A COMMON FIXED POINT THEOREM FOR CYCLIC WEAK Ø-CONTRACTION IN L- FUZZY METRIC SPACE

Surjeet Singh Chauhan¹ (Gonder) and Kiran Utreja²

Deptt. Of Applied Science and Humanities, Chandigarh University, Gharuan¹

Deptt. Of Applied Science and Humanities, GNIT, Mullana²

Abstract: In this paper we are proving a common fixed point theorem for cyclic weak \emptyset -contraction for four mappings in \mathcal{L} -fuzzy metric space generalizing the result of D. Gopal et al. [9] for cyclic weak \emptyset -contraction in fuzzy metric space. Here we are introducing the concept of cyclic weak \emptyset - contraction for four operators in \mathcal{L} -fuzzy metric space to prove our result. We are giving the corollary in respect of the proved theorem.

Key Words: Fixed point, L-fuzzy metric space, Cyclic Weak Ø Contraction

Mathematics Subject Classification: 46S40, 54H25, 54E35

1. Introduction: The notion of fuzzy sets was introduced by Zadeh [19] and various concepts of fuzzy metric space were considered in [2, 4, 7, 12, and 13]. Many authors have studied fixed point theory in fuzzy metric spaces as [3, 8, 11, and 14]. In 1988 Grabeic [10] defined contraction and contractive mappings on fuzzy metric space and extended their results in such spaces. Continuing in this field Mihet [15, 16] proved fixed point theorems for various contraction mappings in fuzzy metric space. In 2010 Pacurar et al. [17] introduced the concept of cyclic \emptyset -contraction and proved a fixed point theorem for cyclic \emptyset -contraction in complete metric space. Using his concept D. Gopal et al. [9] proved a fixed point theorem for cyclic weak \emptyset -contraction in fuzzy metric spaces. In this sequel we are extending the work on the space introduced by Saadati et al. [18] to prove a common fixed point theorem for cyclic \emptyset -contraction for four mappings in \mathcal{L} -fuzzy metric space

2. Prelimnaries:

- **Def.2.1.**Complete Lattice is a partially ordered set (L, \leq) in which all subsets have both supremum (join) and infimum (meet).
- **Def.2.2** [18] Let $\mathcal{L}=(L,\leq_L)$ be a complete lattice and U a non-empty set called universe. An \mathcal{L} -fuzzy set A on U is defined as a mapping A: U \rightarrow L. For each u in U, A (u) represents the degree (in L) to which u satisfies A

Lemma2.3 [5]: Consider the set L^* and operation \leq_{L^*} defined by

$$L^* = \{(x_1, x_2) : (x_1, x_2) \in [0,1]^2 \text{ and } x_1 + x_2 \le 1\}, (x_1, x_2) \le_{L^*} (y_1, y_2) \text{ if and only if } x_1 + x_2 \le 1\}$$

 $x_1 \le y_1$ and $x_2 \ge y_2$ for every (x_1, x_2) , $(y_1, y_2) \in L^*$. Then (L^*, \le_{L^*}) is complete Lattice.

Def.2.4 [1].An intuitionistic fuzzy set $A_{\zeta\eta}$ on a universe U is an object $A_{\zeta\eta} = \{(\zeta_A(u), \eta_A(u); u \in U)\}$ where for all $u \in U$, $\zeta_A(u) \in [0, 1]$ and $\eta_A(u) \in [0, 1]$ are called the membership degree and the non-membership degree respectively of u in $A_{\zeta\eta}$ and furthermore satisfy $\zeta_A(u) + \eta_A(u) \leq 1$.

A triangular norm Ton ([0, 1], \leq) is defined as an increasing, commutative, associative mapping T: [0, 1]² \rightarrow [0, 1] satisfying T(1, x) = x \forall x \in [0, 1].

We define first $0_{\mathcal{L}} = \inf L$

 $1_{\mathcal{L}} = \sup L$.

