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Abstract: In this paper we are proving a common fixed point theorem for cyclic weak @ -
contraction for four mappings in £-fuzzy metric space generalizing the result of D. Gopal et al.
[9] for cyclic weak @-contraction in fuzzy metric space. Here we are introducing the concept of
cyclic weak @- contraction for four operators in £-fuzzy metric space to prove our result. We are
giving the corollary in respect of the proved theorem.
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1. Introduction: The notion of fuzzy sets was introduced by Zadeh [19] and various concepts of
fuzzy metric space were considered in [2, 4, 7, 12, and 13]. Many authors have studied fixed
point theory in fuzzy metric spaces as [3, 8, 11, and 14].In 1988 Grabeic [10] defined contraction
and contractive mappings on fuzzy metric space and extended their results in such spaces.
Continuing in this field Mihet [15, 16] proved fixed point theorems for various contraction
mappings in fuzzy metric space. In 2010 Pacurar et al. [17] introduced the concept of cyclic @-
contraction and proved a fixed point theorem for cyclic @ —contraction in complete metric space.
Using his concept D. Gopal et al. [9] proved a fixed point theorem for cyclic weak @-contraction
in fuzzy metric spaces. In this sequel we are extending the work on the space introduced by
Saadati et al. [18] to prove a common fixed point theorem for cyclic @-contraction for four
mappings in L-fuzzy metric space

2. Prelimnaries:

Def.2.1.Complete Lattice is a partially ordered set (L,<) in which all subsets have both
supremum (join) and infimum (meet).

Def.2.2 [18] Let L= (L,<,) be a complete lattice and U a non-empty set called universe. An £L-
fuzzy set A on U is defined as a mapping A: U— L. For each u in U, A (u) represents the degree
(in L) to which u satisfies A

Lemma2.3 [5]: Consider the set L* and operation <,-defined by
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L= {(x1,%2): (x1,%,) € [0,1]%and x; + x, <1}, (x4, %y) <+ (yl, yz)if and only if
x; <y, and x, = y,for every (x4, x,),(y1,¥,)€ L".Then(L*, <+)is complete Lattice.

Def.2.4 [1].An intuitionistic fuzzy set A, on a universe U is an object A, = {(,(u),n,(u); u €
U} where for all ue U, ¢, (u) €[0, 1] and n,(u) € [0, 1] are called the membership degree and
the non-membership degree respectively of u in A, and furthermore satisfy ¢, (u) +n,(u) < 1.

A triangular norm Ton ([0, 1],<) is defined as an increasing, commutative, associative mapping
T:[0,1]? =[O, 1] satisfying T(1, Xx) =x V¥x € [0,1].

We define first 0, = infL
1, = suplL.

Def.2.5. A triangular norm (t-norm) on £ is a mapping 7: L?> »L satisfying the following
conditions:

i.  (¥xeL) (J(x, 1;)=x); (boundary condition);
i.  (V(xy) €L?) (7(x,y)=1(y, X)); (commutativity);
iii. (Vi y2)eLd) (@I, 2))=7((Y),2); (associativity);
iv. (VX x,y,y) €LY (X<, x andy < y)=7T(X, Y)<.I(x,y) ( monotonocity);
A t- norm can also be defined recursively as an (n+1) - ary operation (n €N \{0}) by
.71: J and jn(X(l),X(z), ...,X(n+1)) =7 (gn_l(X(l),X(z), e e ’X(n))!X(n+1))) for
n= 2 and x; € L.

Def.2.6. [6] At—norm J on L" is called t-representable iff there exists a t-norm T and a t-conorm
Son [0, 1] such that V x = (x4,x,), Y= (y;,¥,)€ L.

I(%, ¥) ={T (x1,¥1), S (x2,¥,)}-

Def.2.7.A negation on L is any decreasing mapping N: L—L satisfying N (0,)=1, and
N (1;)=0,. If N (N(X)) =x V x € L, then N is called an involutive negation.

If for all x €[0, 1], Ny(x) = 1-x, we say that N, is the standard negation on ([0, 1],<).

