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ABSTRACT 

Significant portion of cache energy in a highly associative cache is consumed during tag 

comparison. In this paper tag comparison is carried out by predicting both cache hit and cache 

miss using multistep tag comparison method. A partially tagged bloom filter is used for cache 

miss predictions by checking the non-membership of the addresses and hotline check for cache 

hit prediction by reducing the tag comparisons. Current complex embedded application employs 

a multiprocessor system-on-chip (MPSoC). A MPSoC consists of multiple processors, shared 

memory hierarchy and a global off-chip memory. This architecture meets the performance 

requirements of multimedia application respecting the constraints on memory, cost, size, time 

and power. Scheduling the tasks of an embedded application on the processors and partitioning 

the available L2 cache budget among these processors are two critical issues in such systems. In 

this paper, an integrated approach is used for task scheduling and L2 cache partitioning to further 

reduce the execution time of embedded applications. 
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INTRODUCTION  

A CPU cache is a cache used by the central processing unit of a computer to reduce the 

average time while accessing the main memory. The cache memory is a smaller and faster 

memory which stores copies of the data from the locations which are most frequently used i.e. 

the main memory. As long as the most memory accesses of the processor are cached, the average 

latency of memory accesses will be closer to the cache latency than to the latency of main 

memory.  

Multi-level caches generally operate by checking the smallest Level 1 (L1) cache first, if it 

hits, the processor proceeds by taking data from L1 cache at high speed. If a miss is given by the 

smaller cache, then the next larger cache Level 2 (L2) cache is checked, and so on, before the 

main memory is checked. L2 caches is becoming increasingly popular in chips and are 
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characterized by high switching power due to large amount of power consumed during tag 

comparison.  

High switching power in L2 cache is due to two factors. First is that the L2 cache is 

characterized by high associativity than the L1 cache. High associativity is adopted in L2 cache in 

order to reduce conflict misses. Second factor is that power consumed during tag comparison is 

expected to increase further due to cache coherence [3], [4].  

Architectures with multiple processors on a single chip is an attractive solution in embedded 

application. Multiprocessor system on chip (MPSoC) consisting of multiple processing elements, 

shared L2 cache hierarchy and I/O components interconnected. In embedded systems which are 

very complex, increase in memory access speed has failed to maintain with the increase in processor 

speed. This makes the latency of memory access a major issue in scheduling applications on embedded systems. 

Multiprocessor system-on-chip model uses a memory hierarchy with fast on-chip L2 caches 

and a slow off-memory. Such a memory hierarchy enables proper allocation of variables to the 

on-chip multi-step tag comparison L2 cache by reducing the off-chip accesses. The execution 

time of a program by a processor depends on how much L2 cache is allocated to that processor. 

RELATED WORKS  

Cache architectures for low power are classified into three: tag comparison, data access and 

leakage. Koji et al. [5] presented a way-predicting cache that predicts the most recently used 

(MRU) way which chooses one way before starting the normal cache-access process, and then 

accesses the predicted way. If the prediction is correct, the cache access has been completed 

successfully. Otherwise, the cache then searches for the remaining ways. Powell et al. [6] uses 

way-prediction and selective direct-mapping, to reduce L1 cache dynamic energy while 

maintaining high performance.  

Z. Zhu et al. [8] and [12] presented a multiple MRU (MMRU) way that predicts an MRU way 

per partial tag. Based on this, cache hit and miss predictions are used for cache design with 

minimal energy consumption.  Dai and Wang [7] proposed a way-tagged cache in order to 

reduce L2 cache tag accesses of a write-through L1 cache. Caches write-through policy gives 

performance improvement and at the same time achieving good tolerance to soft errors in on-

chip caches. 

The cache hit prediction methods suffers from high penalty when the cache miss rates are 

high.  The cache miss prediction methods will overcome this limitation.  

Zhang et al. [9] proposed a new cache architecture, called a way-halting cache that reduces 

the energy while imposing no performance overhead. This way-halting cache is a four-way set-

associative cache that stores the four lowest-order bits of all way tags into a fully associative 

memory, which we call the halt tag array. Further accesses to ways with known mismatching 

tags are then halted, thus saving power. M Ghosh et al. [10] and [11], proposed a new hit/miss 

predictor that uses a Bloom Filter to identify cache misses early in the pipeline.  

