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ABSTRACT 

        In general an adaptive filter performs more efficient than normal filters, but suffers with 

ill-posed problem. This problem is due to noise in the observation data or solving linear 

system of equations. By using regularization concept we optimize this problem. In this paper 

we proposed a regularization parameter for four important adaptive algorithms: the 

normalized least-mean-square (NLMS), the signed-regressor NLMS (SR-NLMS), the 

improved proportionate NLMS (IPNLMS), and the SR-IPNLMS. Simulations performed on 

an AEC application, which is basically a system identification problem, with different ENRs. 

Index Terms: Echo to Noise Ratio (ENR), improved proportionate NLMS (IPNLMS), 

normalized least-mean square (NLMS), regularization, signed-regressor NLMS (SR-NLMS), 

SR-IPNLMS. 

___________________________________________________________________________

 

I. INTRODUCTION   

       An adaptive filter is a dynamic filter, which self-adjusts its transfer function according to 

an optimization algorithm driven by an error signal. In adaptive filtering, we always have a 

linear system of equations, which are over determined or underdetermined. We face an ill-

posed problem to solve these equations and also when the observation data is noisy, which is 

common in all applications. By using regularization concept we optimize this problem and 

this is done by adding additional information to the existing system. As a result, 

regularization is an important design part in any adaptive filter to behave properly.  

      The regularization parameter (δ) is taken as 

                        δ = β σx
2
                                          (1) 

Where σx
2
 =E[x

2
(n)] is the variance of the zero-mean input x(n),where E[.] denoting 

mathematical expectation, and β is a positive constant. In practice β is more a variable that 

depends on the level of the additive noise. The more the noise, the larger is the value of β. we 

will also refer β as the normalized regularization parameter.  

        The basic block diagram of adaptive filter is shown in figure (1), which contains 3 basic 

sections. 

http://en.wikipedia.org/wiki/Transfer_function
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1. Filtering Section 

2. Adaptive Section 

3. Error Section 

      Here the input signal x(n) is given as input to filtering section, which changes its filter 

coefficients according to the feed back from adaptive section. In adaptive section we use an 

adaptive algorithm (LMS, NLMS, RLS…etc) to update the filter coefficients. The error section 

is used to calculate the error between estimated filter output y(n) and desired output d(n). 

 

Fig 1: Basic block diagram of an adaptive filter 

The following equations (2 to 4) are basic equations of an adaptive filter,i.e. 

Filter output                                          





1M

0k

*

k nwknxny                     (2) 

Error signal                                       y(n)d(n)e(n)                                (3) 

Updated tap weight vector        μe(n)x(n)w(n)1)w(n                      (4)            

          The importance regularization is measured with parameter misalignment, which is a 

distance measure between the true impulse response and the estimated one with an adaptive 

algorithm. The misalignment decreases smoothly with time and converges to a stable and 

small value by using regularization. Without this regularization parameter δ, the misalignment 

of the adaptive filter may fluctuate and may never converge. 
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II. REGULARIZATION OF THE NLMS ALGORITHM 

The NLMS algorithm is summarized by the following two expressions: 

      (n)ŵ (n)Txd(n)e(n)   

              y(n)d(n)                                          (5) 

                                                                            (6)         

where α (0< α<2) is the normalized step-size parameter and δ is the regularization parameter of 

the NLMS. 

       To find the value of regularization parameter δ the following assumptions are made. 

   Since (n)ŵ(n)Txd(n)e(n)  is the error signal between the desired signal and the 

estimated signal. We should find δ in such a way that the expected value of e
2
(n) is equal to the 

variance of the noise, i.e., 

             E[e
2
(n)]=σ

2
w.                                          (7) 

This is reasonable if we want to attenuate the effects of the noise in the estimator w (n). 

 To derive the optimal   according to (4), we assume in the rest that L>>1 and x (n) is stationary, 

As a result, 

            x
T
(n)x(n)≈Lσ

2
X                                        (8)      

Developing (7) and using (8), we easily derive the quadratic equation 

           0

2
)

2
(

2

2
2


ENR

xL

ENR

xL 
                           (9)                    

from which we deduce the obvious solution  

                 2
xσ

ENR

)ENR1L(1
δ


  

                     2
xσNLMSβ                                       (10) 

where 

                
ENR

)ENR1L(1

NLMS
β


                       (11)  

is the normalized regularization parameter of the NLMS.    