Def.2.8.The 3-tuple (X, M , 7) is said to be an L-fuzzy metric space if X is an arbitrary (non-
empty)set, 7 is continuous t-norm on £ and M is an L-fuzzy set on X x(0, +oo)satisfying the
following conditions for every X, y, zin X and t, s in (0, +0)

i. M(X, y, t)>L OL;
ii.  M(xvy,t)=1, forallt>0 if and only if x=y;
. M(x,y, )= M(y, x, t);
iv.  J(M(x Y1), M(y, z, )<, M(X, z, t+s);
v.  M(X, Y, .):]0, co[-L is continuous.
In this case M is called an L-fuzzy metric. If M= M),y is an intuitionistic fuzzy set
then the 3-tuple (X, My, n , ) is said to be an intuitionistic fuzzy metric space.
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Example: Let (X, d) be a metric space. Set 7 (a, b) = (a;b;, min(a, + b,, 1) ) for all

a= (a;,a,) and b = (b, b,) in L*and let M and N be fuzzy sets on X? x (0, co)defined as follows:

ht" md(x,
Mg 06 ¥, D) = (M 0 Y, 0, NG Y, ) = (s il

(X, My, ) is an intuitionistic fuzzy metric space.

) for all t, h, m, ne R*. Then

Lemma 2.9. [2]: Let (X, M, J) be an £L-fuzzy metric space .Then M (X, Yy, t) is non-decreasing
with respect to t for all x, y in X.

Proof: Lett, s € (0, +o0) be such that t<s. Then k=s-t > 0 and M(x, y, t) =7 (M(X, Y, t),1,)
=J (M(X1 yi t)! M(y’ y’ k)) SLI\/I(Xv y! S)'

Def.2.10. A sequence {x,},enin an L-fuzzy metric space (X, M, J) is called a Cauchy sequence,
if for each €€ L\{0;}and t>0, there exists n, EN such that vm >n>n,(n=>m >=n,), M
(Xm» Xn, ) >N (€).The sequence {x,}.en IS Said to be convergent to xe X in the £L-fuzzy metric
space (X, M, J) (denoted by x, — X in M) if M (x,,x, t)= M (X, x,,t) = 1,whenever n— +oofor
every t >0. A L-fuzzy metric space is said to be complete if and only if every Cauchy sequence is
convergent.

Thus 7 is a continuous t-norm on lattice £ such that for everyu € L\{0,, 1.}, there is a
Me L\{O;, 1, }suchthat 7""1(N(A), ......., N(A))> N(w).

Lemma 2.11.[20] Let (X, M, J) be an L-fuzzy metric space. Then M is continuous function on
XX X X]0, oo.

Def.2.12.Let (X, M, 7) be an L-fuzzy metric space. Then M is said to be continuous on Xx X X
10, 00[ that is lim,_c M (X, Y, tn)=M(X, Yy, t) whenever a sequence {(x,,y,, t,)} In XXX X
]0, oo[ converges to a point (X, Y, t)e XX X x]0, oo[that
IS limp L0 M (Xn, X, 1)=limp 0 M (y,,, ¥, )= 1andlim, L M(x,y,t,)=M(X, Y, ).

Lemma2.13 [2]: Let (X, M, ) be an L-fuzzy metric space. Define Ey 5. :X> = RTu{0} by Ej 5 (X,
y) =inf { t>0 : M'(x, y, t) > N(A)} for each A€ L\{0,, 1, }and X, y €X. Then we have

i. For any pe L\{O 1, }there exists A€ L\{O; 1, }such that Egs(x,%,) <

E?\,M(Xll Xz) + E)\,M(Xz, X3) +o E)\'M(Xn_l,xn)for any Xq,..ooveiian. » Xn € X.

ii.  The sequence {x,},enIiS convergent w.r.t L-fuzzy metric M if and only if E; »,(x,,x) =
0.Also the sequence {x, },enis Cauchy w.r.t L-fuzzy metric M if and only if it is Cauchy
WlthE)\’M

Lemma2.14: Let(X, M, J) be an L-fuzzy metric space. If M (X,,, Xp41,t) =1 M (xp, %1, k™)
for some k>1 and n €N .then {x,, } is a Cauchy sequence.

Proof: For every Ae L\{0;,1, }and x,, € X, we have

E}\,M(Xn+lt Xn): inf {t> 0: M (Xn+1' Xn t) >LN O‘)}
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< inf {t>0: M (x,, x5, k™) >N (W)}
= inf {kLn: M (xpx5,8) >N )}
= inf {t>0: M (x5, x5, £) >N (1)}
=kin Ex e (X0, X1).
From lemma 2.12, for every pe L\{O,, 1, } there exists A€ L\{O,, 1, }, such that

Eu,M (Xn' Xm) < E}\,M(Xn' Xn+1) + E)\,M(Xn+1' Xn+2) + -t E)\,M(Xm—ll Xm)

= EAM(XO' X)) + =3 kn+1 Exac(Xo, X)) + -+ + Tm1E (X0:X1)

1
= Ex (X0, X1) 272 o Py 0.

