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ABSTRACT: 

We analyse the effect of chemical reaction and radiation on mixed convective heat and mass 

transfer flow of a viscous, electrically conducting fluid through a porous medium in a vertical 

wavy channel under the influence of an inclined magnetic fluid with heat sources. The 

equations governing the flow, heat and mass transfer are solved by employing perturbation 

technique with aspect ratio  as perturbation parameter. The velocity, temperature and 

concentration distributions are investigated for different values of m, M, , N1, , k & R. The 

rate of heat and mass transfer are numerically evaluated for different variations of the 

governing parameters.  
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1.INTRODUCTION 

Combined heat and mass transfer problems with chemical reaction are of importance in many 

processes and have, therefore, received a considerable amount attention in recent years. In 

processes such as drying, evaporation at the surface of a water body, energy transfer in a wet 

cooling tower and the flow in a desert cooler, heat and mass transfer occur simultaneously. 

Possible applications of this type of flow can be found in many industries. For example, in 

the power industry, among the methods of generating electric power is one in which electrical 

energy is extracted directly from a moving conducting fluid. 

We are particularly interested in cases in which diffusion and chemical reaction occur at 

roughly the same speed. When diffusion is much faster than chemical reaction, then only 

chemical factors influence the chemical reaction rate; when diffusion is not much faster than 

reaction, the diffusion and kinetics interact to produce very different effects. The study of 

heat generation or absorption effects in moving fluids is important in view of several physical 

problems, such as fluids undergoing exothermic or endothermic chemical reaction. Due to the 

fast growth of electronic technology, effective cooling of electronic equipment has become 

warranted and cooling of electronic equipment ranges from individual transistors to main 

frame computers and from energy suppliers to telephone switch  boards and thermal diffusion 

effect has been utilized for isotopes separation in the mixture between gases with very light 

molecular weight  (hydrogen and helium )  and medium molecular weight. 



International Journal of Emerging Trends in Engineering and Development         Issue 3, Vol.4 (June-July 2013)                                                                                                    

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm                                  ISSN 2249-6149 

R S. Publication, rspublicationhouse@gmail.com Page 213 
 

Muthucumaraswamy and Ganesan [32] studied effect of the chemical reaction and injection 

on flow characteristics in an in steady upward motion of an unsteady upward motion of an 

isothermal plate. Deka et at. [13]  studied the effect of the first order homogeneous chemical 

reaction on the process of an unsteady flow past an infinite vertical plate with a constant beat 

and mass transfer. Chamkha [5] studies the MHD flow of a numerical of uniformly stretched 

vertical permeable surface in the presence of heat generation/absorption and a chemical 

reaction. The effect of foreign mass on the free-convection flow past a semi-infinite vertical 

plate were studied by  Gebhart et al[19]. Chamkha [5] assumed that the plate is embedded in 

a uniform porous medium and moves with a constant velocity in the flow direction in the 

presence of a transverse magnetic field. Raptis and Perdikis [41] studied the unsteady free 

convection flow of water near 4 C in the laminar boundary layer over a vertical moving 

porous plate. 

In the theory of flow through porous medium, the role of momentum equations or force 

balance is occupied by the numerous experimental observations summerised mathematically 

as the Darcy’s law. It is observed that the Darcy’s law is applicable as long as the Reynolds 

number based on average grain(pore) diameter does not exceed a value between 1 and 10.But 

in general ,the speed of specific discharge in the medium need not be always low. As the 

specific discharge increases, the convective forces get developed and the internal stress 

generated in the fluid due to its viscous nature produces distortions in the velocity field. Also 

in the case of highly porous media such as fibre glass, pappus of dandilion etc., the viscous 

stress at the surface is able to penetrate into media and produce flow near the surface even in 

the absence of the pressure gradient. Thus Darcy’s law which specifies a linear relationship 

between the specific discharge and hydraulic gradient is inadequate in describing high speed 

flows or flows near surfaces which may be either permeable or not. Hence consideration for 

non-Darcian description for the viscous flow through porous media is warranted. 