(n)x(n)Txδ

e(n)x(n)
α(n)ŵ1)(nŵ



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       From the above equation we observed that δ depends on three elements: the length of the 

adaptive filter (L), the variance of the input signal (σ
2
x) and the ENR.  In an acoustic echo 

cancellation, the first two elements (L and σ
2
x) are known, while the ENR is often roughly 

known or can be estimated.  

 

Fig.2.Normalized regularization parameter
NLMS  as a function of the ENR with L=512.The 

ENR varies from 0 to 50 dB. 

III. REGULARIZATION OF THE SR-NLMS ALGORITHM   

The equations of the SR-NLMS algorithm are  

     y(n)d(n)e(n)                                                    (12) 

                                                                                    (13)  

        Where sgn [x (n)] is the sign of each component of x(n) and δ is the regularization parameter 

of the SR-NLMS. This algorithm is very interesting from a practical point of view because its 

performance is equivalent to the NLMS but requires less multiplication at each iteration time 

as noticed in (13).           

For L>>1and a stationary signal x(n), we have 

2
xσ

ENR

)ENR1(1xLβ
δ


                                                                                                          

2
xσNLMSSRβ                                   (14) 

Where  

                  
ENR

)ENR1(1xLβ

NLMSSRβ



                 (15) 

is the normalized regularization parameter of the SR-NLMS. 

))(n)sgn(x(nTxδ

n))e(n)sgn(x(
α(n)ŵ1)(nŵ



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IV. REGULARIZATION OF THE IPNLMS ALGORITHM 

     When the target impulse response is sparse, it is possible to take advantage of this sparsity 

to improve the performance of the classical adaptive filters. In PNLMS algorithm each 

coefficient of the filter is independent of the others by adjusting the adaptation step size in 

proportion to the magnitude of the estimated filter coefficient. It redistributes the adaptation 

gains among all coefficients and emphasizes the large ones (in magnitude) in order to speed up 

their convergence and, consequently, achieving a fast initial convergence rate. The IPNLMS is 

an improved version of the PNLMS and works very well even if the impulse response is not 

sparse, which not the case is for the PNLMS. The IPNLMS expressions are 

y(n)d(n)e(n)                                               (16) 

                                                                          (17) 

                   Where δ is the regularization parameter of the IPNLMS, 

1)]-(n
1-L

1).....g-(n
1

g 1)-(n
0

Diag[g1)-G(n        is an L × L diagonal matrix.  

For L>>1and a stationary signal x(n), we have 

                              2)11(
x

ENR

ENR



               

                                2
xIPNLMS                      (18) 

Where  

                
ENR

ENR

IPNLMS

)11( 
                    (19) 

is the normalized regularization parameter of the IPNLMS. 

V. REGULARIZATION OF THE SR-IPNLMS ALGORITHM  

The extension of the SR principle to the IPNLMS is observed in SR-IPNLMS algorithm. 

Therefore, the SR-IPNLMS is summarized by the following two equations: 

y(n)d(n)e(n)                                                   (20) 

                                                                              (21) 

                 Where is the regularization parameter of the SRIPNLMS and G (n-1) is defined in 

the previous section. 

For L>>1and a stationary signal x(n), we have 

1)x(n)(n)G(nTxδ

1)e(n)x(n)G(n
α(n)ŵ1)(nŵ






(x(n))1)sgn (n)G(nTxδ

(x(n))1)e(n)sgn G(n
α (n)ŵ1)(n ŵ





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2)11(
x

ENR

ENRx






   

                          
2
xIPNLMSSR




                         (22) 

Where  

     
ENR

ENRx
IPNLMSSR

)11( 





                        (23) 

is the normalized regularization parameter of the SR-IPNLMS. 

VI. SIMULATIONS 

     The measured acoustic impulse response used in simulations is depicted in Fig. 3. It has 

512 coefficients and the same length is used for the adaptive filter (i.e. L=512); the sampling 

rate is 8 kHz. The input signal x(n) is either a whit Gaussian noise or a speech sequence. An 

independent white Gaussian noise is added to the echo signal with different values of the ENR. 

 

Fig.3.Acoustic impulse response used in simulations. 

The performance is evaluated in terms of the normalized misalignment (in dB), defined as 

              

2w

2w(n)ŵ

10
20log

                      (24) 

       Where (n)ŵ is estimate of tap weight vector w. 

