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ABSTRACT:  

 

 In this chapter an attempt has been made to discuss the combined influence of 

radiation and dissipation on the convective heat transfer flow of a viscous fluid through a 

porous medium in a rectangular cavity using Darcy model. Making use of the 

incompressibility the governing non-linear coupled equations for the momentum, energy and 

diffusion are derived in terms of the non-dimensional stream function, temperature. The 

Galerkin finite element analysis with linear triangular elements is used to obtain the Global 

stiffness matrices for the values of stream function, temperature. These coupled matrices are 

solved using iterative procedure and expressions for the stream function, temperature are 

obtained as linear combinations of the shape functions. The behavior of temperature and 

Nusselt number are discussed computationally for different values of the governing 

Parameters Ra, , N1 and Ec.  
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SCHEMATIC DIAGRAM OF THE FLOW MODEL 
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FORMULATION OF THE PROBLEM  

 We consider the mixed convective heat transfer flow of a viscous incompressible fluid 

in a saturated porous medium confined in the rectangular duct (Fig. 1) whose base length is a 

and height b. The heat flux on the base and top walls is maintained constant. The Cartesian 

coordinate system O (x,y) is chosen with origin on the central axis of the duct and its base 

parallel to x-axis.  

We assume that 

i) The convective fluid and the porous medium are everywhere in local 

thermodynamic equilibrium. 

ii) There is no phase change of the fluid in the medium. 

iii) The properties of the fluid and of the porous medium are homogeneous and 

isotrophic. 

iv) The porous medium is assumed to be closely packed so that Darcy’s momentum 

law is adequate in the porous medium. 

v) The Boussinesq approximation is applicable. 

Under these assumption the governing equations are given by 
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Where u and v are Darcy velocities along direction of  (x, y), T, p and g are the 

temperature, pressure and acceleration due to gravity, Tc , and Th  are the temperature on the 
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cold and warm side walls respectively. , , , and  are the density, coefficients of 

viscosity, kinematic viscosity and thermal expansion of he fluid, k is the permeability of the 

porous medium, K1 is the thermal conductivity, Cp is the specific heat at constant pressure , 

Q is the strength of the heat source,k11 is the cross diffusivity ,  e  is the magnetic 

permeability of the medium and qr is the radiative heat flux. 

The boundary conditions are 

 u = v = 0  on the boundary of the duct 

 T = Tc ,  on the side wall to the left 

 T = Th ,  on the side wall to the right                (2.6) 
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Invoking Rosseland approximation for radiation  
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Expanding T
4
 in Taylor’s series about Te and neglecting higher order terms  

              434 34 ee TTTT   

We now introduce the following non-dimensional variables 

 x = ax;  y = by ; c = b/a;                  u = (/a) u ;     

        v = (/a)v; p = (
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2
)p;    T = T0 +  (Th – Tc)                 (2.7) 

 

The governing equations in the non-dimensional form are 
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In view of the equation of continuity we introduce the stream function  as 
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Eliminating p from the equation (2.8) and (2.9) and making use of (2.10) the 

equations in terms of  and  are 
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The boundary conditions are  
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FINITE ELEMENT ANALYSIS and SOLUTION OF THE PROBLEM 

The region is divided into a finite number of three node triangular elements, in each of 

which the element equation is derived using Galerkin weighted residual method. In each 

element fi the approximate solution for an unknown f in the variational formulation is 

expressed as a linear combination of shape function.   ,3,2,1kN i

k  which are linear 

polynomials in x and y. This approximate solution of the unknown f coincides with actual 

values at each node of the element. The variational formulation results in a 3 x 3 matrix 

equation (stiffness matrix) for the unknown local nodal values of the given element. These 

stiffness matrices are assembled in terms of global nodal values using inter element 

continuity and boundary conditions resulting in global matrix equation. 

 In each case there are r distinct global nodes in the finite element domain and fp (p = 

1,2,……r) is the global nodal values of any unknown f defined over the domain then 
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where the first summation denotes summation over s elements and the second one represents 

summation over the independent global nodes and  
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p N  if   p is one of the local nodes say k of the element  ei 

       = 0, otherwise. 

fp’ s are determined from the global matrix equation.  Based on these lines we now make a 

finite element analysis of the given problem governed by (2.12) - (2.13) subjected to the 

conditions (2.14) – (2.15). 

Let 
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be the approximate values of  and    in an element i. 
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respectively in (2.13), the error 
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where I is the boundary of ei. 
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In obtaining (3.13) the Green’s theorem is applied w.r.t derivatives of  without 

affecting  terms. 