Saffman[26] employing statistical method derived a general governing equations for the flow 

in a porous medium which takes into account the viscous stress. Later another modification 

has suggested by Brinkman(3) 

  vv
k

po 2)(  


 

in which  v2  is intended to account for the distortions of the velocity profiles near the 

boundary. The same equation was derived analytically by Tam[55] to describe the viscous 

flow at low Reynolds number past a swam of small particles.  The generalization of the above 

study was presented by Yamamoto and Iwamura [66]. The steady two-dimensional flow of 

viscous fluid through a porous medium bounded by porous surface subjected to a constant 

suction velocity by taking account of free convection currents (both velocity and temperature 

fields are constant along x-axis)was studied by Raptis et al [42] Combarnous and 

Borris[10],Chang [7,8] and Combarnous [9[ have recently proved extensive reviews of state 

of the art of free convection in fluid saturated porous medium. 

There is an extensive literature on free convection in porous media, i.e., flows through a 

porous media under gravitational fields that are driven by gradients of fluid density caused by 

temperature gradient. Many studies,including most of the earlier work, have dealt with 

systems heated from below [20,32,37]. Some attention has also been given to investigations 

of free convection in porous media introduced by a temperature gradient normal to the 

gravitational field. Raptis [43] has investigated unsteady free convective flow through a 

porous medium. 
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Convection fluid flows generated by traveling thermal waves have also received attention due 

to applications in physical problems. The linearised analysis of these flows has shown that a 

traveling thermal wave can generate a mean shear flow within a layer of fluid, and the 

induced mean flow is proportional to the square of the amplitude of the wave. From a 

physical point of view, the motion induced by traveling thermal waves is quite interesting as 

a purely fluid-dynamical problem and can be used as a possible explanation for the observed 

four-day retrograde zonal motion of the upper atmosphere of Venus. Also, the heat transfer 

results will have a definite bearing on the design of oil-or gas –fired boilers. Vajravelu and 

Debnath[57] have made an interesting and a detailed study of non-linear convection heat 

transfer and fluid flows, induced by traveling thermal waves. The traveling thermal wave 

problem was investigated both analytically and experimentally by White head [59] by 

postulating series expansion in the square of the aspect ratio(assumed small) for both the 

temperature and flow fields. White head[59] obtained an analytical solution for the mean 

flow produced by a moving source theoretical predictions regarding the ratio of the mean 

flow velocity to the source speed were found to be in good agreement with experimental 

observations in Mercury which  therefore justified the validity of the asymptotic expansion a 

posterior    

Heat generation in a porous media due to the presence of temperature dependent heat sources 

has number of applications related to the development of energy resources. It is also 

important in engineering processes pertaining to flows in which a fluid supports an 

exothermic chemical or nuclear reaction. Proposal of disposing the radioactive waste material 

b burying in the ground or in deep ocean sediment is another problem where heat generation 

in porous medium occurs, Foroboschi and Federico [18] have assumed volumetric heat 

generation of the type 

   = o (T – T0) for  T  T0 

      = 0  for  T < T0 

David Molean [14] has studied the effect of temperature dependent heat source    = 1/ a + bT 

such as occurring in the electrical heating on the steady state transfer within a porous 

medium. Chandrasekahr [6], Palm [38] reviewed the extensive work and mentioned about 

several authors who have contributed to the force convection with heat generating source. 

Mixed convection flows have been studied extensively for various enclosure shapes and 

thermal boundary conditions. Due to the super position of the buoyancy effects on the main 

flow there is a secondary flow in the form of a vortex recirculation pattern. 

 In all these investigations, the effects of Hall currents are not considered. However, in 

a partially ionized gas, there occurs a Hall current [4] when the strength of the impressed 

magnetic field is very strong. These Hall effects play a significant role in determining the 

flow features. Sato [48], Yamanishi [60], Sherman and Sutton [51] have discussed the Hall 

effects on the steady hydromagnetic flow between two parallel plates. These effects in the 

unsteady cases were discussed by Pop [39]. Debnath [56,58] has studied the effects of Hall 

currents on unsteady hydromagnetic flow past a porous plate in a rotating fluid system and 

the structure of the steady and unsteady flow is investigated. Alam  et. al.,[1] have studied 

unsteady free convective heat and mass transfer flow in a rotating system with Hall currents, 

viscous dissipation and Joule heating. Taking Hall effects in to account Krishan et. al.,[12,13] 

have investigated Hall effects on the unsteady hydromagnetic boundary layer flow. Rao et. 

al., [44] have analyzed Hall effects on unsteady Hydromagnetic flow. Siva Prasad et. al., [44) 

have studied Hall effects on unsteady MHD free and forced convection flow in a porous 
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rotating channel. Recently Seth et. al., [50] have investigated the effects of Hall currents on 

heat transfer in a rotating MHD channel flow in arbitrary conducting walls. Sarkar et. al., 

[46] have analyzed the effects of mass transfer and rotation and flow past a porous plate in a 

porous medium with variable suction in slip flow region.  