        In the first set of experiments, the performance of the NLMS algorithm is evaluated. Fig. 4 

presents the misalignment of this algorithm using different values of the normalized 

regularization constant β [see (1)], as compared to the "optimal" normalized regularization 

given βNLMS in (11). The ENR is set to 30 dB and the input signal is white and Gaussian. 

According to this figure, it is clear that a lower misalignment level is achieved for a higher 
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normalized regularization constant, but with a slower convergence rate and tracking.  

         The same experiment is repeated in Fig. 5, but using a lower value of the ENR, i.e., 0dB. 

It is clear that the importance of the "optimal" regularization becomes more apparent. In order to 

match the performance obtained with βNLMS the normalized regularization constant needs to be 

further increased(i.e., β=1200).All these results are in consistence with Fig. 1, which provides  

the values of  βNLMS as a function of the ENR.  

 

Fig.4. Misalignment of the NLMS algorithm using different values of the normalized 

regularization parameter. The input signal is speech sequence, α=1, L=512, and ENR=30dB. 

 

Fig.5. Misalignment of the NLMS algorithm using different values of the normalized 

regularization parameter. The input signal is speech sequence, α=1, L=512, and ENR=0dB. 

   Commonly, the SR-NLMS algorithm uses a similar regularization to the NLMS algorithm 

i.e., βSR-NLMS=βx βNLMS. Fig.6 presents the misalignment of the SR-NLMS algorithm with 

different values of β from (1), as compared to the "optimal" normalized regularization βSR-

NLMS given in(12).The input signal is white   and Gaussian, and ENR=10dB. The SR-NLMS 

algorithm with (which is close to the value β=170) performs much better in terms of both fast 

convergence/tracking and misalignment. However, for lower values of the ENR, the 

normalized regularization constant needs to be further increased. The experiment reported in 
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Fig. 7 is performed with ENR=0dB. Again, the SR-NLMS algorithm with βSR-NLMS (which is 

now close to the value β=1000) gives the best performance. 

 

Fig.6. Misalignment of the SR-NLMS algorithm using different values of the normalized 

regularization parameter. The input signal is speech sequence, α=1, L=512, and ENR=10dB. 

 

Fig.7. Misalignment of the SR-NLMS algorithm using different values of the normalized 

regularization parameter. The input signal is speech sequence, α=1, L=512, and ENR=0dB. 

          The IPNLMS algorithm is very useful when we need to identify sparse impulse 

responses, which is often the case in network and acoustic echo cancellation. The 

regularization parameter of this algorithm should be taken as δIPNLMS=δNLMS(1-k)/(2L). However, 

as it was proved in Section IV, the regularization of the IPNLMS algorithm does not depend 

on the parameter k (that controls the amount of proportionality in the algorithm). 

     The "optimal" regularization of the IPNLMS algorithm is equivalent to the regularization of 

the NLMS up to the scaling factor L, i.e, βIPNLMS=βNLMS/L.  

     The next set of experiments evaluates the performance of the IPNLMS algorithm. The 

proportionality parameter is set to k=0. The misalignment of this algorithm using the "classical" 
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normalized regularization constant β=20/2L, as compared to the "optimal" normalized 

regularization βIPNLMS. The input signal is white and Gaussian, and    ENR=10dB. In this case, a 

much higher value of the normalized regularization constant is required [i.e., β=400/ (2L)], in 

order to match the performance obtained using βIPNLMS. 

 

Fig.8. Misalignment of the IPNLMS algorithm using different values of the normalized 

regularization parameter. The input signal is speech sequence, α=1, k=0, L=512, and 

ENR=10dB. 

 

Fig.9. Misalignment of the IPNLMS algorithm using different values of the normalized 

regularization parameter. The input signal is speech sequence, α=1, k=0, L=512, and 

ENR=0dB. 

      This is also supported in Fig. 9, where ENR=0dB, so that the normalized regularization 

constant needs to be further increased [up to β=2400/ (2L)] in order that the IPNLMS performs 

in a similar way when the "optimal" choice is used. 

        Finally, the performance of the SR-IPNLMS algorithm is evaluated. The relation 

between the regularization parameters of the SR-IPNLMS and IPNLMS algorithms is, i.e., 

βSR-IPNLMS= βxβIPNLM. In Fig.10, the input signal is white and Gaussian, and ENR=10dB. 
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Fig.10. Misalignment of the SR-IPNLMS algorithm using different values of the normalized 

regularization parameter. The input signal is speech sequence, α=1, k=0, L=512, and 

ENR=10dB. 