Using (3.1) and (3.2) in (3.13) we have 
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In the problem under consideration, for computational purpose, we choose uniform mesh of 

10 triangular elements. The domain has vertices whose global coordinates are (0,0), (1,0) and 

(1,c) in the non-dimensional form. Let   e1, e2…..e10 be the ten elements and let     1, 2, 

…..10 be the global values of  and 1, 2,……10 be the global values of  at the ten 

global nodes of the domain  

   

SHAPE FUNCTIONS and STIFFNESS MATRICES   

Range functions in 
ji

n
,

; i = element, j = node. 
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              
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2,1
               

C

y
n

3
1
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C

y
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C

y
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3
31

3,2
              xn 32
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C

y
xn

3
31

2,3
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C

y
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3

3,3
  

C

y
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3
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1,4
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3
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3,4
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1,5
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C

y
xn

3
31

2,5
                    

C

y
n

3

3,5
                  xn 32

1,6
               

C

y
xn

3
3

2,6
        

C

y
n

3
1

3,6
                             

C

y
n

3
2

1,7
            xn 32

2,7
               

C

y
xn

3
31

3,7
  

xn 33
1,8

                           
C

y
xn

3
31

2,8
         

9 2

3
3

,

y
n x

C
           

C

y
n

3
1

3,9
  

 Substituting the vabove shape functions in (3.8),(3.9)&(3.14) w.r.t each element and 

integrating over the respective triangular domain we obtain the element in the form (3.8).The 

3x3 matrix equations are assembled using connectivity conditions to obtain a 8x8 matrix 

equations for the global nodes p,p and p. 

The global matrix equation for  is 

 333 BXA                                                   (4.1) 

The global matrix equation for  is 

 555 BXA                                                  (4.3) 
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 The global matrix equations are coupled and are solved under the following iterative 

procedures. At the beginning of the first iteration the values of (i) are taken to be zero and 

the global equations (4.1)&(4.2) are solved for the nodal values of  and .These nodal 

values (i) and (i) obtained are then used to solve the global equation (4.3) to obtain(i).In 

the second iteration these (i)values are obtained are used in (4.1)&(4.2) to calculate (i) and 

(i) and vice versa. The three equations are thus solved under iteration process until two 

consecutive iterations differ by a pre-assigned percentage. 

The domain consists three horizontal levels and the solution for Ψ & θ at each level 

may be expressed in terms of the nodal values as follows, 

In the horizontal strip    0 ≤y ≤
3

c
 

 Ψ= (Ψ1N
1

1+ Ψ2N
1
2+ Ψ7N

1
7) H(1- τ1) 

         = Ψ1 (1-4x)+ Ψ24(x-
c

y
)+ Ψ7 ( 

c

y4
 (1- τ1 )   (0≤ x≤

3

1
 ) 

 Ψ =( Ψ2N
3

2+ Ψ3N
3
3+ Ψ6N

3
6) H(1- τ2) 

     + (Ψ2N
2

2+ Ψ7N
2
7+ Ψ6N

2
6)H(1- τ3)                     (

3

1
≤ x≤

3

1
 )        

         =( Ψ22(1-2x) + Ψ3 (4x-
c

y4
-1)+ Ψ6 (

c

y4
))H(1- τ2) 

        +( Ψ2 (1-
c

y4
)+ Ψ7 (1+

c

y4
-4x)+ Ψ6 (4x-1))H(1- τ3) 

   Ψ =( Ψ3N
5

3+ Ψ4N
5
4+ Ψ5N

5
5) H(1- τ3) 

     + (Ψ3N
4

3+ Ψ5N
4
5+ Ψ6N

4
6)H(1- τ4)               (

3

2
≤ x≤1) 

    =( Ψ3 (3-4x) + Ψ42(2x-
c

y2
-1)+ Ψ6 (

c

y4
-4x+3))H(1- τ3) 

        + Ψ3 (1-
c

y4
)+ Ψ5 (4x-3)+ Ψ6 (

c

y4
))H(1- τ4) 

Along the strip           
3

c
≤ y≤

3

2c
   

         Ψ =( Ψ7N
6

7+ Ψ6N
6
6+ Ψ8N

6
8) H(1- τ2)      (

3

1
≤ x≤1) 

          +( Ψ6N
7

6+ Ψ9N
7
9+ Ψ8N

7
8) H(1- τ3)+( Ψ6N

8
6+ Ψ5N

8
5+ Ψ9N

8
9) H(1- τ4) 
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         Ψ =( Ψ7 2(1-2x) + Ψ6 (4x-3)+ Ψ8 (
c

y4
-1))H(1- τ3) 

           + Ψ6 (2(1-
c

y2
)+ Ψ9 (

c

y4
-1)+ Ψ8 (1+

c

y4
-4x))H(1- τ4) 

