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Abstract. In this manuscript we prove some coupled fixed point theorems in
S-metric space susing the mixed g-monotone property. We give some examples
in support of our results.

1. Introduction

The advancement and the rich growth of fixed point theorems in metric spaces
have important theoretical and practical applications. It has remarkable influence
on applications such as the theory of differential and integral equations [1]. Metric
spaces have very wide applications in mathematics and applied sciences. For this
many authors tried to give definitions of metric spaces in many ways. In 1989,
Gahler [4, 5], introduced the notion of 2-metric spaces and Dhage [3] introduced
the notion of D-metric spaces. After the introduction of these metric spaces
many authors proved some fixed point results related to these metric spaces.
After this Mustafa and Sims [2] proved that most of the results of Dhage’s D-
metric spaces are not valid. So, they introduced the new concept of generalized
metric space called G-metric space and give some remarkable results in G-metric
spaces. Now, recently Sedghi et al. [6] have introduced the notion of S-metric
spaces as the generalization of G-metric and D*-metric spaces. Some results
have been obtained in [6, 7, 8] by Sedghi et al. In this paper, we prove some
coupled coincidence point results in S-metric space using the mixed g-monotone
property which are the generalizations of some fixed point theorems in metric
spaces [9, 10, 11, 12, 13].

2. Preliminaries

Here we give some definitions which are throughout used in this paper.

Definition 2.1 ([6]). Let X be a nonempty set. An S-metric on X is a function
S : X3 → [0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X.

(i) S(x, y, z) ≥ 0
(ii) S(x, y, z) = 0 if and only if x = y = z
(iii) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a)

Then the pair (X,S) is called an S-metric space.
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Definition 2.2 ([15]). Let (X,≤) be a partially ordered set equipped with a
metric S such that (X,S) is a metric space. Further, equip the product space
X ×X with the following partial ordering:

for (x, y), (u, v) ∈ X ×X,

define (u, v) ≤ (x, y) ⇔ x ≥ u, y ≤ v.

Definition 2.3 ([15]). Let (X,≤) be a partially ordered set and F : X×X → X.
One says that F enjoys the mixed monotone property if (x, y) is monotonically
nondecreasing in x and monotonically nonincreasing in y; that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y),

y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1) ≥ F (x, y2).

Definition 2.4 ([15]). An element (x, y) ∈ X ×X is said to be a coupled fixed
point of the mapping F : X ×X → X if

F (x, y) = x and F (y, x) = y.

Lemma 2.5 ([8]). In an S-metric space, we have S(x, x, y) = S(y, y, x).

Definition 2.6 ([14]). Let (X,≤) be a partially ordered set and F : X×X → X
and g : X → X two mappings. The mapping F is said to have the mixed g-
monotone property if F is monotone g-nondecreasing in its first argument and is
monotone g-nonincreasing in its second argument, that is,

if, for all x1, x2 ∈ X, g(x1) ≤ g(x2) implies F (x1, y) ≤ F (x2, y), for any y ∈ X, and,

for all y1, y2 ∈ X, g(y1) ≤ g(y2) implies F (x, y1) ≥ F (x, y2), for any x ∈ X.

Definition 2.7 ([14]). An element (x, y) : X ×X is called a coupled coincidence
point of mappings : X ×X → X and g : X → X if

F (x, y) = g(x), F (y, x) = g(y).

3. Main Results

Theorem 3.1. Let (X,≤) be a partially ordered set and assume that there is
a metric S on X such that (X,S) is a complete S-metric space. Suppose that
F : X×X → X and g : X → X are such that F is continuous and has the mixed
g-monotone property. Assume also that there exist φ ∈ Φ and ψ ∈ Ψ such that

ϕ[S(F (x, y), F (x, y), F (u, v)]

≤ 1

2
ϕ[S(gx, gx, gu) + S(gy, gy, gv)]− φ[S(gx, gx, gu) + S(gy, gy, gu)]

for any x, y, u, v ∈ X, for which gx ≤ gu and gv ≥ gy.
Suppose that F (X×X) ⊂ g(X), g is continuous and commutes with F . If there

exist x0, y0 ∈ X such that then there exist gx0 ≤ F (x0, y0) and gy0 ≥ F (y0, x0).
Then there exist x, y ∈ X such that

F (x, y) = gx and F (y, x) = gy

that is, F and g have a coupled coincidence point.
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Proof. Let x0, y0 ∈ X such that

gx0 ≤ F (x0, y0) and gy0 ≥ F (y0, x0).

