
International Journal of Emerging Trends in Engineering and Development Issue 3, Vol.4 (June-July 2013)

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm ISSN 2249-6149

R S. Publication, rspublicationhouse@gmail.com Page 477

Critical Evaluation of GUI Software Exception Testing

M.Rajalakshmi

#1
, Dr. Viji Vinod

#2

#1 Research Scholar

Department of Computer Science & Engineering

Dr.MGR Educational and Research Institute University

Chennai – 95, Tamil Nadu, India

#2 Professor & Head of the Department,

Department of Computer Applications,

Dr.MGR Educational and Research Institute University

Chennai – 95, Tamil Nadu, India

ABSTRACT

 Demand on complex systems increased more rapidly. The size of complexity of computer

systems has grown during the past decades in a very inspiring manner. Lots of work has been

done on software exception testing and some of major critical evaluation have appeared in the

literature are discussed in this paper. This paper also summaries the related developments of the

same work. The main objective of this paper is to find the critical sections of software exception

and evaluate those failure modes with effective analysis and level of evaluation. However, there

is no single method that is handling to all the situations. So this paper also provides various ways

to improve the evaluation to handle the critical sections with comparative study.

Key words: GUI software; exception testing; SFMEA; Evaluation Methods; Object- FMA

Corresponding Author: M.Rajalakshmi

INTRODUCTION

 Graphical User Interface (GUI) is a program interface that takes advantage of the

Computer’s graphics capabilities to make the program easier to use. Graphical User Interface

(GUI) provides user an immense way to interact with the software [13]. GUI testing is a process

to test application's user interface and to detect if application is functionally correct. GUI testing

involves carrying set of tasks and comparing the result of same with the expected output and

ability to repeat same set of tasks multiple times with different data input and same level of

accuracy. GUI Testing includes how the application handles keyboard and mouse events, how

different GUI components and functions reacts to user input and whether or not it performs in

the desired manner. In a GUI test suite, the combination of many test cases for the GUI

application, it is often the case that certain actions will be repeated in succession in order to

properly test the GUI. Implementing GUI software testing for your application early in the

software development cycle speeds up development improves quality and reduces risks towards

International Journal of Emerging Trends in Engineering and Development Issue 3, Vol.4 (June-July 2013)

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm ISSN 2249-6149

R S. Publication, rspublicationhouse@gmail.com Page 478

the end of the cycle.

 GUI Testing can be performed both manually with a human tester or could be performed

automatically with use of a software program. Software testing is not only a common way to

ensure the software quality [2], but also is a significant approach to control the software quality

during the software development life cycle. In general sense, software testing contains the

following two main tasks, one is to ensure that the software does the required work, another one

is to ensure that software does not do the unexpected work that is usually validated by the

exception testing. The validation results of the exception testing largely determine the software

quality. The more sufficient exception testing is, the residual defects will be less and the software

quality will be better. However, currently, the exception testing lacks of a mature approach for

generating the testing cases and commonly utilizes the error-guessing approach. Although the

error-guessing approach might be useful, it is rather arbitrary, time consuming, expensive and

does not cover the frequent accidents sufficiently [3]. An object-based approach for the failure

mode analysis (Object-FMA) also using in this paper.

 The Object-FMA approach provides a systematic method for the failure mode analysis,

and makes the failure mode analysis more comprehensive. This paper utilizes this Object-FMA

approach to analyze the failure modes of the common functions in Windows, and generate the

database of the failure modes of the functions for guiding to design test cases. The exception test

cases generated by the Object-FMA approach not only are more sufficient than the ones

generated by the error-guessing approach, but also detect more exceptions. This proposed

approach can avoid to overreliance on the experience of testers during designing the exception

testing cases. Moreover, this approach can ensure the quality of the exception testing cases from

the methodological viewpoint. Thus, the feasibility and validity of this proposed Object-FMA

approach are validated. Exception testing is defined as a complete and honest effort to BREAK

the system. With exception testing, the team tries to dream up every possible way that users will

run the system and make sure that: 1: The system does NOT crash.2: The system is able to stop

bad data. 3: The system reports the root cause of the problem in an understandable way and

suggests possible ways of fixing it.