Def.2.5. A triangular norm (t-norm) on \mathcal{L} is a mapping $\mathcal{I}: L^2 \to L$ satisfying the following conditions:

- i. $(\forall x \in L)$ $(\mathcal{I}(x, 1_f) = x)$; (boundary condition);
- ii. $(\forall (x,y) \in L^2)$ $(\mathcal{I}(x,y) = \mathcal{I}(y,x))$; (commutativity);
- iii. $(\forall (x, y z) \in L^3)$ $(\mathcal{I}(x, \mathcal{I}(y, z)) = \mathcal{I}(\mathcal{I}(x, y), z)$; (associativity);
- iv. $(\forall (x, x', y, y') \in L^4) (x \leq_L x' \text{ and } y \leq_L y') \Rightarrow \mathcal{I}(x, y) \leq_L \mathcal{I}(x', y') \text{ (monotonocity)};$ A t- norm can also be defined recursively as an (n+1) - ary operation $(n \in \mathbb{N} \setminus \{0\})$ by $\mathcal{I}^1 = \mathcal{I}$ and $\mathcal{I}^n(x_{(1)}, x_{(2)}, \dots, x_{(n+1)}) = \mathcal{I}(\mathcal{I}^{n-1}(x_{(1)}, x_{(2)}, \dots, x_{(n)}), x_{(n+1)}))$ for $n \geq 2$ and $x_{(i)} \in L$.

Def.2.6. [6] A t –norm \mathcal{I} on L* is called t-representable iff there exists a t-norm T and a t-conorm S on [0, 1] such that $\forall x = (x_1, x_2), y = (y_1, y_2) \in L^*$.

$$\mathcal{I}(\mathbf{x},\,\mathbf{y}) = \{ \mathbf{T} \, (\mathbf{x}_1, \mathbf{y}_1), \, \mathbf{S} \, (\mathbf{x}_2, \mathbf{y}_2) \}.$$

Def.2.7. A negation on \mathcal{L} is any decreasing mapping N: L \rightarrow L satisfying N $(0_{\mathcal{L}})=1_{\mathcal{L}}$ and

 $N(1_{\mathcal{L}})=0_{\mathcal{L}}$. If $N(N(x))=x \ \forall \ x \in L$, then N is called an involutive negation.

If for all $x \in [0, 1]$, $N_s(x) = 1-x$, we say that N_s is the standard negation on $([0, 1], \leq)$.

Def.2.8. The 3-tuple $(X, \mathcal{M}, \mathcal{I})$ is said to be an \mathcal{L} -fuzzy metric space if X is an arbitrary (non-empty)set, \mathcal{I} is continuous t-norm on \mathcal{L} and \mathcal{M} is an \mathcal{L} -fuzzy set on $X^2 \times (0, +\infty)$ satisfying the following conditions for every x, y, z in X and t, s in $(0, +\infty)$

- i. $\mathcal{M}(x, y, t) >_L 0_L$;
- ii. $\mathcal{M}(x, y, t) = 1_{\mathcal{L}}$ for all t>0 if and only if x = y;
- iii. $\mathcal{M}(x, y, t) = \mathcal{M}(y, x, t)$;
- iv. $\mathcal{I}(\mathcal{M}(x, y, t), \mathcal{M}(y, z, s)) \leq_L \mathcal{M}(x, z, t+s);$
- v. $\mathcal{M}(x, y, .)$:]0, ∞ [\rightarrow L is continuous. In this case \mathcal{M} is called an \mathcal{L} -fuzzy metric. If $\mathcal{M} = \mathcal{M}_{M,N}$ is an intuitionistic fuzzy set then the 3-tuple $(X, \mathcal{M}_{M,N}, \mathcal{I})$ is said to be an intuitionistic fuzzy metric space.

Example: Let (X, d) be a metric space. Set $\mathcal{I}(a, b) = (a_1b_1, \min(a_2 + b_2, 1))$ for all

 $a=(a_1,a_2)$ and $b=(b_1,b_2)$ in L^* and let M and N be fuzzy sets on $X^2\times(0,\infty)$ defined as follows:

 $\mathcal{M}_{M,N}(x, y, t) = (M(x, y, t), N(x, y, t)) = (\frac{ht^n}{ht^n + md(x,y)}, \frac{md(x,y)}{ht^n + md(x,y)})$ for all $t, h, m, n \in R^+$. Then $(X, \mathcal{M}_{M,N}, \mathcal{I})$ is an intuitionistic fuzzy metric space.