But F (X ×X) ⊂ g(X), so, we can take x1, y1 ∈ X such that

gx1 ≤ F (x0, y0) and gy1 ≥ F (y0, x0) . (1)

Taking F (X ×X) ⊂ g(X), by continuous this process, we can take sequences xn

and yn in X such that

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn) . (2)

We shall prove that

gxn ≤ gxn+1 and gyn+1 ≥ gyn for n = 0, 1, 2, 3, ... (3)

For this, we use mathematical induction. Since gx0 ≤ F (x0, y0) and gy0 ≥
F (y0, x0). Then by equation (2), we obtain

gx0 ≤ gxn and gyn ≥ gy0 for n = 0, 1, 2, 3, ... (4)

i.e. (4) holds for n = 0. We suppose that equation (4) holds for some n > 0. As
F has the mixed g-monotone property and gxn ≤ gxn+1 and gyn+1 ≥ gyn, we get

gxn+1 = F (xn, yn) ≤ F (xn+1, yn)

≤ F (xn+1, yn+1)

= gxn+2,

gyn+2 = F (yn+1, xn+1) ≤ F (yn+1, xn)

≤ F (yn, xn)

= gxn+1

Thus equation (4) holds for any n ∈ N. Suppose, for some n ∈ N, that
gxn = gxn+1 and gyn = gyn+1

then, by equation (3) (xn, yn) is a coupled coincidence point of F and g. From
now on, suppose that for any n ∈ N that atleast gxn 6= gxn+1 and gyn 6= gyn+1.

By equations (1)-(4), we get

ψ(S(gxn+1, gxn+1, gxn+2))

= ψ(S(F (xn, yn), F (xn, yn), F (xn+1, yn+1)))

≤ 1

2
ψ[S(gxn, gxn, gxn+1) + S(gyn, gyn, gyn+1)]

− φ[S(gxn, gxn, gxn+1) + S(gyn, gyn, gyn+1)] (5)

ψ(S(gyn+1, gyn+1, gyn+2))

= ψ(S(F (yn, xn), F (yn, xn), F (yn+1, xn+1)))

≤ 1

2
ψ[S(gyn, gyn, gyn+1) + S(gxn, gxn, gxn+1)]

− φ[S(gyn, gyn, gyn+1) + S(gxn, gxn, gxn+1)] (6)
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From equation (5) and equation (6), we obtain that

ψ(S(gxn+1, gxn+1, gxn+2)) + ψ(S(F (gyn+1, gyn+1, gyn+2)))

≤ ψ[S(gxn, gxn, gxn+1) + S(gyn, gyn, gyn+1)]

− 2φ[S(gxn, gxn, gxn+1) + S(gyn, gyn, gyn+1)] (7)

By the property of (iii) of ψ, we get

ψ[S(gxn+1, gxn+1, gxn+2) + S(gyn+1, gyn+1, gyn+2)]

≤ ψ[S(gxn+1, gxn+1, gxn+2)] + ψ[S(gyn+1, gyn+1, gyn+2)] (8)

Combining (7) and (8), we have that

ψ[S(gxn+1, gxn+1, gxn+2) + S(gyn+1, gyn+1, gyn+2)]

≤ ψ[S(gxn, gxn, gxn+1) + S(gyn, gyn, gyn+1)]

− 2φ[S(gxn, gxn, gxn+1) + S(gyn, gyn, gyn+1)] (9)

Let

δn = S(gxn, gxn, gxn−1) + S(gyn, gyn, gyn−1) . (10)

Then, we get

ψ(δn+2) ≤ ψ(δn+1)− 2ψ(δn+1), for all n

which gives that

ψ(δn+2) ≤ ψ(δn+1), for all n.

