉 such that 𝑇𝑢 𝑒 >  ɣ do 

8) read the child node 𝑁 ′ pointed by 𝑒; 

9) 𝐵𝐵 𝑁 ′ ; 
10) else 

11) for 𝑐 =  1 𝑡𝑜 𝑚 do 

12) compute 𝑇𝑐 𝑒  for all 𝑒 𝜖 𝑉 concurrently; 

13) remove entries 𝑒 𝑖𝑛 𝑉 such that 𝑇𝑢 𝑒 ≤  ɣ ; 

14) update Wk (and 𝛾) by entries in V ; 

Advantages 

1) It reduces number of objects to be examined. 

2) It is efficient than SP and GP algorithms. 

THE MAHALANOBIS DISTANCE STATISTIC 

The Mahalanobis distance statistic (D2) represents the standardized squared distance between the covariate 

values for a given sample and the mean vector of these covariates for the occupied locations used to build the 

model (hereafter, training data)[14]. In the context of habitat modeling, a D2 value is computed for each map 

cell in the study area based on the value of the habitat covariates under consideration in that cell, relative to the 

average values of those covariates in the training data as follows: 

 

Fig1. (a) Location of Olympic National Park, Washington, USA. (b) Polygons of habitat known to be occupied 

by Olympic marmots in 2002–2005(dark gray shading) and 376 point locations used in development of habitat 
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models for the species (black triangles); intensive study sites are circled. (c)Polygons known to be abandoned 

(dark gray shading) and the 114 abandoned point locations (black triangles) used to test the habitat model. Areas 

within the park 1,300 m elevation are shown with light gray handling in (b) and (c). 

𝐷2 =  𝜇 − 𝑥 
′

∑ −1  𝜇 − 𝑥 , 

where mˆ and Sˆ are, for the habitat covariates under consideration, the vector of the mean values and the 

variance–covariance matrix at presence locations, respectively. The variable x is the vector of values for each 

habitat variable for a given cell. Cells with smaller D2 values have habitat values more similar to the average of 

the training data and so should be more likely to be occupied. The D2 values are continuous with a minimum of 

zero. If the training data meet the assumption of multivariate normality, then the D2 values are chi-square 

distributed and can be rescaled to probabilities. Even when this assumption is violated, there is a monotonic 

relationship between the D2 values and dissimilarity from the mean, with equal scores being equally distant 

from the mean in multivariate space. Thus, D2 values rank habitat in terms of suitability rather than providing a 

probability of occupancy for each map cell. 

Follow-up surveys guided by model predictions can provide estimates of probability of occupancy (Boetsch 

et al. 2003). For defining suitable habitat, a threshold D2 value is usually identified. Map cells with D2 values 

lower than that threshold are considered suitable for the study organism and the remaining cells are considered 

unsuitable (Thatcher et al. 2006). The threshold may be set so that all occupied points are classified as being 

within suitable habitat or such that some lesser proportion of the occupied locations are classified as suitable 

(Podruzny et al. 2002, Boetsch et al. 2003, van Manen et al. 2005, Thatcher et al. 2006,Thompson et al. 2006). 

When the proportion of occupied map cells with D2 values below the threshold is much greater than the 

proportion of random map cells with D2 values below that same value, or when distribution of D2 scores of 

occupied test locations is similar to those of training data, models are considered to perform well (Boetsch et al. 

2003, Browning et al. 2005, van Manen et al. 2005). 

CONCLUSION 

In this paper, we have studied top-k spatial preference queries, provides a novel type of ranking for spatial 

objects based on qualities of features in their neighborhood. The neighborhood of an object p is captured by the 

scoring function: (i) the range score restricts the neighborhood to a crisp region centered at p, whereas (ii) the 

influence score relaxes the neighborhood to the whole space and assigns higher weights to locations closer to p. 

We presented five algorithms for processing top-k spatial preference queries. The baseline algorithm SP 

computes the scores of every object by querying on feature datasets. The algorithm GP is a variant of SP that 

reduces I/O cost by computing scores of objects in the same leaf node concurrently. The algorithm BB derives 

upper bound scores for non-leaf entries in the object tree, and prunes those that cannot lead to better results [15]. 

The algorithm BB* is a variant of BB that utilizes an optimized method for computing the scores of objects (and 

upper bound scores of non-leaf entries). The algorithm FJ performs a multi-way join on feature trees to obtain 

qualified combinations of feature points and then search for their relevant objects in the object tree. 

Based on our experimental findings, BB* is scalable to large datasets and it is the most robust algorithm with 

respect to various parameters. However, FJ is the best algorithm in cases where the number m of feature datasets 

is low and each feature dataset is small. In the future, we will study the top-k spatial preference query on road 

network, in which the distance between two points is defined by their shortest path distance rather than their 

Euclidean distance. The challenge is to develop alternative methods for computing the upper bound scores for a 

group of points on a road network. 
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