 Rest of the paper is organized as follows: section 2 of the paper describes related

developments. Section 3 describes implementation of critical evaluation of GUI software

exception testing. Finally, the paper concludes with future work direction in section 4.

 RELATED DEVELOPMENTS

 Isabella and Emi Retna proposes a technique that can be used for GUI Testing has

become very important as it provides more sophisticated way to interact with the software. The

complexity of testing GUI increased over time. The testing needs to be performed in a way that it

provides effectiveness, efficiency, increased fault detection rate and good path coverage. To

cover all use cases and to provide testing for all possible (success/failure) scenarios the length of

the test [1].Penelope A. Brooks and Atif M Memon proposes a technique that can be used for

regression testing of GUI applications, i.e., information gathered from usage of the current

version of a GUI application is used to determine whether the new application perform well.

International Journal of Emerging Trends in Engineering and Development Issue 3, Vol.4 (June-July 2013)

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm ISSN 2249-6149

R S. Publication, rspublicationhouse@gmail.com Page 479

 Alexander K. Ames and Haward Jie Thus these critical paths become important to

choosing which unit tests to implement. Performing unit testing based on our data reduces the

time to implement these tests. This is an improvement over to implementing the tests alone,

which takes longer and does not always test the critical paths [8].

 Xun Yuan, Member, IEEE, Myra B. Cohen proposes new criteria range in both efficiency

(measured by the size of the test suite) and effectiveness (the ability of the test suites to detect

faults). Our study shows that by increasing the event combinations tested and by controlling the

relative positions of events defined by the new criteria, we can detect a large number of faults

that were undetectable by earlier techniques [13]. Jing Lai, Hong Zhang, Baiqiao Huang were

introduces the SFMEA (Software Failure Mode Effect Analysis) to generate the exception testing

cases for the GUI software by analyzing the failure modes of the controls and the control sets of

the GUI software and then translating those failure modes directly into the exception test cases.

In order to make the failure mode analysis sufficient, they first proposed an object-based

approach for the failure mode analysis (i.e. Object-FMA) [14].

 Gurram.Saritha dharma. Lakshmi Padmaja presents the implementation of graphical user

interface and comparative study is more efficient to existing work, systems explore the impact of

test criteria proposed analysis can detect a large number of faults that were undetectable [7].

Abdul Rauf, Arfan Jaffar and Arshad Ali Shahid attempted to exploit the event driven nature of

GUI. Based on this nature, presented a GUI testing and coverage analysis technique centered on

genetic algorithms [9]. Basili,V.R. Selby,R.W proposed an experimentation methodology to

compare three state-of-the-practice software testing techniques: a) code reading by stepwise

abstraction, b) functional testing using equivalence partitioning and boundary value analysis, and

c) structural testing using 100 percent statement coverage criteria [17].

 Andrea Adamoli, Dmitrijs Zaparanuks, Milan Jovic, Matthias Hauswirth were

proposed a Performance testing imposes additional requirements upon GUI test automation tools

set of case studies that the concluded about perceptible performance drawn from manual tests

still hold when using automated tests driven by Pounder. Besides the significance of our findings

to GUI performance testing, the results are also relevant to capture and replay-based functional

GUI test automation approaches [18].

CRITICAL EVALUATION OF GUI SOFTWARE EXCEPTION TESTING

Features of GUI Software Testing

 Graphical user interface (GUI) testing is the process of testing software's graphical user

interface to safeguard it meets its written specifications and to detect if application is working

functionally correct. GUI testing involves performing some tasks and comparing the result with

the expected output. This is performed using test cases. GUI Testing can be performed either

manually by humans or automatically by automated methods.