Since ψ is nondecreasing, we have that δn+2 ≤ δn+1 for all n. Thus {δn} is a
nonincreasing sequence. But it is bounded below from 0, there is some δ ≥ 0
such that

lim
t→0+

δn = δ . (11)

We shall prove that δ = 0. Assume, on the contrary that δ > 0. Letting n → ∞
in (10) and having in mind that we suppose that limt→r φ(t) > 0 for all r > 0
and limt→0+ φ(t) = 0, we get

ψ(δ) ≤ ψ(δ)− 2φ(δ) < ψ(δ) (12)

which gives us a contradiction. Thus δ = 0, that is

lim
n→∞

δn = lim
n→∞

[S(gxn, gxn, gxn−1) + S(gyn, gyn, gyn−1)] = 0 . (13)

Now, we shall prove that {gxn} and {gyn} are Cauchy sequences in the metric
space (X,S). Suppose, on the contrary, that, one of the sequences {gxn} and gyn
is not a Cauchy sequence.

That is,

lim
n,m→∞

S(gxm, gxm, gxn) 6= 0

or

lim
n,m→∞

S(gym, gym, gyn) 6= 0.
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This means that there exists an ε > 0, for which we can find subsequences {xn(k)},
{xm(k)} of xn and {yn(k)}, {ym(k)} of yn with n(k) ≥ m(k) ≥ k such that

S(gxn(k), gxm(k), gxn(k)) + S(gym(k), gym(k), gyn(k)) ≥ ε . (14)

Now, by virtue of m(k), we can take n(k) is such a way that it is the smallest
integer with n(k) > m(k) ≥ k satisfying (14). We have

S(gxm(k), gxm(k), gxn(k)−1) + S(gym(k), gym(k), gyn(k)−1) < ε . (15)

Now, using triangle inequality, we get

S(gxm(k), gxm(k), gxn(k)) = S(gxn(k), gxn(k), gxm(k))

≤ S(gxn(k), gxn(k), gxn(k)−1)

+ S(gxn(k), gxn(k), gxn(k)−1)

+ S(gxm(k), gxm(k), gxn(k)−1) (16)

and

S(gym(k), gym(k), gyn(k)) = S(gyn(k), gyn(k), gym(k))

≤ S(gyn(k), gyn(k), gyn(k)−1)

+ S(gyn(k), gyn(k), gyn(k)−1)

+ S(gym(k), gym(k), gyn(k)−1) (17)

Adding (16) and (17) and using equation (14) and (15), we get

ε ≤ S(gym(k), gym(k), gyn(k)) + S(gym(k), gym(k), gyn(k))

≤ S(gxn(k), gxn(k), gxn(k)−1) + S(gxn(k), gxn(k), gxn(k)−1)

+ S(gxm(k), gxm(k), gxn(k)−1) + S(gyn(k), gyn(k), gyn(k)−1)

+ S(gyn(k), gyn(k), gyn(k)−1) + S(gym(k), gym(k), gyn(k)−1)

< ε+ 2S(gxn(k), gxn(k), gxn(k)−1) + 2S(gyn(k), gyn(k), gyn(k)−1)

Letting k → ∞ and having in mind equation (13), we obtain

lim
k→∞

λk = lim
k→∞

[S(gxm(k), gxm(k), gxn(k)) + S(gym(k), gym(k), gyn(k))]

= ε

Again, using the triangle inequalities, we get

λk = S(gxm(k), gxm(k), gxn(k)) + S(gym(k), gym(k), gyn(k))

≤ S(gxm(k), gxm(k), gxm(k)+1) + S(gxm(k), gxm(k), gxm(k)+1)

+ S(gxm(k), gxm(k), gxm(k)+1) + S(gym(k), gym(k), gym(k)+1)

+ S(gym(k), gym(k), gym(k)+1) + S(gyn(k), gyn(k), gym(k)+1)

≤ 2S(gxm(k), gxm(k), gxm(k)+1) + S(gxm(k)+1, gxm(k)+1, gxm(k)+1)