Lemma 2.9. [2]: Let $(X, \mathcal{M}, \mathcal{I})$ be an \mathcal{L} -fuzzy metric space .Then $\mathcal{M}(x, y, t)$ is non-decreasing with respect to t for all x, y in X.

Proof: Let $t, s \in (0, +\infty)$ be such that t < s. Then k = s - t > 0 and $\mathcal{M}(x, y, t) = \mathcal{I}(M(x, y, t), \mathbf{1}_{\mathcal{L}})$ = $\mathcal{I}(M(x, y, t), M(y, y, k)) \le M(x, y, s)$.

Def.2.10. A sequence $\{x_n\}_{n\in\mathbb{N}}$ in an \mathcal{L} -fuzzy metric space $(X,\mathcal{M},\mathcal{I})$ is called a Cauchy sequence, if for each $\epsilon\in L\setminus\{0_{\mathcal{L}}\}$ and t>0, there exists $n_o\in\mathbb{N}$ such that $\forall\ m\geq n\geq n_o(n\geq m\geq n_o)$, $\mathcal{M}(x_m,x_n,t)>_L\mathbb{N}$ (ϵ). The sequence $\{x_n\}_{n\in\mathbb{N}}$ is said to be convergent to $x\in X$ in the \mathcal{L} -fuzzy metric space $(X,\mathcal{M},\mathcal{I})$ (denoted by $x_n\to x$ in \mathcal{M}) if $\mathcal{M}(x_n,x,t)=\mathcal{M}(x,x_n,t)\to 1_{\mathcal{L}}$ whenever $n\to+\infty$ for every t>0. A \mathcal{L} -fuzzy metric space is said to be complete if and only if every Cauchy sequence is convergent.

Thus \mathcal{I} is a continuous t-norm on lattice \mathcal{L} such that for every $\mu \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, there is a $\lambda \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $\mathcal{I}^{n-1}(N(\lambda), \dots, N(\lambda)) >_L N(\mu)$.

Lemma 2.11.[20] Let $(X, \mathcal{M}, \mathcal{I})$ be an \mathcal{L} -fuzzy metric space. Then \mathcal{M} is continuous function on $X \times X \times]0, \infty[$.

Def.2.12.Let $(X, \mathcal{M}, \mathcal{I})$ be an \mathcal{L} -fuzzy metric space. Then \mathcal{M} is said to be continuous on $X \times X \times]0, \infty[$ that is $\lim_{n \to \infty} \mathcal{M}(x_n, y_n, t_n) = \mathcal{M}(x, y, t)$ whenever a sequence $\{(x_n, y_n, t_n)\}$ in $X \times X \times]0, \infty[$ converges to a point $(x, y, t) \in X \times X \times]0, \infty[$ that is $\lim_{n \to \infty} \mathcal{M}(x_n, x, t) = \lim_{n \to \infty} \mathcal{M}(y_n, y, t) = 1_{\mathcal{L}}$ and $\lim_{n \to \infty} \mathcal{M}(x, y, t_n) = \mathcal{M}(x, y, t)$.

Lemma2.13 [2]: Let $(X, \mathcal{M}, \mathcal{I})$ be an \mathcal{L} -fuzzy metric space. Define $E_{\lambda,\mathcal{M}}: X^2 \to R^+ \cup \{0\}$ by $E_{\lambda,\mathcal{M}}(x, y) = \inf \{ t > 0 : \mathcal{M}(x, y, t) >_L N(\lambda) \}$ for each $\lambda \in L \setminus \{0_L, 1_L \}$ and $x, y \in X$. Then we have

