Inclusion Theorem on Two Summability Methods

P. L. Powar $\mathbf{1}^{\# 1}$,Yuwraj Kumar Tiwari $2^{\# 2}$
\#1 Department of Mathematics and Computer Science, R.D.V.V., Jabalpur.
\#2 Department of Mathematics and Computer Science, R.D.V.V., Jabalpur.

ABSTRACT

In this paper, the authors have defined $\left|\bar{N}, p_{n}, \lambda_{n}\right|_{k}(k \geq 1)$ summability and established that $\left|\bar{N}, p_{n}, \lambda_{n}\right|_{k}$ method is included in $|C, 1|_{k}$ method.

Key words:Summability, inclusion and absolute summability.

Corresponding Author:P. L. POWAR

INTRODUCTION

Given $\sum a_{n}$, let $\left(s_{n}\right)$ be its sequence of partial sums and $u_{n}=n a_{n}$. The $\mathrm{n}^{\text {th }}$ Cesar̀o means of order $\alpha(\alpha>-1)$ of the sequence $\left(s_{n}\right)$ and $\left(u_{n}\right)$ are denoted by s_{n}^{α} and t_{n}^{α} respectively. The series $\sum a_{n}$ is said to be absolutely summable (C, α) with index k , or simply summable $|C, \alpha|_{k}(k \geq 1)$ (cf. [4]), if
$\sum_{n=1}^{\infty} n^{k-1}\left|s_{n}^{\alpha}-s_{n-1}^{\alpha}\right|^{k}<\infty$
Since $t_{n}^{\alpha}=\mathrm{n}\left(s_{n}^{\alpha}-s_{n-1}^{\alpha}\right)$ (cf. [5]), condition (1.1) reduces to
$\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty$
Consider a sequence (pn) of positive real numbers such that
$\operatorname{Pn}=\sum_{v=0}^{n} p_{v} \rightarrow \infty$ asn $\rightarrow \infty \quad\left(P_{-1}=p_{-1}=0\right)$
Let ($\lambda \mathrm{n}$) be the sequence of positive real numbers such that

- $\left(\lambda_{n}\right)$ is decreasing
- $\lambda_{n} \rightarrow 0$ asn $\rightarrow \infty$

The transformed sequence $\left(T_{n}\right)$ of the $\left(\bar{N}, p_{n}\right.$,) mean of sequence $\left(s_{n}\right)$, generated by a sequence of coefficients $\left(p_{n}\right)$ is defined as (cf. [3]),
$\mathrm{Tn}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}$
The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, \mathrm{k} \geq 1$ (cf. [1]), if
$\sum_{n=1}^{\infty}\left[\frac{P_{n}}{p_{n}}\right]^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty$
In the present paper, the sequence-to-sequence transformation $\left(T_{n}^{\star}\right)$ of the $\left(\bar{N}, p_{n}, \lambda_{n}\right)$ mean of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficient $\left(p_{n}\right)$ and the sequence $\left(\lambda_{n}\right)$ is defined as

$$
\begin{equation*}
T_{n}^{\star}=\frac{1}{P_{n} \lambda_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.6}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \lambda_{n}\right|_{k}, k \geq 1$ if
$\sum_{n=1}^{\infty}\left(\lambda_{n}\right)^{k}\left[\frac{P_{n}}{p_{n}}\right]^{k-1}\left|T_{n}^{\star}-T_{n-1}^{\star}\right|^{k}<\infty$

RESULTS ALREADY PROVED

Bor [3] (see [2] also) has established following two interesting results and our result is based on these Theorems:

Theorem 2.1 [2] Let $\left(p_{n}\right)$ be a sequence of positive real constants such that as $\mathrm{n} \rightarrow \infty$

$$
\begin{equation*}
\text { (i) } n p_{n}=O\left(P_{n}\right) \quad \text { (ii) } P_{n}=O\left(n p_{n}\right) \tag{2.1}
\end{equation*}
$$

If $\sum a_{n}$ is summable $|C, 1|_{k}$, then it is also summable $\left|N, p_{n}\right|_{k}, k \geq 1$.
Theorem 2.2 [3] Let $\left(p_{n}\right)$ be a sequence of positive real constants such that it satisfies the condition (2.1). If $\sum a_{n}$ is summable $\left|N, p_{n}\right|_{k}$, then itis also summable $|C, 1|_{k}, k \geq 1$.

MAIN RESULT

We now state our main Theorem which is similar to Theorem 2.2.
Theorem 3.1 Let $\left(p_{n}\right)$ and $\left(\lambda_{n}\right)$ be the sequence of positive real numbers such that
(i) $\quad P_{n}=O\left(n p_{n}\right), P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty$ as $n \rightarrow \infty$.
(ii) $\quad \lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\lambda_{n} / \lambda_{n-1}<P_{n-1} / P_{n}$

