Some Types of Contra $\alpha \mathfrak{r p s}$-Continuous Functions

Dunya Mohamed Hameed

Department of Mathematics, College of Education,Mustansiriyah University, Baghdad Iraq dunya_mahamed@uomustansiriyah.edu.iq

Abstract

The purpose of this paper is to define anew kinds of contra - continuous functions which is called contraorps -continuous functions. As well as, we will introduce other types of contra $\alpha \mathrm{rps}-\quad$ continuousfunctions which are $\left(\alpha \mathrm{rps}^{+}-\right.$continuous functions and arps $^{+\#}$-continuous functions) in topological spaces .Also, we will give some of its fundamental properties and discuss the relationships among these functions.

Keywords:-

$\alpha \mathrm{rps}$-closed sets , $\alpha \mathrm{rps}$-open sets, $\alpha \mathrm{rps}$-continuous functions ,contra- continuous.

1- Introduction :-

The notion of contra - continuous functions have been introduced and investigated by Dontchv J. [2] . Recently anew weaker from of this class of function called contra gcontinuous functions is introduced And investigated by Caldas.M, Jafari .S ,Noiri .T ,Simeos.T[4] .In 2014, Dunya M. Hamed [3]introduced and studiedarps-closed sets and also introduce the notion ($\alpha \mathrm{rps}$-continuous, $\alpha \mathrm{rps}$ - irresolute and strongly α rps -continuous) functions.
In this paper, we introduce and investigate some types of Contra - continuous which are (contra α rps- continuous functions , $\alpha^{2 r p s}{ }^{+}$-continuous functions and α rps $^{+\#}$-continuous functions). Further, we discuss some properties of these functions.
Throughout this paper ($\mathrm{X}, \mathrm{\tau}$) , ($¥, \rho$) and (Z, δ) (or simply X, Ψ and Z) represent non-empty topological spaces. For a sub set K of a space .cl $(\mathbb{K}), \operatorname{int}(K)$ and $K^{\text {c }}$ denoted the closure of K , the interior of K and the complement of K respectively.

2.Preliminaries:-

Definition (2-1) :- A subset K of a space X is said to
1- Semi-preopen[1]if $K \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{K}))$ and semi-preclosed ifint $(\operatorname{cl}(\operatorname{int}(\mathrm{K})) \subseteq \mathrm{K}$.
2- regular open [13] if $\mathrm{K}=\operatorname{int}(\mathrm{cl}(\mathrm{K}))$ and regular closed if $\mathrm{K}=\operatorname{cl}(\operatorname{int}(\mathrm{K}))$.
3- regular α-open [14] if there is a regular open set L such that $L \subseteq K \subseteq \alpha c l(L)$.
The semi-pre closureof sub set K of X is the intersection of all semi-pre closed sets containing Kand denoted byspcl(K)).

Definition (2-2) : A sub set K of a space is said to be :
1- generalized closed set (briefly, g-closed) [7] if $\operatorname{cl}(\mathrm{K}) \subseteq \mathrm{L}$ whenever $\mathrm{K} \subseteq \mathrm{L}$ and L is an open set in
2- regular generalized closed set (briefly , rg- closed) [10] if $\mathrm{cl}(\mathrm{K}) \subseteq \mathrm{L}$ whenever $\mathrm{K} \subseteq \mathrm{L}$ and L is a regular open set .
3- regular pre-semi closed (briefly, rps-closed)[8] if $\operatorname{spcl}(\mathrm{K}) \subseteq \mathrm{L}$ whenever $\mathrm{K} \subseteq \mathrm{L}$ and L is an rg- open set in .
4- α rps-closed set [3] if $\alpha \mathrm{cl}(\mathrm{K}) \subseteq \mathrm{L}$ whenever $\mathrm{K} \subseteq \mathrm{L}$ and L is a rps-open set in

The complement of g-closed (resp. rg-closed, rps - closed and $\alpha \mathrm{rps}^{-}$closed) sets is called a g-open (resp. rg-open, rps- open and α rps - open)sets ,
The class of all g-closed [resp. $\alpha \mathrm{rps}$-closed] subsets of is denoted by $\mathrm{GC}(\mathrm{X}, \tau)$ [resp. $\alpha \operatorname{RPSC}(\mathrm{X}, \tau)]$.