- i. For any $\mu \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ there exists $\lambda \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $E_{\square,\mathcal{M}}(x_1, x_n) \leq E_{\lambda,\mathcal{M}}(x_1, x_2) + E_{\lambda,\mathcal{M}}(x_2, x_3) + \dots E_{\lambda,\mathcal{M}}(x_{n-1}, x_n)$ for any $x_1, \dots, x_n \in X$.
- ii. The sequence $\{x_n\}_{n\in\mathbb{N}}$ is convergent w.r.t \mathcal{L} -fuzzy metric \mathcal{M} if and only if $E_{\lambda,\mathcal{M}}(x_n,x)\to 0$. Also the sequence $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy w.r.t \mathcal{L} -fuzzy metric \mathcal{M} if and only if it is Cauchy with $E_{\lambda,\mathcal{M}}$.

Lemma2.14: Let(X, \mathcal{M} , \mathcal{I}) be an \mathcal{L} -fuzzy metric space. If $\mathcal{M}(x_n, x_{n+1}, t) \geq_L \mathcal{M}(x_0, x_1, k^n t)$ for some k>1 and n \in N .then $\{x_n\}$ is a Cauchy sequence.

Proof: For every $\lambda \in L \setminus \{0_L, 1_L\}$ and $x_n \in X$, we have

$$\mathsf{E}_{\lambda,\mathcal{M}}(\mathsf{x}_{\mathsf{n}+1},\mathsf{x}_{\mathsf{n}}) = \inf \left\{ \mathsf{t} \! > \! 0 \colon \mathcal{M}\left(\mathsf{x}_{\mathsf{n}+1},\mathsf{x}_{\mathsf{n}},\mathsf{t}\right) >_{L} \! \mathrm{N}\left(\lambda\right) \right\}$$

$$\leq \inf \{ t > 0: \mathcal{M}(x_0, x_1, k^n t) >_L N(\lambda) \}$$

$$= \inf \{ \frac{t}{k^n}: \mathcal{M}(x_0, x_1, t) >_L N(\lambda) \}$$

$$= \frac{1}{k^n} \inf \{ t > 0: \mathcal{M}(x_0, x_1, t) >_L N(\lambda) \}$$

$$= \frac{1}{k^n} E_{\lambda, \mathcal{M}}(x_0, x_1).$$

From lemma 2.12, for every $\mu \in L \setminus \{0_L, 1_L\}$ there exists $\lambda \in L \setminus \{0_L, 1_L\}$, such that

$$\begin{split} \mathsf{E}_{\mu,\mathcal{M}}(\mathsf{x}_{\mathsf{n}},\mathsf{x}_{\mathsf{m}}) & \leq \; \mathsf{E}_{\lambda,\mathcal{M}}(\mathsf{x}_{\mathsf{n}},\mathsf{x}_{\mathsf{n}+1}) + \mathsf{E}_{\lambda,\mathcal{M}}(\mathsf{x}_{\mathsf{n}+1},\mathsf{x}_{\mathsf{n}+2}) + \dots + \mathsf{E}_{\lambda,\mathcal{M}}(\mathsf{x}_{\mathsf{m}-1},\mathsf{x}_{\mathsf{m}}) \\ & \leq \frac{1}{k^{n}} \, \mathsf{E}_{\lambda,\mathcal{M}}(\mathsf{x}_{\mathsf{0}},\mathsf{x}_{\mathsf{1}}) + \frac{1}{k^{n+1}} \, \mathsf{E}_{\lambda,\mathcal{M}}(\mathsf{x}_{\mathsf{0}},\mathsf{x}_{\mathsf{1}}) + \dots + \frac{1}{k^{m-1}} \, \mathsf{E}_{\lambda,\mathcal{M}}(\mathsf{x}_{\mathsf{0}},\mathsf{x}_{\mathsf{1}}) \\ & = \mathsf{E}_{\lambda,\mathcal{M}}(\mathsf{x}_{\mathsf{0}},\mathsf{x}_{\mathsf{1}}) \, \sum_{j=n}^{m-1} \frac{1}{k^{j}} \to 0. \end{split}$$

Hence the sequence $\{x_n\}$ is a Cauchy sequence.