 In this paper we investigate the effect of chemical reaction on mixed convective heat 

and mass transfer flow of a viscous , electrically conducting fluid through a porous medium 

in a vertical wavy channel under the influence of an inclined magnetic fluid with heat 

sources. The equations governing the flow , heat and mass transfer are solved by employing 

perturbation technique with aspect ratio  as perturbation parameter. The velocity , 

temperature and concentration distributions are investigated for  different values of m, M, , 

N1, , k & R. The rate of heat and mass transfer are numerically evaluated for  different 

variations of the governing parameters.  

2.FORMULATION AND SOLUTION OF THE PROBLEM 

  We consider the unsteady flow of an incompressible, viscous ,electrically 

conducting fluid confined in a vertical  channel bounded by two wavy walls under the 

influence of an inclined magnetic field of intensity Ho lying in the plane (x-z).The magnetic 

field is inclined at an angle 1 to the axial direction  and hence  its components are 

))(),(,0( 1010  CosHSinH .In view of the traveling thermal wave imposed on the wall 

)(mzLfx   the velocity field has components(u,0,w)The magnetic field in the presence of 

fluid flow induces the current( ),0,( zx JJ .We choose a rectangular cartesian co-ordinate 

system O(x,y,z) with z-axis in the vertical direction and the walls at )(mzLfx  . 

                          When the strength of the magnetic field is very large we include the Hall 

current so that the generalized  Ohm’s law is modified to 

  )( HxqEHxJJ eee                              (1) 

where q  is the velocity vector. H  is the magnetic field intensity vector. E  is the electric 

field, J is the current density vector, e is the cyclotron frequency, e  is the electron collision 

time, is the fluid conductivity and e is the magnetic permeability.  

 

Neglecting the electron pressure gradient, ion-slip and thermo-electric effects and assuming 

the electric field E=0,equation (1) reduces  

  )()( 1010  wSinHSinJHmj ezx     (2) 

  )()( 1010  SinuHSinJHmJ exz     (3) 

where m= ee  is the Hall parameter. 

On solving equations (2)&(3) we obtain  
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where u,w are the velocity components along x and z directions respectively, 

The Momentum equations are  
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Substituting Jx and Jz from equations (4)&(5)in equations (6)&(7) we obtain  
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The energy equation is  
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The diffusion equation is  
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The equation of state is  

 ))()( 00 CCTT o                  (12) 

Where T,C  are the temperature and concentration in the fluid. kf is the thermal conductivity, 

Cp is the specific heat constant pressure, k is the permeability of the porous medium,  is the 

coefficient of thermal expansion,  is the volumetric coefficient of expansion with mass 

fraction coefficiemnt,D1is the molecular diffusivity, Q is the strength of the heat source,k11 is 

the cross diffusivity,k1 is the chemical reaction coefficient. 

The flow is maintained by a constant volume flux for which a characteristic velocity is 

defined as 
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The boundary conditions are 

 u= 0 ,w=0 T=T1 ,C=C1 on )(mzLfx               (14) 

 w=0,   w=0,  T=T2  +((T1-T2)Sin(mz+nt),C=C2 on )(mzLfx        (15) 

diffusivity.. 

 

Eliminating the pressure from equations(8)&(9) and introducing the Stokes Stream function 
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the equations (8),(9) ,(11)&(17) in terms of  are 
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On introducing the following non-dimensional variables  
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the equation of momentum and energy in the non-dimensional form are 
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The corresponding boundary conditions are 
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3.ANALYSIS OF THE FLOW 

On introducing the transformation 
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The equations(22)-(24) reduce to 
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Assuming the aspect ratio  to be small we take the asymptotic solutions as 
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Substituting (30) in equations (26)-(28) and equating the like powers of  the equations and 

the respective boundary conditions to the zeroth order are 
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and to the first order are 
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with 
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4.SOLUTIONS OF THE PROBLEM 

 

Solving the equations(31)- (33) and (35) – (37) subject to the boundary conditions (34) & 

(38) we obtain  
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5.NUSSELT NUMBER and SHERWOOD NUMBER 
  

The rate of heat transfer (Nusselt Number) on the walls has been calculated using the formula 
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The rate of mass transfer (Sherwood Number) on the walls has been calculated using the 

formula 
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where a1,a2,…………,a90,b1,b2,…………,b79 are constants. 