+ S(gxm(k)+1, gxm(k)+1, gxn(k)+1) + S(gxm(k), gxm(k), gxn(k)+1)
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+ 2S(gym(k), gym(k), gym(k)+1) + S(gym(k)+1, gym(k)+1, gym(k)+1)

+ S(gym(k)+1, gym(k)+1, gyn(k)+1) + S(gyn(k), gyn(k), gym(k)+1)

≤ 2δm(k)+1 + δn(k)+1 + 2S(gxm(k)+1, gxm(k)+1, gxn(k)+1)

+ 2S(gym(k)+1, gym(k)+1, gym(k)+1) (18)

Since n(k) ≥ m(k), so

gxm(k) ≤ gxn(k) and gym(k) ≥ gyn(k) . (19)

Thus by equation (1), (3) and (18) we have that

ψ(S(gxm(k)+1, gxm(k)+1, gxn(k)+1))

= ψ[S(F (xm(k), ym(k)), F (xm(k), ym(k)), F (xn(k), yn(k)))]

≤ 1

2
ψ[S(gxm(k), gxm(k), gxn(k)) + S(gym(k), gym(k), gyn(k))]

− φ[S(gxm(k), gxm(k), gxn(k)) + S(gym(k), gym(k), gyn(k))] (20)

ψ(S(gym(k)+1, gym(k)+1, gyn(k)+1))

= ψ[S(F (ym(k), xm(k)), F (ym(k), xm(k)), F (yn(k), xn(k)))]

≤ 1

2
ψ[S(gym(k), gym(k), gyn(k)) + S(gxm(k), gxm(k), gxn(k))]

− φ[S(gxm(k), gxm(k), gxn(k)) + S(gym(k), gym(k), gyn(k))] (21)

Now, combining (18), (20) and (21), we get

ψ(λk) ≤ ψ[2δm(k)+1 + δn(k)+1 + 2S(gxm(k)+1, gxm(k)+1, gxn(k)+1))

+ 2S(gym(k)+1, gym(k)+1, gyn(k)+1)]

≤ ψ(2δm(k)+1 + δn(k)+1) + ψ(2S(gxm(k)+1, gxm(k)+1, gxn(k)+1)

+ 2S(gym(k)+1, gym(k)+1, gyn(k)+1))]

≤ ψ(2δm(k)+1) + ψ(δn(k)+1) + ψ(2S(gxm(k)+1, gxm(k)+1, gxn(k)+1))

+ ψ((2S(gym(k)+1, gym(k)+1, gyn(k)+1))]

≤ ψ(2δm(k)+1) + ψ(δn(k)+1) + ψ(λk)− 2φ(λk)

Now, assuming k → ∞,we obtain a contradiction. This gives that {gxn} and
{gyn} are Cauchy sequences in the metric space (X,S). But, we have that (X,S)
is complete, so there exist x, y ∈ X such that

lim
n→∞

gxn = x and lim
n→∞

gyn = y . (22)

Again from equation (22) and using the continuity of the function g, we get

lim
n→∞

g(gxn) = gx and lim
n→∞

g(gyn) = gy . (23)

It gives from equation (3) and the continuity of F and the function g that

g(gxn+1) = g(F (xn, yn)) = F (gxn, gyn) (24)
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and

g(gyn+1) = g(F (yn, xn)) = F (gyn, gxn) (25)

Now, we shall show that gx = F (x, y) and gy = F (y, x). By assuming n → ∞ in
(24) and (25), by (22), (23) and using the continuity of F , we get

gx = lim
n→∞

g(gxn)

= lim
n→∞

F (gxn, gyn)

= F
(
lim
n→∞

gxn, lim
n→∞

gyn

)

= F (x, y)(??) (26)

and

gy = lim
n→∞

g(gyn+1)

= lim
n→∞

F (gyn, gxn)

= F
(
lim
n→∞

gyn, lim
n→∞

gxn

)

= F (y, x)(??) (27)

Hence, we have proved that F and g have a coupled coincidence point.
Now, in the following theorem, we remove the continuity of the map F .