Task scheduling of embedded application on multiple processors is meant to reduce the 

execution time. Benini et al [15] did the task scheduling using constraint programming and 

memory partitioning using integer linear programming. Panda et al [16], [17] presented a 

comprehensive allocation technique for scratchpad memories for uniprocessor.  
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PRILIMINARIES AND MOTIVATIONS 

A. Implementation of L2 Cache 

The implementation of the proposed method is shown in Fig.1. It includes Tag comparison 

control (TC), Bloom filter (BF), Tag, Data array, Miss State Holding Register (MSHR) and write 

buffer [1]. The proposed multistep tag comparison method combines both cache hit and miss 

prediction. The control logic for tag comparison called tag comparison control takes the input 

address from L1 cache and determines how many steps the tag comparison requires. It also 

performs the timeout countdown i.e., the tag counter update, depending on the tag comparison 

results. The tag counter is updated on sampled accesses (once for 128 accesses in our 

experiments) in order to reduce the energy consumption of accessing local TO counters.  

 

 

Fig 1: Implementation of the proposed method 

In Fig.1 miss state holding register (MSHR) is seen, which plays the major role in the 

implementation. From the figure it is clear that MSHR performs the existing functions, i.e. cache 

replacement, issuing a cache request to the main memory, and  it sets the local TO counter of the 

cache line. In addition to the existing functions in the proposed method, the MSHR updates the 

Bloom filter in both cases of line-fill (to increment the corresponding counter) and eviction (to 

decrement the counter). 

Upon a L2 cache miss, when the requested line arrives at the L2 cache, it is first given to the 

L1 cache and then written to the L2 cache. The MSHR updates the bloom filter with subsequent 

accesses to the bloom filter. In such cases, the MSHR request has priority over the subsequent 

one and delays the latter by one clock cycle.  

B. Multistep Tag Comparison  

The proposed multistep tag comparison method combines both cache hit and miss prediction. 
It is dynamic in nature i.e dynamically adjusts the order of tag comparison steps to maximize the 
efficiency of cache hit and miss predictions. We utilize the hot hit ratio to determine which 
method to apply first. 

Fig.2 shows the two possible configurations used in the proposed dynamic multistep tag 

comparison. At low or medium hot hit rates, we apply as Fig. 2(a), where a partially  tagged 

Bloom filter (pBF) is first applied because the number of cache accesses filtered by the Bloom 

filter (= #total accesses × cache miss rate × cache miss prediction accuracy) increases as the hot 

hit rate decreases (i.e., cache miss rate increases). This reduces the tag comparisons otherwise 

required only to give cache misses as the results while wasting energy. At high hot hit rates, as in 

Fig. 2(b) shows, the hot line check is performed before the partially tagged Bloom filter check. 

This order is adopted because the hot line check is more likely to give cache hits, which allows 
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both subsequent Bloom filter checks and tag comparisons for cold lines to be skipped thereby 

reducing energy consumption [1].  

 

 

Fig 2: Hot Hit Ratio Based Multistep Tag Comparisons. (a)Medium/low Hot Hit Ratio. (b) High 

Hot Hit Ratio 

A threshold of hot hit ratio is used in the proposed method (obtained during the design stage) 

and compared with the current hot hit ratio (calculated during runtime) and the threshold is used 

to make a runtime decision regarding which of the two configurations in Fig. is applied first. The 

best performing threshold varies with programs as the cache access behavior varies between 

programs. 

C. Partially Tag-Enhanced Bloom Filter 

In the case of a singleton entry, the original bloom filter will not specify whether the incoming 

address is present in the cache way. A partial tag for each BF entry is proposed to check the 

presence of incoming address in the case of singleton entry. Fig. 3 shows a partially tagged 

counting bloom filter.   

 

Fig 3: Bloom filter with a partial tag 

A BF entry has a tuple <C, Z, S, P>, where C is the counter, Z is the zero flag, S is the 

singleton flag, and P is the partial tag. The size of the partial tag is small, 3 bits. Thus, compared 

to the original Bloom filter, the partial tag-enhanced Bloom filter has an overhead of 4 bits 
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(including the S flag) per entry. On each entry/exit (program/de- program) of address to/from the 

Bloom filter, the corresponding partial tag is calculated in bitwise XOR operations as follows: 

  PTagnew = PTagold XOR PTagin //BF entry (program)      

  PTagnew = PTagold XOR PTagout //BF exit (de-program) 

where PTagold and PTagnew represents the old and newly calculated partial tags, respectively. 

PTagin and PTagout represent the partial tags of the incoming (i.e., newly fetched) and outgoing 

(i.e., evicted) cache lines, respectively. Such a partial tag manipulation gives the partial tag of the 

currently existing address in the case of a singleton entry.  

A pseudo code of the partially tagged bloom filter operation when k=1 is shown in the Fig.4. 