 

6.RESULTS AND DISCUSSION OF THE NUMERICAL RESULTS 

              

             In  this analysis we investigate the effect of Hall Currents and radiation on  mixed 

convective heat and mass transfer flow of a viscous, electrically conducting fluid through a 

porous  medium in a vertical wavy channel with traveling thermal wave imposed on the wall 

in the presence of heat generating source under an inclined magnetic field.. 

 

         The  axial velocity (w) is shown in Figs1-5  for different values of m, M, , N1, , k & 

R. The variation of w with M and m shows that higher the Lorentz force smaller |w| in the 

flow region. An increase in the Hall parameter m leads to an enhancement in w(fig2.). The 

effect of surface geometry () on w is shown in fig.2. It is found that higher the dilation of 

the channel walls larger w in the flow region (fig.3). The effect of radiation on W is shown in 

fig.8. It is found that |w| enhances with increase in the radiation  parameter N1 an increase in 

the inclination of the magnetic field (/2) leads to an enhancement in |w|  and for further 

higher inclination (=), it depreciates and for still higher  , we notice an enhancement in 
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|w| in the entire flow region(fig.4). Fig.5 represents w with chemical reaction parameter k. It 

is found that W exhibits a reversal flow for k=3.5 and |w| enhances with increase in k.  

 

 The secondary velocity (u) which arises due to the waviness of the boundary is shown 

in figs(6-10) for different parametric values. The variation of u with M and m shows that 

higher the Lorentz force smaller |u| in the flow region(fig.6). An increase in the Hall 

parameter m leads to a depreciation u (fig.6). From fig.7 we find that |u| enhances with 

increase in  and . Thus higher the dilation of the channel walls larger |u| in the flow region. 

The effect of radiative heat flux on u is shown in fig.8. We find that higher the radiative heat 

flux larger u in the flow region (fig.8). From fig.9 we find that |u| depreciates with increase in 

 and enhances marginally with higher =2. The variation f u with chemical reaction 

parameter k shows that u is towards the boundary force k2.5 and for higher k3.0, u is 

towards the midregion in the left half and is towards the buoynacy in the right half of the 

channel (fig.10)  
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 Fig. Variation of axial velocity(W) with G      Fig.1   W with M&m 
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The non-dimensional temperature()is shown in figs.11-14 for different variations. 

An increase in the Hall parameter m1.5 leads to an enhancement in the actual temperature in 

the left half and reduces in the right half while for higher m2.5 it depreciates in the entire 

flow region(fig.11). With respect to the chemical reaction parameter k1.5 we find that the 

actual temperature reduces in the left half and enhances in the right half and for higher k2.5 

we find a depreciation in the entire flow region(fig.12). The influence of surface geometry on 

 is shown in fig.13. It is observed that higher the dilation of the channel walls larger the 

actual temperature and for higher dilation we notice a depreciation in the left half and an 

enhancement in the right half of the channel. An increase in the inclination  of the magnetic 

field results in an enhancement in the actual temperature in the left half and depreciates in the 

right half (fig.14).  

 
 

The concentration distribution(C) is shown in figs.15-18 for different variations of the 

parameters. An increase in R70 depreciates C in the left half and enhances in the right half 

while for R140 we notice a reversed effect in C. An increase in the Hall parameter m 

reduces the concentration in the left half and enhances in the right half(fig.15). An increase in 

the chemical reaction parameter k results in a depreciation in the actual concentration in the 
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 Fig.12 Variation of axial velocity(u) with G        Fig.6   u with M&m 
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entire flow region(fig.16). The variation of C with  shows that higher the dilation of the 

channel walls  smaller the actual concentration in the left half and larger in the right half 

(fig.17).With increase in /2 the actual concentration reduces in the lefct half and enhances 

in the right half while for higher ,the actual concentration enhances in the left half and 

reduces in the right half of the channel(fig.18). 