Def.2.15. We say that \mathcal{L} -fuzzy metric space(X, \mathcal{M} , \mathcal{I}) has a property C, if it satisfies the following condition $\mathcal{M}(x, y, t) = C$ for all t > 0 implies $C = 1_{\mathcal{L}}$.

Def.2.16. Let $(X, \mathcal{M}, \mathcal{I})$ be an \mathcal{L} -fuzzy metric space. The \mathcal{L} -fuzzy metric is triangular if it satisfies the condition $(\frac{1}{\mathcal{M}(x,y,t)}-1) \leq (\frac{1}{\mathcal{M}(x,z,t)}-1) + (\frac{1}{\mathcal{M}(y,z,t)}-1)$

for every x, y, $z \in X$ and every t > 0.

Def.2.17.Let X be a non-empty set, m be a positive integer and f: $X \to X$ an operator. By definition, $X = \bigcup_{i=1}^{m} X_i$ is a cyclic representation of X with respect to f if

- i. X_i , $i = 1, 2, \ldots, m$ are nonempty stes;
- ii. $f(X_1) \subset X_2$, $f(X_{m-1}) \subset X_m$, $f(X_m) \subset X_1$

Inspired by D. Gopal et al. [9] we present the notion of cyclic weak \emptyset -contraction for four operators in \mathcal{L} - fuzzy metric space.

Def.2.18. Let $(X, \mathcal{M}, \mathcal{I})$ be an \mathcal{L} -fuzzy metric space, A_1, A_2, \dots, A_m be closed subsets of X and $Y = \bigcup_{i=1}^m A_i$. Operators P, Q, S and T: $Y \rightarrow Y$ are called cyclic weak \emptyset -contraction if the following conditios hold:

- i. $Y = \bigcup_{i=1}^{m} A_i$ is a cyclic representation of Y with respect to P, Q, S and T respectively
- ii. There exists a continuous, non-decreasing function $\emptyset: [0, +\infty) \rightarrow [0, +\infty)$

With $\emptyset(r)>0$ for r>0 and $\emptyset(0)=0$, such that

$$(\frac{1}{\mathcal{M}(Px,\ Qy,\ t)}-1) \leq_L (\frac{1}{\mathcal{M}(Sx,\ Ty,\ kt)}-1) - \emptyset(\frac{1}{\mathcal{M}(Px,\ Sx,\ kt)}-1)$$

For any $x \in A_i$, $y \in A_{i+1}$ (i =1, 2... m, where $A_{m+1} = A_1$ and each t > 0.

3. Main Theorem:

Theorem3.1. Let $(X, \mathcal{M}, \mathcal{I})$ be an \mathcal{L} -fuzzy metric space, A_1, A_2, \dots, A_m be closed subsets of X and Y = $\bigcup_{i=1}^m A_i$ be complete. Suppose that $\emptyset: [0, +\infty) \to [0, +\infty)$ is continuous, non-decreasing function with $\emptyset(r) > 0$ for $r \in (0, +\infty)$ and $\emptyset(0) = 0$.

If P, Q, S and T: $Y \rightarrow Y$ be a cyclic weak \emptyset - contraction such that

- i. $P(X) \cup Q(X) \subseteq S(X) \cap T(X)$
- ii. $(\frac{1}{\mathcal{M}(Px, Qy, t)} 1) \le_L (\frac{1}{\mathcal{M}(Sx, Ty, kt)} 1) \emptyset(\frac{1}{\mathcal{M}(Px, Sx, kt)} 1)$. Then P, Q, S and T has a unique fixed point $z \in \bigcap_{i=1}^m A_i$.

Proof: Since $P(X) \cup Q(X) \subseteq S(X) \cap T(X)$, thus we have $P(X) \subseteq T(X)$, therefore for any arbitrary point $x_0 \in Y = \bigcup_{i=1}^m A_i$ there exists $x_1 \in Y$ such that $Px_0 = Tx_1$

And $Q(X) \subseteq S(X)$, for this point x_1 , we can choose a point $x_2 \in Y$ such that $Qx_1 = Sx_2$ and so on.