Hence the sequence {x, } is a Cauchy sequence.

Def.2.15. We say that L-fuzzy metric space(X, M, J) has a property C, if it satisfies the
following condition M(x, y, t) = C forall t > 0 impliesC = 1,.

Def.2.16. Let (X, M, J) be an L- fuzzy metric space The L-fuzzy metric is triangular if it
satisfies the condition (M( -1) <( -1) + ( 1)

M(xzt) M(yz t)

for every X, y, z € X and every t >0.

Def.2.17.Let X be a non-empty set, m be a positive integer and f: X — X an operator. By
definition, X = U7Z; X; is a cyclic representation of X with respect to f if

' X, i=1,2,....... , m are nonempty stes;
R 6.6 [=5, CYN— f(Xm-1)CXm, f(X X,

Inspired by D. Gopal et al. [9] we present the notion of cyclic weak @-contraction for four
operators in L- fuzzy metric space.

Def.2.18. Let (X, M, 7) be an £L-fuzzy metric space, 44, A,, ... ... ...., A,, be closed subsets of X
and Y = UM%, A; . Operators P, Q, S and T: Y=Y are called cyclic weak @-contraction if the
following conditios hold:

i.  Y=UL,A; isacyclicrepresentation of Y with respect to P, Q, S and T respectively
ii.  There exists a continuous, non-decreasing function @: [0, +o0)— [0, +)

With @(r)>0 for r >0 and @(0) = 0, such that

1 1 1
(M(Px, Qy, ) =, (M(Sx, Ty, kt) -1)- Q(M‘(Px, Sx, kt) 1)
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Foranyx € A; ,y € A;41 (1=1, 2... m, where A,,,.; = A; and each t > 0.

3. Main Theorem:

Theorem3.1. Let (X, M, J) be an L-fuzzy metric space, A4, 4,, ... ... ..., A, be closed subsets of
Xand Y = U%;A; be complete. Suppose that @:[0,4+00) = [0, +o0) is continuous, non-
decreasing function with @(r)>0 for r € (0, +) and @(0) = 0.

IfP,Q,Sand T: Y-Y be acyclic weak @ - contraction such that

i, PO)UQ(X)S S(X)NT(X),

.. 1 1
1.

(M(Px, Qy, ©) 1=, (M(Sx, Ty, kt) -1)- Q)(M(Px, Sx, kt) 1.
Then P, Q, Sand T has a unique fixed point z € N%; 4;.

Proof: Since P(X) uQ(X)<S S(X)nT(X) , thus we have P(X)< T(X), therefore for any arbitrary
point xo €Y = UJ%, 4; there exists x; €Y such that Pxy,= Tx;

And Q(X) € S(X), for this point x;, we can choose a point x, €Y such that Qx;= Sx, and so on.
Thus by induction we can define a sequence {y,} such that y,, = Tx,,.1 = Pxy,.

Yon+1= SXon42 = Qxo,41 for every n € NU {0}. Now to prove that {y,} is a cauchy sequence in
X.

Put X =x,,, ¥ = X2, 41 In (ii)

( 1) <, ( :

M (Pxgn,Sxon kt)

1) - &( 1).

M (Px2p,Q%2n+1,t) M (Sx2n,Txn +1,kt)

= (

1
MY2n, Y2n+1, t)

1
M Yn-1Y2n, kt)

--1).

1
M (Y2n,Y2n-1,kt)

1) <u( -1) - @( -1).
1

MY2n-1Y2n, kt

<y (

=M (Van,Yan+1,t) 21 M (Van-1,Y2n, kt) VnEN.
This implies M (2., Y2n+1, t) is @ non-decreasing sequence of positive real numbers in [0, 1].
Thus we have M (Y, Vns1,t) =1L M (Ve t, Vi, K £) 21 e v e = M (Yo, Y1, k™ 1).
Therefore by lemma 2.13 we have {y, } is a Cauchy sequence.
Since Y is complete, there exists a point ze Y such that lim,,_,, y,, = z.
Thus Tx,41, PX2y, SX2p42 and Qxy, 41 CONVergeto z €Y.