 
The rate of heat transfer(Nusselt Number) at =1 is shown in tables.1 & 2 for different 

variations of m, , , k. At =+1, Nu reduces with m1.5 for G>0 and enhances for G<0 and 

for higher m2.5,we notice a depreciation in ,Nu for all G.At =-1, ,Nureduces with 

increase in the Hall parameter m for all G. With reference to the chemical reaction parameter 

k  we find an enhancement in ,Nu with increase in k1.5 and depreciates with higher k2.5 

at both the walls. Higher the dilation of the channel walls larger ,Nu at =1. The variation 

of Nu with  shows that an increase in  through smaller and higher values of (=/2 &2) 

we notice an enhancement for G>0 and depreciation for G<0 and for moderate values of =, 

Nudepreciates for G>0 and enhances for G<0 at =+1 and at = -1,it enhances for G>0 and 

reduces for G<0 for =/2 and for higher =,it depreciates for G>0 and enhances for G<0 

and for still higher =2, Nu reduces for all G 
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Fig.34 Variation of axial concentration (C) with G    Fig.15 C with R & m  
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The rate of mass transfer (Sherwood Number) at the boundaries =1 is shown in tables.3 & 

4 for different variations of the governing parameters. It is found that the rate of mass transfer 

at =+1 reduces with G>0 and enhances with G<0.At =-1, ,Sh reduces with ,G. The rate 

of mass transfer with Hall parameter m shows that Sh at =1 enhances with m for G>0 and 

reduces for G<0. At =-1, Higher the dilation of the channel walls larger ,Sh at both the 

walls. With respect t to chemical reaction parameter k we find that ,Sh reduces at both the 

walls with increase in k1.5 and for higher k2.5,we find an enhancement at =1 for all G. 

An increase in  the inclination /2 depreciates at =1,enhances with higher  and again 

depreciates with =2.At =-1, ,Sh   depreciates with /2 and enhances with higher . 
Table.1 

                                                           Average Nusselt Number(Nu) at =+1 

G/Nu I II III IV V VI VII VIII IX X 

103 0.2192 0.1785 0.1418 0.5058 0.2123 0.6902 0.6613 0.5663 0.2303 0.1972 

3x103 1.0275 0.9952 0.9751 1.1842 0.9057 1.4652 1.3799 1.0933 0.7421 0.6406 

-103 2.4351 2.4412 2.4419 2.5129 2.2647 2.7707 2.8066 2.1222 2.4137 2.8836 

-3x103 1.7416 1.7353 1.7489 1.8869 1.6274 2.1518 2.1864 2.4383 2.7738 2.9812 

m 0.5 1.5 2.5 3.5 0.5 0.5 0.5 0.5 0.5 0.5 

K 0.5 0.5 0.5 0.5 1.5 2.5 0.5 0.5 0.5 0.5 

 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.5 0.5 

 /4 /4 /4 /4 /4 /4 /4 /4 /2  

 

                                                                                       Table.2 

                                                                 Average Nusselt Number(Nu) at =-1 

G/Nu I II III IV V VI VII VIII IX X XI 

103 2.4666 2.4751 2.4714 2.4711 2.5323 2.2616 2.6909 2.9577 2.5149 2.2520 2,3265 

3x103 2.2825 2.3008 2.3015 2.3009 2.2923 1.9722 2.4517 2.7757 2.2801 2.2082 2.2354 

-103 1.8793 1.8733 1.8669 1.8635 2.0674 1.7203 1.9519 2.5463 1.8017 2.0727 1.9903 

-3x103 2.0845 2.0832 2.0827 2.0809 2.1945 1.9155 2.2076 2.6926 2.0442 2.1511 2.1248 

m 0.5 1.5 2.5 3.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

K 0.5 0.5 0.5 0.5 1.5 2.5 0.5 0.5 0.5 0.5 0.5 

 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.5 0.5 0.5 

 /4 /4 /4 /4 /4 /4 /4 /4 /2  2 

 

                                                                           Table.3 

                                                           Sherwood Number(Sh) at =+1 
G/Nu I II III IV V VI VII VIII IX X XI 

10
3
 -47.060 -48.435 -47.750 -47.875 -2.9588 -52.9188 5.6377 -6.2429 -8.8005 -11.7197 -6.4492 