Thus by induction we can define a sequence $\{y_n\}$ such that $y_{2n} = Tx_{2n+1} = Px_{2n}$.

 $y_{2n+1} = Sx_{2n+2} = Qx_{2n+1}$ for every $n \in \mathbb{N} \cup \{0\}$. Now to prove that $\{y_n\}$ is a cauchy sequence in X.

Put
$$x = x_{2n}$$
, $y = x_{2n+1}$ in (ii)
$$(\frac{1}{\mathcal{M}(Px_{2n},Qx_{2n+1},t)} - 1) \leq_L (\frac{1}{\mathcal{M}(Sx_{2n},Tx_{2n+1},kt)} - 1) - \emptyset(\frac{1}{\mathcal{M}(Px_{2n},Sx_{2n},kt)} - 1).$$

$$\Rightarrow (\frac{1}{\mathcal{M}(y_{2n}, y_{2n+1}, t)} - 1) \leq_L (\frac{1}{\mathcal{M}(y_{2n-1},y_{2n}, kt)} - 1) - \emptyset(\frac{1}{\mathcal{M}(y_{2n},y_{2n-1},kt)} - 1).$$

$$\leq_L (\frac{1}{\mathcal{M}(y_{2n-1},y_{2n}, kt)} - 1).$$

$$\Longrightarrow \mathcal{M}\left(y_{2n},y_{2n+1},t\right) \geq_{L} \mathcal{M}\left(y_{2n-1},y_{2n},kt\right) \ \forall \ \mathbf{n} \in \mathbb{N}.$$

This implies $\mathcal{M}(y_{2n}, y_{2n+1}, t)$ is a non-decreasing sequence of positive real numbers in [0, 1].

Thus we have $\mathcal{M}\left(y_n,y_{n+1},t\right)\geq_L \mathcal{M}\left(y_{n-1},y_n,k\;t\right)\geq_L \ldots \ldots \geq_L \mathcal{M}(y_0,y_1,k^n\;t).$

Therefore by lemma 2.13 we have $\{y_n\}$ is a Cauchy sequence.

Since Y is complete, there exists a point $z \in Y$ such that $\lim_{n \to \infty} y_n = z$.

Thus Tx_{2n+1} , Px_{2n} , Sx_{2n+2} and Qx_{2n+1} converge to $z \in Y$.

Since the mappings are \emptyset -contraction, thus the iterative sequence $\{y_n\}$ has an infinite number of

terms in A_i for each i =1, 2...m. As Y is complete then from each A_i , i=1, 2,...m, one can extract a subsequence of $\{y_n\}$ that converges to z. Also each A_i , i=1, 2...m, is closed, we have that point $y \in \bigcap_{i=1}^m A_i$ and $\bigcap_{i=1}^m A_i \neq \emptyset$.

Next we are to prove that z is fixed point of P, Q, S and T.

As $Q(X) \subseteq S(X)$ therefore there exists a point $u \in Y$ such that Su = z. Now on putting x = u and $y = x_{2n+1}$ in (ii) we get

$$\left(\frac{1}{\mathcal{M}(Pu,Qx_{2n+1},t)}-1\right) \leq_L \left(\frac{1}{\mathcal{M}(Su,Tx_{2n+1},kt)}-1\right) - \emptyset\left(\frac{1}{\mathcal{M}(Pu,Su,kt)}-1\right).$$
Now on taking the limit as $n \to \infty$ we get
$$\left(\frac{1}{\mathcal{M}(Pu,z,t)}-1\right) \leq_L \left(\frac{1}{\mathcal{M}(z,z,kt)}-1\right) - \emptyset\left(\frac{1}{\mathcal{M}(Pu,z,t)}-1\right).$$

 $\Rightarrow \mathcal{M}$ (Pu, z, t) $\geq_L \mathcal{M}$ (z, z, kt)= $1_{\mathcal{L}}$ as \mathcal{M} is continuous. Thus we have Pu=Su= z.