           + Ψ6 (4(1-x)+ Ψ5 (4x-
c

y4
-1)+ Ψ92(

c

y2
-1))H(1- τ5) 

 Along the strip      
3

2c
≤ y≤1 

Ψ =( Ψ8N
9

8+ Ψ9N
9
9+ Ψ10N

9
10) H(1- τ6)                    (

3

2
≤ x≤1) 

      = Ψ8 (4(1-x)+ Ψ94(x-
c

y
)+ Ψ102(

c

y4
-3))H(1- τ6) 

where         τ1= 4x ,           τ2 = 2x ,            τ3 =
3

4x
 ,   

                      τ4= 4(x-
c

y
) ,     τ5= 2(x-

c

y
) ,      τ6 = 

3

4
(x-

c

y
)  

and H represents the Heaviside function. 

 

The expressions for θ are 

In the horizontal strip    0≤ y≤
3

c
  

 θ  = [θ1(1-4x)+ θ2 4(x-
c

y
)+ θ7  (

c

y4
)) H(1- τ1)              (0≤ x≤

3

1
 ) 

θ = (θ 2(2(1-2x)+ θ3 (4x-
c

y4
-1)+ θ 6(

c

y4
)) H(1- τ2) 

        + θ 2(1-
c

y4
)+ θ 7(1+

c

y4
-4x)+ θ 6(4x-1))H(1- τ3)           (

3

1
≤ x≤

3

2
 ) 

  θ = θ 3(3-4x) +2 θ 4(2x-
c

y2
-1)+ θ 6(

c

y4
-4x+3) H(1- τ3)  

 +( θ 3(1-
c

y4
)+ θ 5(4x-3)+ θ 6(

c

y4
)) H(1- τ4)   (

3

2
≤ x≤1) 
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Along the strip    
3

c
≤ y≤

3

2c
 

θ = (θ 7(2(1-2x)+ θ 6(4x-3)+ θ 8(
c

y4
-1)) H(1- τ3)               (

3

1
≤ x≤

3

2
)  

         +( θ 6(2(1-
c

y2
)+ θ 9(

c

y4
-1)+ θ 8(1+

c

y4
-4x)) H(1- τ4) 

          +( θ 6(4(1-x)+ θ 5(4x-
c

y4
-1)+ θ9 2(

c

y4
-1)) H(1- τ5) 

Along the strip      
3

2c
≤ y≤1 

      θ = (θ84(1-x) +  θ 94(x- 
c

y
)+ θ 10(

c

y4
-3) H(1- τ6)      (

3

2
≤ x≤ 1) 

The dimensionless Nusselt numbers(Nu) and Sherwood Numbers (Sh) on the non-insulated 

boundary walls of the rectangular duct are calculated using the formula 

Nu = (
x


) x= 

Nusselt Number on the side wall x=1in different regions are 

 Nu1=2-43         ( )3/0 hy   

 Nu2=2-46        ( )3/23/ hyh   

 Nu3=2-48         ( )3/2 hyh   

DISCUSSION OF THE NUMERICAL RESULTS 

  

In this analysis we investigate the effect of chemical reaction on the mixed convective 

heat transfer flow of a viscous electrically conducting fluid through a porous medium n a 

rectangular cavity.  

 The non-dimensional temperature () is shown in figs 1-4 at different horizontal and 

vertical levels with variations in Ra, N1,  and Ec. The variation of non dimensional 

temperature () with Rayleigh number Ra at horizontal and vertical levels, it is found that the 

actual temperature enhances with Ra  2x10
2
 and depreciates with higher  Ra  3x10

2
 also it 
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reduces with Raat all horizontal levels (fig 1and 2). At the higher vertical level
3

2
x , it 

enhances with Ra 2x10
2 

and depreciates Ra  3x10
2
. Also it reduces with Ra at 

3

1
x  and 

3

2
x levels (figs. 3 and 4). It is found that the temperature at the horizontal levels is greater 

than that at the vertical levels. The variation of non-dimensional temperature () with 

radiation parameter N1is shown in fig 5-8 at different levels, it is found that higher the 

radiative heat flux larger the actual temperature at 
3

2c
y  level and smaller at 

3

c
y  level. 

Whole at the vertical it depreciates with N 1(fig 7&8).  

 Fig 9-12 represent non dimensional temperature ()  with heat source parameter α it is 

found that the actual temperature experiences depreciation at all horizontal and vertical levels 

with increase in the strength of the heat source while the increase in the strength of the heat 

sink enhances  the actual temperature at all the levels. It is found that the temperature at the 

vertical levels is greater than that at the horizontal source.  The variation of non-dimensional 

temperature () with Eckert number Ec is shown in fig 13-16 at horizontal and vertical levels. 

it is found that the higher the dissipation heat smaller the actual temperature at all the levels 

fig(13-16). It is noticed that the variation of  at the vertical levels is greater than that at the 

horizontal levels. 