Remark (2-3),[3]:
Every closed (resp. open) set in is α rps-closed(resp. α rps-open)set.
Definition (2-4),[7] :
A topological space is said to be $\mathrm{T}_{1 / 2}$ - space if every g - closed sets is closed.
Proposition (2-5), [3] :
A topological space X is said to be $\mathrm{T}^{*}{ }_{1 / 2}$ - spaceif every $\alpha \operatorname{rpss}^{-}$closed (resp. $\alpha \mathrm{rps}$-open) sets is closed (resp. open)set.

Definition (2-7): A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be:
1- continuous function [6] if the inverse image of each open(closed) set in Y is an open(closed) set in X.
2- $\alpha \mathrm{rps}-$ continuous [3]if $\mathrm{f}^{-1}(\mathrm{~K})$ is $\alpha \mathrm{rps}-$ closed (resp. α rps- open)set in X, for every closed (resp . open) set K in Y .
3- arps-irresolute continuous[3] if $\mathrm{f}^{-1}(\mathrm{~K})$ is anarps - closed(resp.arps - open) set in X , for every α rps - closed (resp. α rps -open) set K in Y .
4- stronglyarps - continuous[3] if $\mathrm{f}^{-1}(\mathrm{~K})$ is closed(resp.open) set in X , for every $\alpha \mathrm{rps}^{-c l o s e d}($ resp. $\alpha \mathrm{pps}$-open) set K in Y .
5- Contra-continuous [2] if $f^{-1}(K)$ is closed set in X, for every open set K in Y.
6- Contra g-continuous[4] if $f^{-1}(K)$ is g - closed set in X, for every open set K in Y.

3-Main Results :

In this section, we introduce and define new kinds of contra -continuous functions namely contra α_{10}-continuous functions and other types of contraorps-continuous.

Definition (3-1):

A function $\mathrm{f}:(\mathrm{X}, \mathrm{x}) \rightarrow(\mathrm{Y}, \sigma)$ is called contra$\alpha \mathrm{rps}$ - continuous functionif the inverse image of each open set in Y is $\alpha \mathfrak{r p s}$-closed set in X .

Example(3-2):-Let $\mathrm{X}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ with the topology $=\{\mathrm{X}, \phi,\{\mathrm{u}\},\{\mathrm{v}, \mathrm{w}\}\}$, we define $\mathrm{f}:(\mathrm{X}$, $\tau) \rightarrow(\mathrm{X}, \tau)$ by $\mathrm{f}(\mathrm{u})=\mathrm{u}, \mathrm{f}(\mathrm{v})=\mathrm{v}$ and $\mathrm{f}(\mathrm{w})=\mathrm{w}$, it is observe that f is contra $\alpha \mathrm{rps}$-continuous function.

Proposition(3-3):

A function $\mathrm{f}:(\mathrm{X}, \mathrm{x}) \rightarrow(\mathrm{Y}, \sigma)$ is contraarps - function iff $\mathrm{f}^{-1}(\mathrm{~K})$ is $\boldsymbol{\alpha r p s}$-open set in X , for every closed set K in Y .

Proof :

Suppose that f is contraarps - continuousfunction and let K be a closed set in Y Then, K^{c} is an open set in Y, since f is contra $\alpha \mathfrak{r p s}$-continuous. Thus, $\mathrm{f}^{-1}\left(\mathrm{~K}^{\mathrm{c}}\right)$ is $\alpha \mathrm{rps}$-closed set in X . But $\mathrm{f}^{-1}\left(\mathrm{~K}^{\mathrm{c}}\right)=-\mathrm{f}^{-1}(\mathrm{~K})=\left(\mathrm{f}^{-1}(\mathrm{~K})\right)^{\mathrm{c}}$. Hence, $\mathrm{f}^{-1}(\mathrm{~K})$ is an $\alpha \mathrm{rps}^{2}$-open set in X .Conversely, let K be an open set in Y. Then K^{c} is closed set in .By assumption $f^{-1}\left(K^{c}\right)$ is $\alpha \operatorname{arps}^{\text {s }}$-open set in X. But $f^{-1}\left(K^{c}\right)=-f^{-1}(K)=\left(f^{-1}(K)\right)^{c}$.Hence, $f^{-1}(K)$ is a closed set in X. Therefore , f is contra α arps - continuousfunction .