3x10
3
 -2.6361 -2.6387 -2.6411 -2.6424 -1.1695 -2.8695 -1.8714 -3.0899 -2.6297 -2.6442 -2.6433 

-10
3
 -0.3688 -0.3643 -0.3619 -0.3609 -.2951 -2.4151 -0.2592 -0.5181 -0.3674 -0.3797 -0.3602 

-3x10
3
 -0.8191 -0.8191 -0.8167 -0.8198 0.7123 -2.7168 -0.5326 -1.2958 -0.8183 -0.8199 -0.8168 

m 0.5 1.5 2.5 3.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

K 0.5 0.5 0.5 0.5 1.5 2.5 0.5 0.5 0.5 0.5 0.5 

 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.5 0.5 0.5 

 /4 /4 /4 /4 /4 /4 /4 /4 /2  2 

 

                                                                                      Table.4 

                                                                     Sherwood Number(Sh) at =-1 
G/Nu I II III IV V VI VII VIII IX X XI 

10
3
 16.5867 16.5017 43.4746 54.465 1.1007 2.9988 10.0625 -1.9378 35.2031 45.6689 76.5602 

3x10
3
 -2.0187 -2.0264 -2.0314 -2.0338 -0.5031 2.1831 -1.1058 -2.7752 -2.0092 -2.0371 -2.0455 

-10
3
 3.7976 3.9187 3.9871 4.0190 -1.3504 5.0405 1.9355 8.3006 3.7774 4.0562 4.0389 

-3x10
3
 2.5767 2.5773 2.5678 2.5682 -1.1795 3.4624 1.4888 4.5067 2.5638 2.5649 2.5651 

m 0.5 1.5 2.5 3.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

K 0.5 0.5 0.5 0.5 1.5 2.5 0.5 0.5 0.5 0.5 0.5 

 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.5 0.5 0.5 

 /4 /4 /4 /4 /4 /4 /4 /4 /2  2 
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7.CONCLUSIONS: 

   1. An increase in the Hall parameter m leads to an enhancement in w. 

   2. It is found that higher the dilation of the channel walls larger w in the flow region  

   3. It is found that |w| enhances with increase in the radiation  parameter N1 . 

   4.An increase in the inclination of the magnetic field (/2) leads to an enhancement in |w|     

      and for further higher inclination (=), it depreciates and for still higher  , we notice an  

      enhancement in |w| in the entire flow region 

   5.W exhibits a reversal flow for k=3.5 and |w| enhances with increase in k.  

   6.An increase in the Hall parameter m leads to a depreciation u  

   7.|u| enhances with increase in  and . Thus higher the dilation of the channel walls larger  

      |u| in the flow region.  

   8.Higher the radiative heat flux larger u in the flow region  

9. An increase in the Hall parameter m1.5 leads to an enhancement in the actual temperature  

    in the left half and reduces in the right half while for higher m2.5 it depreciates in the   

    entire flow region.  

10. the actual temperature reduces in the left half and enhances in the right half for k<1.5 and  

    for higher k2.5 we find a depreciation in the entire flow region. 

11. Higher the dilation of the channel walls larger the actual temperature and for higher  

     dilation we notice a depreciation in the left half and an enhancement in the right half of the  

    channel. 

12. An increase in the Hall parameter m reduces the concentration in the left half and  

      enhances in the right half. 

13.An increase in the chemical reaction parameter k results in a depreciation in the actual  

     concentration in the entire flow region. 

14. Nu reduces with m1.5 for G>0 and enhances for G<0 and for higher m2.5,we notice a  

      depreciation in ,Nu for all G.At =-1, ,Nureduces with increase in the Hall parameter m  

       for all G.  

15.Nu enhances with increase in k1.5 and depreciates with higher k2.5 at both the walls. 

16.Higher the dilation of the channel walls larger ,Nu at =1.  

17. The rate of mass transfer with Hall parameter m shows that Sh at =1 enhances with m  

    for G>0 and reduces for G<0.  

18.Higher the dilation of the channel walls larger ,Sh at both the walls.  

19.Sh reduces at both the walls with increase in k1.5 and for higher k2.5,we find an  

    enhancement at =1 for all G. 
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