Definition 3.2. Let (X,≤) be a partially ordered metric space and S be the
metric on X. We say that (X,S,≤) is regular if the following conditions hold:

(i) If a nondecreasing sequence an → a then an ≤ a for all n.
(ii) If a nondecreasing sequence bn → b then b ≤ bn for all n.

Theorem 3.3. Let (X,≤) be a partially ordered set and suppose there is a metric
S on X such that (X,S,≤) is regular. Suppose that F : X × X → X and
g : X → X are such that F has the mixed g-monotone property. Assume also
that there exist φ ∈ Φ and ψ ∈ Ψ such that

ψ(S(F (x, y), F (x, y), F (u, v))) ≤ 1

2
ψ[(S(gx, gx, gu) + S(gy, gy, gv))]

− φ(S(gx, gx, gu) + S(gy, gy, gv))

for any x, y, u, v ∈ X, for which gx ≤ gu and gy ≤ gv. Suppose that F (X×X) ⊆
g(X), g(X) is complete. If there exist x0, y0 ∈ X such that

gx0 ≤ F (x0, y0) and gy0 ≥ F (y0, x0)

then there exist x, y ∈ X such that

F (x, y) = gx and F (y, x) = gy

that is, F and g coupled coincidence point.
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Proof. Proceeding exactly as in Theorem 3.1, we get {gxn} and {gyn} are Cauchy
sequences in the complete metric space g(X). Then there exist x, y ∈ X such
that

gxn → gx and gyn → gy . (28)

Since {gxn} is nondecreasing and {gyn} is nonincreasing, then since (X,S,≤) is
regular, so we have

gxn ≤ gx and gyn ≥ gy for all n.

If gxn = gx and gyn = gy for all n > 0, then gx = gxn ≤ gxn+1 ≤ gx = gxn and
gy ≤ gyn+1 ≤ gyn = gy which gives us that

gxn = gxn+1 = F (xn, yn) and gy = gyn+1 = F (yn, xn)

that is (xn, yn) is a coupled coincidence point of F and g. Thus, we suppose
(gxn, gyn) 6= (gx, gy) for all n > 0. Now, using equation (1), consider

ψ(S(gx, gx), F (x, y))

≤ ψ(2S(gx, gx, gxn+1) + S(gxn+1, gxn+1, F (x, y)))

≤ ψ(2S(gx, gx, gxn+1) + ψ(S(F (xn, yn), F (xn, yn), F (x, y)))

≤ ψ(2S(gx, gx, gxn+1)) +
1

2
ψ(S(gxn, gxn, gx) + S(gyn, gyn, gy))

+ ϕ(S(gxn, gxn, gx) + S(gyn, gyn, gy)) (29)

Letting n → ∞ and using (28), then the right hand side of equation (29) tends
to 0, thus ψ(S(gx, gx, F (x, y)) = 0. Now, by the property (i) of ψ, we have
(S(gx, gx, F (x, y)) = 0. It gives that g(x) = F (x, y).

Similarly, gy = F (y, x).
Hence, we have shown that F and g have a coupled coincidence point. ¤

Corollary 3.4. Let (X,≤) be a partially ordered set and suppose there is a metric
S on X such that (X,S) is a complete S-metric space. Suppose that F : X×X →
X and g : X → X are such that F is continuous and has the mixed g-monotone
property. Assume also that there exist φ ∈ Φ and ψ ∈ Ψ such that

ψ(S(F (x, y), F (x, y), F (u, v))) ≤ 1

2
ψ[maxS(gx, gx, gu), S(gy, gy, gv)]

− φ(S(gx, gx, gu) + S(gy, gy, gv))

for any x, y, u, v ∈ X, for which gx ≤ gu and gy ≤ gv.
Suppose that F (X × X) ⊆ g(X), g is continuous and commutes with F . If

there exist x0, y0 ∈ X such that

gx0 ≤ F (x0, y0) and gy0 ≥ F (y0, x0)

then there exist x, y ∈ X such that

F (x, y) = gx and F (y, x) = gy

that is, F and g coupled coincidence point.
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Proof. Since, we know that

maxS(gx, gx, gu), S(gy, gy, gv) ≤ S(gx, gx, gu) + S(gy, gy, gv)

then we can apply Theorem 3.1, since ψ is assumed to be nondecreasing. ¤

Similarly, as an easy consequence of Theorem 3.3, we obtain the following
corollary.