 The GUI software technology provides the intuitive interfaces between the users and the

software. Therefore, it is widely used in commonly used software [4]. It even occupies a large

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Basili,%20V.R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Selby,%20R.W..QT.&newsearch=partialPref
http://link.springer.com/search?facet-author=%22Andrea+Adamoli%22
http://link.springer.com/search?facet-author=%22Dmitrijs+Zaparanuks%22
http://link.springer.com/search?facet-author=%22Milan+Jovic%22
http://link.springer.com/search?facet-author=%22Matthias+Hauswirth%22

International Journal of Emerging Trends in Engineering and Development Issue 3, Vol.4 (June-July 2013)

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm ISSN 2249-6149

R S. Publication, rspublicationhouse@gmail.com Page 480

part of the codes in the software, and is very significant to the software engineering. As a result,

this paper selects the approach for generating the GUI exception test cases as the research

object. In order to solve this problem, the SFMEA[5][6] (i.e. Software Failure Mode Effect

Analysis’s introduced to analyze the failure modes of the functions and interactions between the

functions satisfying the special constraint relationships in the GUI software, and translate these

failure modes directly into the exception test cases.

 The process of testing a GUI application calls for a colossal effort, owing on account of

the complexity entailed in such applications. Subsequently, organizations were spurred to initiate

the automation of GUI testing, thereby proposing various techniques to achieve this end. A GUI

model event-flow graph, an innovative technique being utilized in the field of automated GUI

testing, represents, likewise control flow graph, all promising progressions of events that can be

executed on GUI. Graphical user interface ripping and the construction of process flow graph

and event interaction graphs include all the elements and events that can be found in a graphical

user interface once the module is built the process generates automatically all the possible

functional test cases.

Proposed Approach

 This paper proposed a critical evaluation of GUI software exception testing that is to find

out the Goal of testing and critical sections in all software exception situations and evaluate

depends upon the test results and expected results using various methods. First it takes place

rules and assumptions of failure mode, identification of failure mode, and then failure effects to

be analyzed after describe different methods for failure detection and track and rank the failure

modes finally, evaluate the critical sections

System Implementation

Goal of Testing

 Process of creating a program consists of the following phases 1. defining a problem; 2.

designing a program; 3. building a program; 4. analyzing performances of a program, and 5. final

arranging of a product. According to this classification, software testing is a component of the

third phase, and means checking if a program for specified inputs gives correctly and expected

results. Software testing (Figure 1) is an important component of software quality assurance, and

many software organizations are spending up to 40% of their resources on testing. For life-

critical software (e.g., flight control) testing can be highly expensive.

 Testing is an activity performed for evaluating software quality and for improving it.

Hence, the goal of testing is systematical detection of different classes of errors (error can be

defined as a human action that produces an incorrect result [15]. in a minimum amount of time

and with a minimum amount of effort. We distinguish

 Good test cases - have a good chance of finding an yet undiscovered error; and

 Successful test cases - uncovers a new error.

International Journal of Emerging Trends in Engineering and Development Issue 3, Vol.4 (June-July 2013)

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm ISSN 2249-6149

R S. Publication, rspublicationhouse@gmail.com Page 481

Fig1: Test Information flow

Anyway, a good test case is one which:

 Has a high probability of finding an

Error; Is not redundant;

 Should be “best of breed”;

 Should not be too simple or too Complex [16].

Testing is which finds the defects/ bugs and produces the quality assurance product. For each

product in the role of testing it finds functionality to meets the user requirements before it goes to

live. Graphical user interface is frontend tool which raises the so many defects in any domain to

avoid such bugs.

Rules and Assumptions

 Before detailed analysis, ground rules and assumptions are usually defined and

established to, for example:

 Standardized mission profile with specific fixed duration mission phases

 Sources for failure rate and failure mode data

 Fault detection coverage that system built-in test will realize

 Whether the analysis will be functional or piece part

 Criteria to be considered (mission abort, safety, maintenance, etc.)

 System for uniquely identifying parts or functions

 Severity category definitions.

International Journal of Emerging Trends in Engineering and Development Issue 3, Vol.4 (June-July 2013)

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm ISSN 2249-6149

R S. Publication, rspublicationhouse@gmail.com Page 482

3 Identification of Failure mode
 For each function covered by the analysis, a complete list of failure modes is developed.