Now as $P(X) \subseteq T(X)$, therefore there exists a point $v \in Y$ such that Tv = z. Now on putting $x = x_{2n}$ and y = v in (ii)

we get
$$(\frac{1}{\mathcal{M}(Px_{2n},Qv,t)}-1) \le_L (\frac{1}{\mathcal{M}(Sx_{2n}, Tv, kt)}-1) - \emptyset(\frac{1}{\mathcal{M}(Px_{2n},Sx_{2n},kt)}-1).$$

Now on taking the limit as $n \to \infty$ we get,

$$\Longrightarrow (\frac{1}{\mathcal{M}(z,\ Qv,t)}-1) \leq_L (\frac{1}{\mathcal{M}(z,\ z,\ kt)}-1) - \emptyset(\frac{1}{\mathcal{M}(z,\ z,\ kt)}-1).$$

 $\Rightarrow \mathcal{M}(z,Qv,t) \geq_L \mathcal{M}(z,z,kt) = 1_{\mathcal{L}} \text{ as } \mathcal{M} \text{ is continuous.}$

Thus we have Qv=Tv=z.

 \Rightarrow Pu=Su= Ov=Tv= z.

Now we are to prove that Pz=z, for this put x=z and y=v in (ii) we get

$$\begin{aligned} &(\frac{1}{\mathcal{M}(Pz,Qv,t)}-1) \leq_{L} (\frac{1}{\mathcal{M}(Sz,Tv,kt)}-1) - \emptyset(\frac{1}{\mathcal{M}(Pz,Sz,kt)}-1). \\ &\Rightarrow (\frac{1}{\mathcal{M}(Pz,z,t)}-1) \leq_{L} (\frac{1}{\mathcal{M}(Pz,z,kt)}-1) - \emptyset(\frac{1}{\mathcal{M}(Pz,Pz,kt)}-1) \leq_{L} (\frac{1}{\mathcal{M}(Pz,z,kt)}-1) \\ &\Rightarrow \mathcal{M}(Pz,z,t) \geq_{L} \mathcal{M}(Pz,z,kt).... \geq_{L} \mathcal{M}(Pz,z,k^{n}t) \end{aligned}$$

But as $\mathcal{M}(x, y, t)$ is non-decreasing with respect to t for all x, y in X. Hence $\mathcal{M}(Pz, z, t) = C$ for all t > 0. Since $(X, \mathcal{M}, \mathcal{I})$ has property (C), it follows that $C = 1_{\mathcal{L}}$. Thus we get Pz = z, therefore Pz = Sz = z. Similarly we can prove that Qz = Tz = z.

Thus P, Q, S and T have a fixed point $z \in \bigcap_{i=1}^m A_i$.

Now to prove their uniqueness let us choose another point $w \in \bigcap_{i=1}^m A_i$. Therefore w is another common fixed point of P, Q, S and T that is Pw= Qw = Sw = Tw = w. Thus

$$\begin{split} &(\frac{1}{\mathcal{M}(z,w,t)}-1) = (\frac{1}{\mathcal{M}(Pz,Qw,t)}-1) \leq_L (\frac{1}{\mathcal{M}(Sz,Tw,kt)}-1) - \emptyset(\frac{1}{\mathcal{M}(Pz,Sz,kt)}-1). \\ \Longrightarrow &(\frac{1}{\mathcal{M}(z,w,t)}-1) = (\frac{1}{\mathcal{M}(z,w,t)}-1) \leq_L (\frac{1}{\mathcal{M}(z,w,kt)}-1) - \emptyset(\frac{1}{\mathcal{M}(z,z,kt)}-1). \\ &\leq_L (\frac{1}{\mathcal{M}(z,w,kt)}-1) \end{split}$$

$$\Rightarrow \mathcal{M}(z, w, t) \geq_{l} \mathcal{M}(z, w, kt) \dots \geq_{l} \mathcal{M}(z, w, k^{n}t).$$

Again as $\mathcal{M}(x, y, t)$ is non-decreasing with respect to t for all x, y in X. Hence $\mathcal{M}(z, w, t) = C$ for all t > 0. Since $(X, \mathcal{M}, \mathcal{I})$ has property (C), it follows that $C = 1_{\mathcal{L}}$. Thus we get z = w. Thus z, is the unique common fixed point of maps P, Q, S and T.