Corollary 3.5. Let (X,≤) be a partially ordered set and assume that there is a
metric S on X such that (X,S,≤) is regular. Suppose that F : X ×X → X and
g : X → X are such that F has the mixed g-monotone property. Suppose also
that there exist φ ∈ Φ and ψ ∈ Ψ such that

ψ[S(F (x, y), F (x, y), F (u, v))] ≤ 1

2
ψ{max{S(gx, gx, gu), S(gy, gy, gv))}

− φ(S(gx, gx, gu) + S(gy, gy, gv))

for any x, y, u, v ∈ X, for which gx ≤ gu and gy ≤ gv.
Suppose that F (X ×X) ⊆ g(X), g(X) is complete metric space. If there exist

x0, y0 ∈ X such that

gx0 ≤ F (x0, y0) and gy0 ≥ F (y0, x0)

then there exist x, y ∈ X such that

F (x, y) = gx and F (y, x) = gy

that is, F and g have a coupled coincidence point.

Proof. Since,

maxS(gx, gx, gu), S(gy, gy, gv) ≤ S(gx, gx, gu) + S(gy, gy, gv) .

So, we can apply Theorem 3.1, since ψ is assumed to be nondecreasing. ¤

Corollary 3.6. Let (X,≤) be a partially ordered set and suppose there is a metric
S on X such that (X,S) is a S-metric space. Assume that F : X ×X → X and
g : X → X are such that F is continuous and has the mixed g-monotone property.
Suppose also that there exists k ∈ [0, 1) such that

S(F (x, y), F (x, y), F (u, v)) ≤ k

2
[S(gx, gx, gu) + S(gy, gy, gv)]

for any x, y, u, v ∈ X, for which gx ≤ gu and gy ≤ gv.
Suppose that F (X × X) ⊆ g(X), g is continuous and commutes with F . If

there exist x0, y0 ∈ X such that

F (x, y) = gx and F (y, x) = gy

that is, F and g have a coupled coincidence point.

Proof. It is sufficient to set ψ(t) = t and φ(t) = 1−k
2
t in Theorem 3.1. ¤

International Journal of Emerging Trends in Engineering and Development          Issue 4, Vol.4 (JUNE-JULY 2014)       

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm                                    ISSN 2249-6149______________________________________________________

R S. Publication, rspublicationhouse@gmail.com                                                                        �                          Page 76

____________________________________________________



Corollary 3.7. Let (X,≤) be a partially ordered set and suppose there is a metric
S on X such that (X,S,≤) is regular. Suppose that F : X × X → X and
g : X → X are such that F has the mixed g-monotone property. Suppose also
that there exists k ∈ [0, 1) such that

S(F (x, y), F (x, y), F (u, v)) ≤ k

2
S(gx, gx, gu) + S(gy, gy, gv)

for any x, y, u, v ∈ X, for which gx ≤ gu and gy ≤ gv.
Suppose that F (X ×X) ⊆ g(X), g(X) is complete metric space. If there exist

x0, y0 ∈ X such that

gx0 ≤ F (x0, y0) and gy0 ≥ F (y0, x0)

then there exist x, y ∈ X such that

F (x, y) = gx and F (y, x) = gy

that is, F and g have a coupled coincidence point.

Proof. It is sufficient to take ψ(t) = t and φ(t) = 1−k
2
t in Theorem 3.3. ¤

Corollary 3.8. Let (X,≤) be a partially ordered set and suppose there is a metric
S on X such that (X,S) is complete S-metric space. Suppose that F : X×X → X
and g : X → X are such that F is continuous and has the mixed g-monotone
property. Assume also that there exists k ∈ [0, 1) such that

S(F (x, y), F (x, y), F (u, v)) ≤ k

2
S(gx, gx, gv) + S(gy, gy, gv)

for any x, y, u, v ∈ X, for which gx ≤ gu and gy ≤ gv.
Suppose that F (X × X) ⊆ g(X), g is continuous and commutes with F . If

there exist x0, y0 ∈ X such that

gx0 ≤ F (x0, y0) and gy0 ≥ F (y0, x0)

then there exist x, y ∈ X such that

F (x, y) = gx and F (y, x) = gy.