Thus failure modes include:

 Untimely operation

 Failure to operate when required

 Loss of output

 Intermittent output

 Erroneous output (given the current condition)

 Invalid output (for any condition)

 For piece part FMECA, failure mode data may be obtained from databases. These

databases provide not only the failure modes, but also the failure mode ratios (table 1). For

example: Each function or piece part is then listed in matrix form with one row for each failure

mode. Because Failure mode analysis usually involves very large data sets, a unique identifier

must be assigned to each item (function or piece part), and to each failure mode of each item.

Table 1

Device Failure Modes and Failure Mode Ratios (FMD–91)

Device Type Failure Mode

Relay Fails to trip

 Spurious trip

 Short

Resistor, Composition Parameter change

 Open

 Short

4 Analysis of Failure Effects

 Failure effects are determined and entered for each row. And considering the criteria

identified in the ground rules. Effects are separately described for the local, next higher, and end

(system) levels. System level effects may include:

 System failure

 Degraded operation

International Journal of Emerging Trends in Engineering and Development Issue 3, Vol.4 (June-July 2013)

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm ISSN 2249-6149

R S. Publication, rspublicationhouse@gmail.com Page 483

 System status failure

 No immediate effect

 The failure effect categories used at various hierarchical levels are tailored by the annalist

using engineering judgment.

5 Software Evaluation Criteria

 The Software Sustainability Institute provides a software

evaluation service based on two complementary approaches developed over many years in the

research software arena. The service can help you to improve your software. It can assess the

general usability, and can identify technical or development issues, as well as any barriers to

sustainability. The two approaches makes more sense than the other. One is criteria-based

approach is a quantitative assessment of the software in terms of sustainability, maintainability,

and usability. This can inform high-level decisions on specific areas for software improvement.

 This approach forms the basis of our online sustainability

online sustainability evaluation, a web-based assessment you can use straight out of the box.

Second tutorial-based approach provides a pragmatic evaluation of usability of the software in

the form of a reproducible record of experiences. This gives a developer a practical insight into

how the software is approached and any potential technical barriers that prevent adoption.

Evaluations of software products must be objective - based upon observation, not opinion.

Table 2: Defines the definition of evaluation process.

Process for

developers

Process for

Acquirers

Process for

Evaluators

Analysis

definition of quality

requirements and

analysis of their

feasibility

establishing purpose and

scope of evaluation

describing the objectives

of

the evaluation

Specification
quantification of quality

requirements

defining the external

metrics and

corresponding

measurements to be

performed

defining the scope of the

evaluation and the

measurements

Design

planning of evaluation

during

development

planning, scheduling and

documentation of

evaluation

documenting the

procedures

to be used by the

evaluator

Execution

monitoring of quality

and

control during

development

evaluation shall be

performed,

documented and

analyzed

obtaining results from

performing actions to

measure and verify the

software product

 Some criteria’s, presented shortly as Scope: What items are included in the software?

International Journal of Emerging Trends in Engineering and Development Issue 3, Vol.4 (June-July 2013)

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm ISSN 2249-6149

R S. Publication, rspublicationhouse@gmail.com Page 484

Breadth: Are all aspects of the software documentation covered? Depth: To what level of detail

of information provided does the software go? Time: Is the information in the resource limited to

certain time periods? Format: Are certain kinds of Internet resources (for example FTP)

excluded? Content: Is the resource an integral resource updated by the information original

source? Some Specific aspects related to the content include the accuracy, authority, currency

and uniqueness of a resource. Accuracy: Is the information in the resource accurate? The

information is placed to advertise, or support a particular point of view. Authority: Does the

resource have some reputable organization or expert behind it? Are sources of information

stated? Uniqueness: Is the information in this resource available in other forms (for example

other sites, print, CD-ROM)? Does it complement another resource, for instance by providing

updates to a print source? Links made to other resources: Are the links made in such a way that it

is clear that an external site is being referred to. Quality of writing: Is the text well written? The

quality of writing is important for the content to be communicated clearly. Graphic and

multimedia design: Is the resource interesting to look at? If audio, video, virtual reality

modeling, etc. are used, are they appropriate to the purpose of the source? Purpose: What is the

purpose of the resource? Is this clearly stated? Does the resource fulfill the stated purpose?