Corollary 3.2. Let $(X, \mathcal{M}, \mathcal{I})$ be an \mathcal{L} -fuzzy metric space, A_1, A_2, \dots, A_m be closed subsets of X and Y = $\bigcup_{i=1}^{m} A_i$ be complete. Suppose that $\emptyset: [0, +\infty) \to [0, +\infty)$ is continuous, nondecreasing function with $\emptyset(r)>0$ for $r \in (0, +\infty)$ and $\emptyset(0) = 0$.

If P, Q, S and T: $Y \rightarrow Y$ be a cyclic weak \emptyset - contraction such that

- $P(X) \cup Q(X) \subseteq S(X) \cap T(X),$ $(\frac{1}{\mathcal{M}(Px, Qy, t)} 1) \leq_L (\frac{1}{\mathcal{M}(Sx, Ty, kt)} 1) \emptyset(\frac{1}{\mathcal{M}(Px, Sx, kt)} 1).$ Then P. O. S and T has a unique fixed point $z \in \bigcap_{i=1}^m A_i$.

Proof: to prove the result replace Q by P in theorem 3.1.

References:

- [1] A.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986) 87–96.
- [2] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994) 395–399.
- [3] S.S.Chang, Y.J.Cho, B.S.Lee, J.S.Jung and S.M.Kang, Coincidence point and minimization theorems in fuzzy metric spaces, Fuzzy Sets Syst.88(1997),119-128.
- [4] Z.K.Deng, Fuzzy pseudo-metric spaces, J.Math. Anal. Appl. 86 (1982), 74-95.
- [5] G. Deschrijver, E.E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets Syst. 33 (2003) 227-235.
- [6] G.Deschrijver, C.Cornelis and E.E.Kerre, On the representation of intuitionistic fuzzy tnorms and t-conorms, IEEE Transactions on Fuzzy Systems, 12 (2004), 45-61.
- [7] M.A.Erceg, Metric spaces in fuzzy ste theory, J.Math. Anal. Appl. 69 (1979), 205-230.
- [8] J. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967) 145–174.

- [9] D.Gopal, M.Imdad, C.Vetro, M. Hasan, Fixed point theory for cyclic weak Ø-contraction in fuzzy metric spaces, Journal of Nonlinear Analysis and Applications, Vol.2012
- [10] M.Grabeic, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst.27(1988),385-389.
- [11] V.Gregori and A.Sapena, On fixed point theorem in fuzzy metric spaces, Fuzzy Sets Syst.125(2002),245-252.
- [12] O.Kaleva and S.Seikkala, On fuzzy metric spaces, Fuzzy Stes Syst. 12 (1984), 215-229.
- [13] I.Kramosil and J.Michalek, Fuzzy metric and statistical metric spaces, Kybernetica11 (1975), 326-334.
- [14] D.Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Syst.144(2004),431-439.
- [15] D.Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems 158 (2007)915-921.
- [16] D.Mihet, Aclass of contractions in fuzzy metric spaces, Fuzzy Sets and Systems 161(2010)1131-1137.
- [17] M.Pacurar, I.A.Rus, Fixed point theory for Ø- contractions, Nonlinear Anal.72(2010)1181-1187.
- [18] R. Saadati, A. Razani, H. Adibi, A Common fixed point theorem in L-fuzzy metric spaces, Chaos, Solitons& Fractals, doi:10.1016/j.chaos.2006.01.023.
- [19] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338–353.
- [20] J.Rodriguez Lopez and S.Ramaguera, The Hausdroff Fuzzy metric on compact sets, Fuzzy Sets and Systems, 147(2004), 273-283.
- [21] J.X.Fang, On fixed point theorem in fuzzy metric spaces, Fuzzy Sets Syst. 46 (1992), 107-113.
- [22] C.Di Bari, C.Vetro, A fixed point theorem for a family of mappings in fuzzy metric space, Rend. Circ.Mat.Palermo.52(2003), 315-332.