Compared to the original functionality of the bloom filter for cache miss predictions, the new 

functionality is shown in bold [1]. If the zero flag is zero of the corresponding bloom filter entry, 

then the singleton check and the partial tag match are performed. If there is a mismatch between 

the partial tag in the incoming address and the singleton entry, the result is a miss in the 

corresponding cache way.  

 

 

 Fig 4: Partial tag enhanced bloom filter operation 

 

PROPOSED L2 CACHE MULTIPROCESSOR SYSTEM-ON-CHIP (MPSOC) 

D. Architecture Overview 

Fig. 5 shows a MPSoC architecture which consist of multiple processors, a shared L2 cache 

divided among the multiple processors and a global off-chip memory that can be accessed by 

these processors [2]. This technique can also be used for an architecture where each processor 

has a private L2 cache such that each processor can access the L2 cache of other processors.  

An embedded application is divided into a set of tasks where the available processors execute 

one or more independent tasks in parallel. This is  extremely useful in MPSoC and leads the 

potential to speed up the execution time.  

An embedded application usually consists of computational blocks, where each block is 

considered as a task. Each task is dependent on another task and should be respected in the 

schedule.  
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Fig 5: Architectural model of five processors 

E. Task dependence graph (TDG) 

A graph is a nodes and edges that connect the nodes.  A TDG is a directed acyclic graph 

where each vertex is a task in the embedded application and with weighted edges. Ti and Tj are 

two tasks in the TDG. Fig. 6 shows a task dependence graph [2].  An edge from Ti to Tj 

represents a scheduling order where Tj is executed only when necessary data is obtained from Ti 

after the execution of it. Communication cost is defined as the weight of the edge. 

 

    

 

 

 

     

 

Fig. 6 Task dependence graph 

The execution of a task Tj cannot be started until necessary data communication is carried 

out. Communication cost is the weight of the edge. Fig. 6 shows a TDG and from this figure it is 

clear that task Tl is computed only after the execution of Ti, Tj and Tk. And also Tn is computed 

only after the execution of Tl and Tm. 

 Each task can be mapped into any of the available processors. The time taken to complete 

each task depends on the processor into which the task is mapped and also the L2 cache memory 

allocated to that processor.  A larger L2 cache results in less computational time because 

accessing the off-chip memory is expensive compared to the fast on-chip L2 cache. 

F. An example 

Consider an example in Fig. 7 of a task dependence graph with six tasks T1, T2, T3, T4, T5 

and T6. Task T4 execution depends on task T1, T2 and T3 and task T6 depends on the execution 

of tasks T4 and T5. An edge between the tasks Ti and Tj has a weight and called as the 

Ti 

Tj 

Tk 

Tl Tn 

Tmn

op 
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communication cost should be accounted such that these two tasks are allocated to two different 

processors [2].  

 

Fig. 7: Task Dependence Graph 

Define Minik, Avgik, and Maxik as the computation time for task Ti on processor Pk assuming 

all of the available L2 cache budget is assigned to Pk, 1/n of the available L2 cache budget is 

assigned to Pk where n is the number of processors, and no L2 cache is assigned to Pk, 

respectively. These values are used later in the heuristic. Here we assume two processors.  

Fig. 8 shows scheduling of tasks without L2 cache. Tasks T1, T2, T3 and T5 are ready to 

execute. So we map first tasks T1 and T2 to processors P1 and P2 respectively. The scheduling 

algorithm schedules the task T3 to P2 because the processor P2 is free before P1 since the 

execution time of T2 is less than T1. Same way the tasks T4 and T6 are assigned to the processor 

P1 and task T5 to processor P2. The overall cost of the schedule is 29.  

 

Fig 8: Schedule based on no L2 cache 

The scheduling of tasks with equal partitioned L2 cache between the two available processors 

is shown in Fig. 9. With this scheduling the L2 cache is divided equally between the two 

processors P1 and P2 regardless of what tasks are mapped to the processors. Here task T1 is 

mapped to P1 and task T2 to P2. After the execution of T2, T3 is given to P2. Since T4 is 

executed only after the completion of the tasks T1, T2 and T3, T5 is mapped to P1 after the 

execution of T1. Finally T4 and T6 are given to P1. 
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Fig 9: Schedule based on equal partitioned L2 cache 

The integrated approach integrates task scheduling and memory partitioning into one step. 

Here the L2 cache is divided both equally and unequally. The problem with the previous 

schedule is that it allocates T3 to the same processor P2 that is scheduled to execute T2. This 

scheduling is the reason for dead time in the schedule as T2 cannot benefit much from more L2 

cache memory.  