Proof. We know that

maxS(gx, gx, gu), S(gy, gy, gv) ≤ S(gx, gx, gu) + S(gy, gy, gv) .

Then we can apply here corollary 3.8 and obtain the proof. ¤
Corollary 3.9. Let (X,≤) be a partially ordered set and suppose there is a metric
S on X such that (X,S,≤) is regular. Suppose that F : X × X → X and
g : X → X are such that F has the mixed g-monotone property. Assume also
that there exists k ∈ [0, 1) such that

S(F (x, y), F (x, y), F (u, v)) ≤ k

2
max[S(gx, gx, gv), S(gy, gy, gv)]

for any x, y, u, v ∈ X, for which gx ≤ gu and gy ≤ gv.
Suppose that F (X × X) ⊆ g(X) and g(X) is complete metric space. If there

exist x0, y0 ∈ X such that

gx0 ≤ F (x0, y0) and gy0 ≥ F (y0, x0)

International Journal of Emerging Trends in Engineering and Development          Issue 4, Vol.4 (JUNE-JULY 2014)       

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm                                    ISSN 2249-6149______________________________________________________

R S. Publication, rspublicationhouse@gmail.com                                                                        �                          Page 77

____________________________________________________



then there exist x, y ∈ X such that

F (x, y) = gx and F (y, x) = gy.

That is, F and g has a coupled coincidence point.

Now, we shall show the existence and uniqueness of a coupled common fixed
point.

For a product X×X of a partial ordered set (X,≤) we define a partial ordering
as following:

For all (x, y), (u, v) ← X ×X.

(x, y) ≤ (u, v) ⇒ x ≤ u, y ≥ v(??) (30)

We can say that (x, y) and (u, v) are comparable it (x, y) ≤ (u, v) or (u, v) ≤
(x, y).

Also, we say that (x, y) is equal to (u, v) if and only if x = u and y = v.

Theorem 3.10. In addition to the hypotheses of Theorem 3.1, suppose that for
all (x, y), (u, v) ∈ X ×X there exist (a, b) ∈ X ×X such that

(F (a, b), F (b, a)) is comparable to (F (x, y), F (y, x)) and (F (u, v), F (v, u)).

Then F and g have a unique coupled common fixed point (x, y) such that x =
gx = F (x, y) and y = gy = F (y, x).

Proof. By Theorem 3.1, we know that the set of coupled coincidence points of F
and g is not void. Now, assume that (x, y) and (u, v) are two coupled coincidence
points of F and g i.e.

F (x, y) = gx, F (u, v) = gu

and

F (y, x) = gy, F (v, u) = gv .

Now, we shall prove that (gx, gy) and (gu, gv) are equal. By supposition, there
exist (a, b) ∈ X×X such that (F (a, b), F (b, a)) is comparable to (F (x, y), F (y, x))
and (F (u, v), F (v, u)). Define sequence {gan} and {gbn} such that a0 = a, b0 = b
and for any n ≥ 1

gan = F (an−1, bn−1) and gbn = F (bn−1, an−1) for all n. (31)

Further, set x0 = x, y0 = y and u0 = u, v0 = v and in the same fashion define
the sequences {gxn}, {gyn} and {gun} and {gvn}. Then

gxn = F (xn−1, yn−1), gun = F (un−1, vn−1) and

gyn = F (yn−1, xn−1), gvn = F (vn−1, un−1) for all n ≥ 1. (32)

Since (F (x, y), F (y, x)) = (gx1, gu1) = (gx, gy) is comparable to (F (a, b), F (b, a)) =
(ga1, gb1).