Proposition(3-4):-

$\mathrm{f}:(\mathrm{X}, \mathrm{T}) \rightarrow(\mathrm{Y}, \sigma)$ is contra-continuous function ,then f is contraarps -continuous.
Proof :-It clear from the definition of contra-continuousand fact that every closed set is arps-closed .
The converse of above proposition need not be true as seen from the following example .
Example(3-5):-Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ with the topologies $\tau=\{\mathrm{X}, \phi,\{\mathrm{u}\}\}$ and $\rho=\{\mathrm{Y}, \phi,\{\mathrm{u}\}$, $\{u, w\}\}$, let $f:(X, \tau) \rightarrow(Y, \rho)$ define by $f(u)=v, f(v)=u$ and $f(w)=w$,clearly f is contra arps -continuous, but f is not contra-continuous, since for the open set $K=\{u\}$ in Y, but $\mathrm{f}^{-1}(\mathrm{~K})=\mathrm{f}^{-1}(\{\mathrm{u}\})=\{\mathrm{v}\}$ is not closed set in X .
The following proposition give the condition in order to make proposition(3-4) true:

Proposition (3-6):

iff : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ is contra $\alpha \mathrm{rps}$-continuousand is $\mathrm{T}^{*}{ }_{1 / 2}$-space, then f is contra continuous.

Proof:-

Let K be an open set in Y .Thus , $\mathrm{f}^{-1}(\mathrm{~K})$ is α rps-closed set in X . By hypotheses is $T^{*}{ }_{1 / 2}$-space, then by proposition(2-5)we get $\mathrm{f}^{-1}(\mathrm{~K})$ is closed set in X . Therefore, f is contra continuous function .

Remark (3-7):

The concept of contra g-continuous function is independent to concept contra $\alpha \mathrm{rps}$-continuous function. As shows in the following examples:

Example (3-8):

(i)Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ with the topologies $\tau=\{\mathrm{X}, \phi,\{\mathrm{v}\},\{\mathrm{u}, \mathrm{w}\}\}$ and $\rho=\{\mathrm{Y}, \phi,\{\mathrm{v}\}\}$. Let $\mathrm{f}:($ $X, \tau) \rightarrow(Y, \rho)$ be function define by $f(u)=v, f(v)=u$ and $f(w)=w$, clearly f is contra g continuous function but is not contraarps -continuous, since for the open set $K=\{v\}$ in Y, but $f^{-1}(\mathrm{~K})=\mathrm{f}^{-1}(\{\mathrm{v}\})=\{\mathrm{u}\}$ is not $\alpha \mathrm{rps}-$ closed set in X .
(ii)Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ with the topologies $\tau=\{\mathrm{X}, \phi,\{\mathrm{u}\},\{\mathrm{u}, \mathrm{w}\}\}$ and $\rho=\{\mathrm{Y}, \phi,\{\mathrm{u}\},\{\mathrm{v}\},\{\mathrm{u}$,v\}\}. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ by $\mathrm{f}(\mathrm{u})=\mathrm{w}, \mathrm{f}(\mathrm{v})=\mathrm{u}$ and $\mathrm{f}(\mathrm{w})=\mathrm{v}$, clearly f is contra $\alpha \mathrm{rps}-$ continuous function but is not contra g-continuous, since for the open set $K=\{v\}$ in Y, but $f^{-1}(K)=f^{-1}(\{v\})=\{w\}$ is not g - closed set in X.
The following propositions give the condition to make Remark(3-7)true:

Proposition (3-9):

Letf : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ be a contra g -continuous function and (X, τ) is $\mathrm{T}_{1 / 2}$ - space, then f is contraarps -continuous .

Proof:

Let K be an open set in Y .Thus , $\mathrm{f}^{-1}(\mathrm{~K})$ isg -closed set in X . By hypotheses X is $\mathrm{T}_{1 / 2}$-space, then by proposition $(2-6)$ step- $\mathrm{i}-$ we get $\mathrm{f}^{-1}(\mathrm{~K})$ is $\alpha \mathfrak{r p s}$-closed in XTherefore, f is contra $\alpha \mathrm{rps}^{-c o n t i n u o u s ~ f u n c t i o n . ~}$

Similarly, we proof the following proposition :

Proposition (3-10):

Letf : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ be contra α arps - continuous function and (X, τ) is $\mathrm{T}^{*}{ }_{1 / 2}$-space, then f is contrag-continuous .