Fig. 10 shows the integrated approach. In an integrated approach task T1 is mapped to P1and 

task T2 to P2. Since the execution time of T1 is less than T2, T3 is mapped to P1. Finally T4 and 

T6 is mapped to P1 and T5 to P2. 

 

Fig 10: Schedule based on integrated approach 

G. Integrated heuristic 

      In the integrated heuristic in Fig.8 it starts with profiling the application to extract important 

information. From the information of profiling data, the embedded application can be divided 

into tasks with a necessary data communication between two tasks imposing a certain kind of 

dependence. Based on the extracted tasks and the communication between them, the task 

dependence graph is created. In this graph, each task is represented by a vertex [2] and each 

communication cost by a weighted directed edge. 

 



International Journal of Emerging Trends in Engineering and Development                 Issue 3, Vol.2 (May 2013)                                                                                                    

Available online on http://www.rspublication.com/ijeted/ijeted_index.htm                                  ISSN 2249-6149 

R S. Publication, rspublicationhouse@gmail.com Page 103 
 

          
Fig. 8 Integrated scheduling heuristic 

 

  

For each available task Ti and processor Pj, we calculate the number of variables, the size of 

the variables, and Minij, Avgij, and Maxij values. Profiling is used to compute these values. 

Then, the ASAP values for all tasks are calculated based on the Avg values that are assuming the 

L2 cache budget which is equally divided among the available processors. Tasks will be sorted in 

an increasing order of the ASAP values in a list I1. For each task, following the ASAP sort, we 

evaluate the best processor to assign this task so that the overall computation time is minimally 

increased. 

 

The minimum start time of a task Ti on processor Pj, Start−time(Ti, Pj ), is equal to the 

maximum of the end time of processor Pj , End−time(Pj ), and the maximum end time of all its 

parent tasks, MaxTj∈Parent(Ti)(Tj), plus the corresponding communication time. Two 
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dependent tasks mapped to the same processor will have zero communication cost. In general, 

task Ti will be scheduled on the processor Pj corresponding to the minimum additional overhead 

time in the schedule. 

 

However, Ti may be scheduled on a processor Pk of higher overhead time provided that the 

predicted end computation time (PEC(Pk)) of this processor is at least δ% less than that of Pj 

(Line 17 of integrated heuristic in Fig. 8). Pj on Line 17 of Fig. 8 represents the processor 

corresponding to the current min value. The min value in the heuristic is the minimum additional 

overhead time that will be added to the schedule based on a certain task scheduling decision. We 

choose δ to be 10 in these experimental evaluations. This PEC (Pk) value is a guide to the 

scheduler of how much this overhead time may decrease with additional L2 cache memory 

transfers in future steps if Ti is mapped to Pk. PEC is an estimate of how much the end time of 

processor Pk will be if more L2 cache is assigned to it. 

 

EXPERIMENTAL RESULTS 

The simulation result of task scheduling and memory partitioning for Multiprocessor System 

on Chip (MPSoC) using low-power L2 cache architecture is obtained using XILINX ISE 12.3i 

with SPATAN 3E XCS500 as the target device. The simulation result shows that the integrated 

heuristic with L2 cache is having less power compared to no L2 cache and equal partitioned L2 

cache approaches. The power analysis shows that the MPSoC with shared L2 cache using 

integrated heuristic has a power consumption of 52mW which is less than the other three 

scheduling approaches. Table 1 shows the comparison of power analysis of the three different 

scheduling methods. Thus it is clear that task scheduling and memory partitioning for MPSoC 

with shared L2 cache using integrated heuristic is having 17% less power compared to the other 

three scheduling approaches. 

Table. 1 Comparison for power analysis for integrated approach 

 

 

 

Power 

Schedule based on no 

L2 cache (mW) 

Schedule based on equal 

partitioned L2 cache 

(mW) 

Schedule based on 

integrated heuristic 

(mW) 

Total Power 63mW 59mW 52mW 

 

CONCLUSION 

The partially tagged bloom filter and hotline check ensures use of both cache hit and cache 

miss prediction. A partial tag- enhanced Bloom filter is used to improve the accuracy of cache 

miss prediction and hot/cold checks (with dynamic time out tracking) as a cache hit prediction 

method. This multistep tag comparison L2 cache is used in multiprocessor system on chip for 

embedded application. This embedded application is divided into several dependent tasks and 

using a task dependence graph embedded application is executed.  The power of the task 
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scheduling and memory partitioning for Multiprocessor System on Chip (MPSoC) using low-

power L2 cache architecture is analyzed  using  XILINX ISE 12.3i with STARTAN 3E XCS 250 

as the target device. From the power analysis result it is clear that there is a reduction in power 

from 63mW to 52mW. 
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