Audience: Who are the intended users of this resource? Workability: Is the resource convenient

and effective to use? This is the area where criteria for Workflow software resources differ most

from print sources. Some Aspects of workability include: User friendliness: Is help information

available? Have user interface issues been addressed, such as menu design, readability of

screens, etc. Required computing environment: Can the resource be accessed with standard

equipment and software? Searching: How effectively can information be retrieved from the

resource? Browsability and organization: Is the resource organized in a logical manner to

facilitate the location of resources? Is the organizational scheme appropriate, for example

chronological for historical source, or geographical for a regional resource? Interactivity: Where

interactive features (forms, cgi scripts) are provided, do these work? Connectivity: Can the

resource be accessed with standard equipment and software, or are there special software,

password, or network requirements? Can the resource be accessed reliably? Cost: Currently the

costs of Internet information resources become important. Costs can be divided into: costs

of connecting to the resource and (b) costs associated with the use of the intellectual property

contained in the resource. In terms of (a), users paying traffic charges are already having to

consider the costs of connection, and may want to include this in criteria for selection. Software

evaluation is multi-criteria decision making problem that refers to making preference decisions

over the available alternatives. We found that AHP (Analytical Hierarchical Process) has been

widely used for evaluation of the software packages. AHP was developed by Saaty [19] and has

been identified as an important approach to multi-criteria decision making problems of choice

and prioritization. Another technique used for evaluation of software package is the weighted

scoring method. In this method weights and rating scales are assigned to each criterion. The

weight reflects the relative importance of each of the criteria while the rating scale indicates how

easily each package is able to meet the specific criterion. The rating scales are then multiplied by

weight factor of each criterion. Using this scheme a score is calculated for every criterion for

each tool. These scores are then totaled to produce a score for each criteria category. Finally, the

categorical scores are combined to calculate an overall tool score. A fuzzy based approach for

software evaluation has been used as performance rating and weights cannot be given precisely.

 In such cases the fuzzy set theory is used to model the uncertainty of human judgments

and such problem is known as fuzzy multiple criteria decision making (FMCDM).software

International Journal of Emerging Trends in Engineering and Development Issue 3, Vol.4 (June-July 2013)

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm ISSN 2249-6149

R S. Publication, rspublicationhouse@gmail.com Page 485

critical revolve around two important concepts.

1. Critical software must be developed and tested with constant consideration of the “system”. 2.

A standard, planned, and documented process carried out by responsible and knowledgeable

humans is a requirement for success.

6 Concepts of Evaluation Assurance Level

 The intent of the higher levels is to provide higher confidence that the system's principal

security features are reliably implemented. The EAL level does not measure the security of the

system itself, it simply states at what level the system was tested. Although every product and

system must fulfill the same assurance requirements to achieve a particular level, they do not

have to fulfill the same functional requirements. The functional features for each certified

product are established in the Security Target document tailored for that product's evaluation. An

evaluation level defines the depth or thoroughness of the evaluation in terms of evaluation

techniques to be applied and evaluation results to be achieved, both with reference to evaluation

objectives. Example of evaluation objectives is safety conditions, security constraints, economic

risk, availability conditions, and application constraints. As a consequence evaluation at different

levels gives different confidence in the quality of the software product and independent level of

software critical. The evaluation may be augmented to include assurance requirements beyond

the minimum required for a particular EAL. Officially this is indicated by following the EAL

number with the word augmented and usually with a list of codes to indicate the additional

requirements.

CONCLUSION AND FUTURE WORK

 Software is an immovable mechanism that consist of computer programs, procedures,

rules, data related documentation. The increase in the number of software failures badly affected

the performance of transposition, telecommunication, and military, industrial process etc. which

made software critical evaluation more & more important. This study provides testing goals,

identification and analyzes of the modes of failure .Further, it provides the criteria for the

software evaluation and evaluation level. Overall, we conclude that software exception testing

using analytical effects is critical and it improves the GUI software testing. Our future goals are

for functions and interactions between the functions to be evaluated using various evaluation

methods for GUI software exception testing.