               According to this figure ,it is clear that the SR-IPNLMS algorithm using the 

“optimal” value βSR-IPNLMS performs better as compared to the regular normalized 

regularization β=20/(2L). Also, it can be noticed that a lower misalignment level can be 

obtained by using a higher normalized regularization parameter, i.e., β=200/(2L).  

 

Fig.11. Misalignment of the SR-IPNLMS algorithm using different values of the normalized 

regularization parameter. The input signal is speech sequence, α=1, k=0, L=512, and 

ENR=0dB. 

In Fig.11 we consider ENR=0dB and it is clear that a higher normalized regularization 

parameter is required now [i.e., β=1200/(2L)] to match the performance obtained with β of SR-

IPNLMS. 

VII. CONCLUSION  

       In this paper, we have proposed a simple condition, for the derivation of an optimal 

regularization parameter. From this condition we have derived the optimal regularization 

parameters of four algorithms: the NLMS, the SR-NLMS, the IPNLMS, and the SR-IPNLMS. 
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Extensive simulations have shown that with the proposed regularization, the adaptive 

algorithms behave extremely well at all ENR levels and this design is used for an acoustic echo 

cancelation application. 

REFERENCES 

[1] J. Benesty, C. Paleologu, and S. Ciochin˘ "Proportionate adaptive filters from a basis pursuit 

perspective," IEEE Signal Process. Lett., vol.17, no. 12, pp. 985-988, Dec. 2010.. 

[2] C. Paleologu, J. Benesty, and S. Ciochin˘, Sparse Adaptive Filters for a Echo    

Cancellation. San Rafael: Morgan & Claypool, 2010. 

[3] J. Benesty, T. Gaensler, D. R. Morgan, M. M. Sondhi, and S. L.Gay, Advances in 

Network and Acoustic Echo Cancellation. Berlin,        Germany: Springer-Verlag, 2001. 

[4] S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, NJ:Prentice-Hall, 2002. 

[5] A. H. Sayed, Fundamentals of Adaptive Filtering. Hoboken, NJ:  Wiley, 2003. 

[6]E. Hänsler and G. Schmidt, Acoustic Echo and Noise Control-A Practical Approach. 

Hoboken, NJ: Wiley, 2004. 

[7] H. Rey, L. Rey Vega, S. Tressens, and J. Benesty, "Variable explicit regularization in 

affine projection algorithm: Robustness issues and optimal choice," IEEE Trans. Signal 

Process., vol. 55, no. 5, pp. 2096-2108, May 2007. 

[8] J. Benesty, H. Rey, L. Rey Vega, and S. Tressens, "A non-parametric VSS-NLMS 

algorithm," IEEE Signal Process. Lett., vol. 13, no. 10, pp. 581-584, Oct. 2006. 

[9] J. Benesty and S. L. Gay, "An improved PNLMS algorithm," in Proc IEEE ICASSP, 2002, 

pp. 1881-1884. 

[10] D. L. Duttweiler, "Proportionate normalized least-mean-squares adaptation in echo 

cancelers," IEEE Trans. Speech, Audio Process., vol. 8,no. 5, pp. 508-518, Sep. 2000. 

Author Biographies    

Mr. G.Amjad Khan obtained his M.Tech in Communication and Signal 

Processing from Sri Krishna Devaraya University in 2006. He is currently 

pursuing Ph.D degree from Rayalaseema University, Kurnool, India. He 

presented papers more than 7 in National conferences and 1 International 

conference and published 4 papers in International journals. He is 

presently working as Assistant Professor in ECE Department, G. Pulla 

Reddy Engineering College, Kurnool, A.P, India. His research interests 

include Adaptive signal Processing, Digital Signal Processing. 

 

 



International Journal of Emerging Trends in Engineering and Development                 Issue 3, Vol.2 (May 2013)                                                                                                    

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm                                  ISSN 2249-6149 

R S. Publication, rspublicationhouse@gmail.com Page 153 

 

Mr. R.ASHOK is pursuing his M.Tech in Communication and Signal 

Processing (C.S.P) at G.Pulla Reddy Engineering College, Kurnool, A.P, 

India. He presented 2 papers in National conference. His area of interest is 

in the field of Digital Signal Processing.  