 The rate of heat transfer for different values Ra, N1, α and Ec is shown in table 1-4. 

The variation of Nu with Rayleigh number Ra at different level shows that the Nu at the lower 

and upper quadrant enhances with increase in Ra while in the middle quadrant it depreciates 

with Ra(Table-1). Table-2 shows that the variation of Nu with radiation parameter N1. It is 

shown that the rate heat transfer at the lower and middle quadrant enhances with N1≤0.07 and 

reduces with N1≥0.09whole at the upper quadrant it reduces with N1. 

 The variation of Nu with heat source parameter α is shows in Table-3. In entire region 

it is found that the rate of heat transfer enhances with increase in the strength of the heat 

source and depreciates with that of heat sink at all quadrants. The variation of Nu with Eckert 

number Ec shows in the Table-4 that higher the dissipative heat larger Nu at all quadrant. 
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Fig. 1 Variation of ( ) with Ra at y = 2c/3 level 

Ec = 0.001,  =2,N1=0.01 

 

 

 

 
Fig. 2 variation of  with Ra at y = c/3 level 

Ec = 0.001,  =2, N1=0.01 

 

 

 

 
Fig. 3 variation of  with Ra at x = 1/3 level 

Ec = 0.01,  =2, N1=0.01 
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Fig. 4 variation of  with Ra at x = 2/3 level 

Ec = 0.01,  =2, N1=0.01 

 

 
Fig. 5 variation of  with N1 at y =2 c/3 level 
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Fig. 6 variation of  with N1 at y = c/3 level 

Ec=0.001, Ra = 100,  =2 
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Fig. 7   variation with N1 at x = 1/3 level 

Ec=0.001, Ra = 100,  =2 
I          II         III          IV         V 

                                         N1    0.01     0.03      0.05       0.07      0.09 

 

  
Fig. 8 variation of  with N1 at x = 2/3 level 

Ec=0.001, Ra = 100,  =2 
I          II         III          IV         V 
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Fig. 9 variation of   with  at y =2c/3 level 

Ra = 100, Ec=0.001, N1=0.01 
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Fig. 10 variation of   with at   y = c/3 level 

Ra = 100, Ec=0.001, N1 =0.01 
      I          II         III          IV         V         VI 
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Fig. 11 variation of   with at   x = 2/3 level 

Ra = 100, Ec=0.001, N1 =0.01 
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Fig. 12 variation of   with  at x =2/3 level 

Ra = 100, Ec=0.001, N1 =0.01 
                                             I          II         III          IV         V         VI 
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Fig. 13 variation of   with Ec at y =2c/3 level 

Ra = 100,  =2, N1=0.01 

 
Fig. 14 variation of   with Ec at y =c/3 level 

Ra = 100,  =2, N1=0.01 

  
Fig. 15 variation of   with Ec at x=1/3 level 

Ra = 100,,  =2, N1=0.01 

 
Fig. 16 variation of   with Ec at x=1/3 level 

Ra = 100,, =2, N1=0.01 
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  Table-1 

Nusselt Number (Nu) at different levels 

Nu1 2.06412 1.528 4.756 1.2352 1.582 

Nu2 8.1628 7.188 6.43524 4.7528 4.3602 

Nu3 5.036 -3.4624 5.92 -1.0643 -1.4126 

Ra 1x10
2
  2x10

2
   3x10

2
 -1x10

2
 -2x10

2
 

 

Table-2 

Nusselt Number (Nu) at different levels 

Nu1 2.2128 2.237 2.268 2.364 2.0323 

Nu2 2.1198 2.1296 2.142 2.258 2.175 

Nu3 2.0269 2.0224 2.018 2.0136 2.0096 

N1 0.01 0.03 0.05 0.07 0.09 

 

 

Table-3 

Nusselt Number (Nu) at different levels 

Nu1 2.2128 2.2248 2.2368 2.1891 2.1778 2.16692 

Nu2 2.11988 2.1870 2.2544 2.0135 1.9202 1.8546 

Nu3 2.0269 2.1493 2.2720 2.2163 1.6627 1.54244 

α 2 4 6 -2 -4 -6 

       

     Table-4 

Nusselt Number (Nu) at different levels 

Nu1 2.2128 2.2242 2.2356 2.2431 

Nu2 2.11988 2.13052 2.1592 2.1818 

Nu3 2.0268 2.0408 2.0706 2.0808 

Ec 0.001 0.003 0.005 0.007 
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