Since the mappings are @-contraction, thus the iterative sequence {y, } has an infinite number of
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terms in A; for each i=1, 2...m. As Y is complete then from each A4, , i=1, 2,...m, one can
extract a subsequence of {y, }that converges to z. Also each 4, , i=1, 2...m, is closed ,we have
that pointy € N, 4; and N2, A; # @.

Next we are to prove that z is fixed point of P, Q, Sand T.

As Q(X) < S(X) therefore there exists a point ueYsuch that Su= z. Now on putting X = u and

Y = Xg,41 In (ii) we get

1 1
(M(Pu,Qx2n+1,t) =, (M(Su Tx2n+1 kt) -1)- Q)(M(Pu,Su,kt) -1

Now on taking the limit as n— oo we get
1 1 1

(M(Pu, z, t) -1) SL (M(Z,z,kt) -1) ) Q)(M(Pu,z, kt) - 1)'

= M (Pu, z,t)=;, M (z, z, kt)=1, as M is continuous.
Thus we have Pu=Su=z.

Now as P(X) € T(X), therefore there exists a point v € Y such that Tv= z. Now on putting x =
X2, and y =v in (ii)

1
We 0ot Getrmar v ) St GeGonan, 10 100

-1) - &(

M (Pxon, Sx2n kt) D).

Now on taking the limit as n — oo we get,

1
= (M(Z, QU,t) ) =L (M(Z z, kt)

-1) - &(

M(z z, kt) 1)

= M (z,Qv, t)=>, M (z, z, kt)=1, as M is continuous.

Thus we have Qv=Tv=z.
= Pu=Su= Qv=Tv=2z.
Now we are to prove that Pz=z, for this put x=z and y =v in (ii) we get

1 1
(M(Pz,Qv,t) 1=, (M(SZ,TU,kt) -1)

1
) Q(M(PZ,SZ,kt) - D.

1 1
:>(.M‘(Pz, Z t) 1)<, (M(Pz,z, kt) -1)- ®(M(Pz,Pz,kt) - = (M(Pz,z, kt) -1)

= M (Pz,z,t) 2, M (Pz, z, kt)....=>;, M (Pz,z k"t)

But as M (X, Y, t) is non-decreasing with respect to t for all x, y in X. Hence M (Pz, z, t) = C for
all t >0. Since (X, M, 7) has property (C), it follows that C =1, .Thus we get Pz=z, therefore Pz
= Sz=z .Similarly we can prove that Qz = Tz =z.

Thus P, Q, S and T have a fixed point ze N%, A
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Now to prove their uniqueness let us choose another point we N7X; A;.Therefore w is another
common fixed point of P, Q, Sand T that is Pw= Qw = Sw = Tw =w. Thus

(M(zw t) 1) = ( M (Pz,Qw t) 1)<, (JV[(SZ,TW,kt) 1)
1

1 1
ﬁ( M(z,w,t) ) ( M(z, w, t) )SL (JV[(Z, w, kt) -1) -Q)(M(Z, z, kt)_ 1)'
1

1 1 1

M (Pz,Sz,kt)

- @( - 1).

= Geerw ™
=M (z,w,t) =2, M (z, w, kt)....=2 M (z, w, k™t).

Again as M(X, Yy, t) is non-decreasing with respect to t for all x, y in X. Hence M (z, w,t) =C
for all t >0. . Since (X, M, 7) has property (C), it follows that C = 1, .Thus we get z= w .Thus z,
is the unique common fixed point of maps P, Q, Sand T.

Corollary 3.2. Let (X, M, J) be an L-fuzzy metric space, 44,45, ... ... ...., A, be closed subsets
of X and Y = U2, 4; be complete. Suppose that @:[0,+o0) — [0, +o0) is continuous, non-
decreasing function with @(r)>0 for r € (0, +c0) and @(0) = 0.

IfP,Q,Sand T: Y-Y be acyclic weak @ - contraction such that

i, POOUQX)C S(X)NT(X),

.. 1
1.

G, & 0 D= G 1 D 26 5w~ D

Then P, Q, Sand T has a unique fixed pointz € N[%; A

Proof: to prove the result replace Q by P in theorem 3.1.
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