 REFERENCES

[1] Isabella and Emi Retna Study Paper on Test Case Generation for GUI Based Testing

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January

2012

[2] GJB-Z 141-2004[M].

[3] Daboczi T, Kollar I., Simon G, Megyeri T. How to Test Graphical User Interfaces[J]. IEEE

Instrumentation and Measurement Magazine,2003, Vol(6) No.3_27-33.

[4] A.M.Memon.A Comprehensive Framework For Testing Graphical User Interfaces[D].

Department of Computer Science, University of Pittsburgh, 2001.

http://en.wikipedia.org/wiki/Security_Target

International Journal of Emerging Trends in Engineering and Development Issue 3, Vol.4 (June-July 2013)

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm ISSN 2249-6149

R S. Publication, rspublicationhouse@gmail.com Page 486

[5] Peter L. Goddard. Raytheon. Troy. Software FMEA

Techniques[C].Proceedings Annual Reliability and Maintainability Symposium 2000:118-123.

[6] Nathaniel Ozarin,Michael Siracusa.A Process for Failure Modes and Effects Analysis of

Computer Software[C].Annual Reliability and Maintainability Symposium,2003:365-370.

[7] Gurram.Saritha
1
dhyaram. Lakshmi Padmaja

Software Testing Approach – Survey on

GraphicalUser Interface International Journal Of Engineering And Computer Science

ISSN:2319-7242 Volume1 Issue 2 Nov 2012 Page No. 85-93.

 [8] Alexander K. Ames and Haward Jie Critical Paths for GUI Regression Testing Univ. of

California, Santa Cruz.

[9] Abdul Rauf, Arfan Jaffar and Arshad Ali Shahid Fully Automated GUI Testing and Coverage

Analysis using genetic algorithms International Journal of Innovative Computing, Information

and Control Volume 7, Number 6, June 2011.

[10] Huang Baiqiao, Zhang Hong, Lu Minyan,etc. Test Data Selecting Strategy for GUI

Software Test[J]. Journal of Computer Research and Development, 010_47(Suppl.),101-107.

[11] Wei Dong-mei,Hong Mei,Li Bo. A Regression Test Optimization Based on “Good” GUI

Test uite[J],Computer Technology and Development.2008,Vol(18),No.7:1-4.

[12] Zhang Bo-feng,Zou Chang-qing _ Generation of interaction diagram for GUI software

testing and its implementation _ Application Research of Computers, 2007,Vol(24),No.11:222-

235.

[13] Xun Yuan, Myra B. Cohen, Atif M. Memon, (2010) “GUI Interaction Testing: Incorporating

Event Context”, IEEE Transactions on Software Engineering, vol. 99.

[14] Jing Lai, Hong Zhang, Baiqiao Huang The Object-FMA Based Test Case

generationApproach for GUI Software Exception Testing 2011 IEEE.

[15]http://www.testingstandards.co.uk/living_glossary.htm# Testing, February 08, 2009.

[16] Stacey, D. A., “Software Testing Techniques”.

[17] Basili,V.R. Selby,R.W. Comparing the Effectiveness of Software Testing Strategies 2006

IEEE.

[18] Andrea Adamoli, Dmitrijs Zaparanuks, Milan Jovic, Matthias Hauswirth Automated GUI

erformance testing Software Quality Journal December 2011, Volume 19, Issue 4, pp 801-839.

[19] T.L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.

[20] http://www.software.ac.uk/software-evaluation-guide.

http://www.testingstandards.co.uk/living_glossary.htm
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Basili,%20V.R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Selby,%20R.W..QT.&newsearch=partialPref
http://link.springer.com/search?facet-author=%22Andrea+Adamoli%22
http://link.springer.com/search?facet-author=%22Dmitrijs+Zaparanuks%22
http://link.springer.com/search?facet-author=%22Milan+Jovic%22
http://link.springer.com/search?facet-author=%22Matthias+Hauswirth%22
http://link.springer.com/journal/11219
http://link.springer.com/journal/11219/19/4/page/1