If $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}, \lambda_{n}\right|_{k}$ then it is also summable $|C, 1|_{k}, k \geq 1$.
Proof of Theorem 3.1 We denote the $n^{\text {th }}(C, 1)$ mean of the sequence $\left(n a_{n}\right)$ by
$t_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v}$
Given, the series $\sum a_{n}$ summable by $\left|\bar{N}, p_{n}, \lambda_{n}\right|_{k} k \geq 1$, means that
$\sum_{n=1}^{\infty}\left(\lambda_{n}\right)^{k}\left[\frac{P_{n}}{p_{n}}\right]^{k-1}\left|T_{n}^{\star}-T_{n-1}^{\star}\right|^{k}<\infty$
$t_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v\left(s_{y}-s_{v-1}\right)$
Breaking the above sum into two parts, applying the change of variable and writing two sums together, we get
$t_{n}=\frac{-\sum_{v=0}^{n} s_{v}}{n+1}+s_{n}(3.3)$
Consider $\quad T_{n}^{\star}=\frac{1}{P_{n} \lambda_{n}} \sum_{v=0}^{n} p_{v} S_{v}$
Using (3.4), we obtain

$$
\begin{equation*}
s_{n}=\frac{1}{p_{n}}\left[P_{n} T_{n}^{\star} \lambda_{n}-P_{n-1} T_{n-1}^{\star} \lambda_{n}\right] \tag{3.5}
\end{equation*}
$$

Substituting the values of sn and s_{v} from (3.5) in (3.3), we get

$$
\begin{aligned}
t_{n} & =-\frac{1}{n+1}\left[\sum_{v=0}^{n} \frac{1}{p_{v}}\left\{P_{v} T_{v}^{\star} \lambda_{v}-P_{v-1} T_{v-1}^{\star} \lambda_{v}\right\}\right]+\frac{1}{p_{n}}\left[P_{n} T_{n}^{\star} \lambda_{n}-P_{n-1} T_{n-1}^{\star} \lambda_{n-1}\right] \\
& =-\frac{1}{n+1}\left[\sum_{v=0}^{n} \frac{P_{v} T_{v}^{\star} \lambda_{v}}{p_{v}}-\sum_{v=-1}^{n-1} \frac{P_{v} T_{v}^{\star} \lambda_{v}}{p_{v+1}}\right]+\frac{1}{p_{n}}\left[P_{n} T_{n}^{\star} \lambda_{n}-P_{n-1} T_{n-1}^{\star} \lambda_{n-1}\right]
\end{aligned}
$$

Since, $\frac{1}{p_{v+1}}<\frac{1}{p_{v}}$ and $P_{-1}=0$, we get
$t_{n} \leq-\frac{1}{n+1}\left[\frac{P_{n} T_{n}^{*} \lambda_{n}}{p_{n}}\right]+\frac{1}{p_{n}}\left[P_{n} T_{n}^{\star} \lambda_{n}-P_{n-1} T_{n-1}^{\star} \lambda_{n-1}\right]$

$$
\begin{aligned}
& \leq \frac{P_{n} T_{n}^{*} \lambda_{n}}{p_{n}}\left[\frac{n}{n+1}\right]-\frac{P_{n-1} T_{n-1}^{*} \lambda_{n-1}}{p_{n}} \\
& \leq \frac{P_{n} T_{n}^{*} \lambda_{n}}{p_{n}}-\frac{P_{n-1} T_{n-1}^{*} \lambda_{n-1}}{p_{n}}
\end{aligned}
$$

In view of condition (ii), we obtain
$t_{n} \leq\left\{\lambda n\left[\frac{P_{n}}{p_{n}}\right]\left[T_{n}^{*}-T_{n-1}^{*}\right]\right\}$
Now, applying Hölder's inequality, we get
$\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k} \leq \sum_{n=1}^{\infty} \frac{1}{n}\left(\lambda_{n}\right)^{k}\left[\frac{P_{n}}{p_{n}}\right]^{k}\left|T_{n}^{*}-T_{n-1}^{*}\right|^{k}$
In view of condition (i), we know $\frac{1}{n}=O\left(\frac{p_{n}}{P_{n}}\right)$, hence we get
$\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k} \leq \sum_{n=1}^{\infty}\left(\lambda_{n}\right)^{k}\left[\frac{P_{n}}{p_{n}}\right]^{k-1}\left|T_{n}^{*}-T_{n-1}^{*}\right|^{k}$
Using (3.2), we finally conclude that
$\sum_{n=1}^{\infty}\left|t_{n}\right|^{k}<\infty$
Thus, $\left|\bar{N}, p_{n}, \lambda_{n}\right|_{k} \subseteq|C, 1|_{k}$

CONCLUSION

Besides Theorem 2.2 of [3], our result covers all general cases for different choices of the sequence ($\lambda \mathrm{n}$) except $\lambda \mathrm{n}=1$, for all n .

REFERENCE

[1]. Bor, H., On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series, J. Univ. Kuwait, Sci., 10, 37-42, 1983.
[2]. Bor, H., On two summability methods, Math. Proc. Cambridge Philos. Soc., 97, 147-149, 1985.
[3]. Bor, H., A note on two summability methods, Proceedings of the American Mathematical Society, Vol. 98, No. 1, 81-84, 1986.
[4]. Flett, T. M., On an extension absolute summability and theorems of Littlewood and Paley, Proc. London Math. Soc., 7, 113-141, 1957.
[5]. Kogbetliantz, E., Sur les series absolument sommables par la methode des moyennes arithmetiques, Bull. Sci. Math., 9, 234-256, 1925.