The, it is easy to show (gx, gy) ≥ (ga1, gb1).
By continuing this, we have

(gan, gbn) ≤ (gx, gy), for all n. (33)
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ψ(S(gan+1, gan+1, gx)) = ψ(S(F (an, bn), F (an, bn), F (x, y))

≤ 1

2
ψ[S(gan, gan, gx) + S(gbn, gbn, gy)]

− φ(S(gan, gan, gx) + S(gbn, gbn, gy)) (34)

and

ψ(S(gy, gy, gbn+1)) = ψ(S(gbn+1, gbn+1, gy))

= ψ(S(F (bn, an), F (bn, an), F (y, x))

≤ 1

2
ψ[S(gbn, gbn, gy) + S(gan, gan, gx)]

− φ(S(gbn, gbn, gy) + S(gan, gan, gx)) (35)

From equation (35) and (36), we have

ψ(S(gan+1, gan+1, gx)) + ψ(S(gbn+1, gbn+1, gy))

≤ ψ[S(gan, gan, gx) + S(gbn, gbn, gy)]

− 2φ(S(gan, gan, gx) + S(gbn, gbn, gy)) (36)

Now, from the property of (iii) of ψ, we get that

ψ(S(gan+1, gan+1, gx) + S(gbn+1, gbn+1, gy))

≤ ψ[S(gan+1, gan+1, gx) + S(gbn+1, gbn+1, gy)]

≤ ψ[S(gan, gan, gx) + S(gbn, gbn, gy)]

− 2φ(S(gan, gan, gx) + S(gbn, gbn, gy)) . (37)

Now, let σn = S(gan, gan, gx) + S(gbn, gbn, gy).
Then from equation (37), we get

ψ(σn+1) = ψ(σn)− 2φ(σn) for all n (38)

which gives us that ψ(σn+1) ≤ ψ(σn). By the property of ψ, we get that σn+1 ≤
σn. So the sequence {σn} is decreasing and bounded below from 0. So, there
exists σ ≥ 0 such that

lim
n→∞

σn = 0.

Now, we shall show that σ = 0. Assume on the contrary that σ > 0. Taking
n → ∞ in equation (38), we get that

ψ(σ) ≤ ψ(σ)− u lim
n→∞

ψ(σn) < ψ(σ)

which gives a contradiction. It gives that σ = 0 that is, limn→∞ σn = 0.
Consequently, we have

lim
n→∞

S(gan, gan, gx) = 0 and lim
n→∞

S(gbn, gbn, gy) = 0 (39)

In the same way, we can show that

lim
n→∞

S(gan, gan, gu) = 0 and lim
n→∞

S(gbn, gbn, gv) = 0 (40)

Combining equations (39) and (40), gives that (gx, gy) and (gu, gv) are equal.
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Since gx = F (x, y), gy = F (y, x) and by the commutativity of F and g, we get
that

gx′ = g(gx) = g(F (x, b)) = F (gx, gy) = F (x′, y′)

gy′ = g(gy) = g(F (y, x)) = F (gy, gx) = F (y′, x′)

where gx = x′, gy = y′. Thus (x′, y′) is a coupled coincidence point of F and g.
So (gx′, gy′) and (gx, gy) are equal, we get that

gx′ = gx = x′, gy′ = gy = y′ .

Thus, (x′, y′) is a coupled common fixed point of F and g. Its uniqueness follows
from contradiction in this theorem. ¤
Example 3.11. Let X = R with the metric

S(x, y, z) = |x− y − z| for all x, y, z ∈ X and the usual ordering.

Let F : X ×X → X and g : X → X be defined as

gx =
x

2
, F (x, y) =

x− y

8
for all x, y ∈ X.

Let ψ, φ : [0,∞) → [0,∞) be defined as

ψ(t) =
t

10
, φ(t) =

t

30
for all t ∈ [0,∞) .

It is easy to check that all condition of Theorem 3.10 are satisfied for all x, y, u, v ∈
X satisfying gx ≤ gv and gv ≥ gy. This we have, (0, 0) is the unique coupled
fixed point of F and g.
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