Now, we will define other types of contraarps-continuous functionsnamely (contra $\alpha \mathrm{rps}^{\#}-$ continuous function andcontra $\alpha \mathrm{arps}^{\# \#}$-continuous function) .

Definition (3-11):

A function $\mathrm{f}:(\mathrm{X}, \mathrm{x}) \longrightarrow(\mathrm{Y}, \sigma)$ is called contra $\boldsymbol{\alpha r p s}{ }^{+}$-continuousfunctionif the inverse image of each α rps-open set G in Y is α rps -closed set in X.

Example(3-12):-

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ with the topologies $\tau=\{\mathrm{X}, \phi,\{\mathrm{u}\},\{\mathrm{v}\},\{\mathrm{v}, \mathrm{w}\}\}$ and $\rho=\{\mathrm{Y},, \phi,\{\mathrm{u}\}\}$, define f $:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ by $\mathrm{f}(\mathrm{u})=\mathrm{v}, \mathrm{f}(\mathrm{v})=\mathrm{w}$ and $\mathrm{f}(\mathrm{w})=\mathrm{u}$, it is observe that f is contra $\alpha^{2} s^{+}{ }^{+}$-continuous function.

Proposition(3-13):

A function $\mathrm{f}:(\mathrm{X}, \mathrm{x}) \rightarrow(\mathrm{Y}, \sigma)$ is contra $\alpha \mathrm{rps}^{+1}-$ continuous function if and only if $\mathrm{f}^{-1}(\mathrm{G})$ is arps- open set in X , for every arps-closed set G in Y .
Proof : The proof is similar to the proof of proposition(3-3).

Proposition(3-14):-

If $\mathrm{f}:(\mathrm{X}, \mathrm{T}) \rightarrow(\mathrm{Y}, \sigma)$ is contraarps ${ }^{+}$-continuousfunction then f is contraarps - continuous

Proof:

Let K be an open set in Y , since [every open set is α rps-open set], then K is $\boldsymbol{\alpha r p s}$ - open set in Y.Thus, $\mathrm{f}^{-1}(\mathrm{~K})$ is anarps-closed set in X . Therefore, f iscontraarps - continuousfunction
the converse of proposition (3-14) need not be true in general the following example to show
Example (3-15): Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ with the topologies $\tau=\{\mathrm{X}, \phi,\{\mathrm{u}\},\{\mathrm{u}, \mathrm{w}\}\}$ and $\rho=\{\mathrm{Y}$, $\phi,\{u\}\}$, and define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ by $\mathrm{f}(\mathrm{u})=\mathrm{v}, \mathrm{f}(\mathrm{v})=\mathrm{u}$ and $\mathrm{f}(\mathrm{w})=\mathrm{w}$ clearly, f is contraarps -continuous function, but f is not contraorps ${ }^{+}$-continuous, since for thearpsopen set $K=\{u, v\}$ in Y, but $f^{-1}(K)=f^{-1}(\{u, v\})=\{u, v\}$ is notarps - closed set in X. The following proposition give the condition to make proposition(3-14) true:

Proposition (3-16):

iff : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ is contra $\alpha \mathfrak{\alpha p s}$-continuousand Y is $\mathrm{T}^{*}{ }_{1 / 2}$-space, then f is contra $\alpha_{1 p s}{ }^{+}$-continuous.

Proof :

Let K be anarps-open set in Y . By hypotheses Y is $\mathrm{T}^{*}{ }_{1 / 2}$-space, then by proposition(2-5) we get, K is an open set in Y. Also , since f is contraorps -continuous, hence $f^{-1}(K)$ is α rpsclosed set in X . Therefore , f is contra $\boldsymbol{\alpha r p s}^{+}$-continuous function .

Remark(3-17):

The concept of contra continuousis independent to concept contra arps $^{+1}$-continuous function. As shows in the following examples:

Example (3-18):-

(i)Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ with the topologies $\tau=\{\mathrm{X}, \phi,\{\mathrm{u}\}\}$ and $\rho=\{\mathrm{Y}, \phi,\{\mathrm{u}\},\{\mathrm{v}\},\{\mathrm{u}, \mathrm{v}\}\}$. Let $\mathrm{f}:($ $\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ be function define by $\mathrm{f}(\mathrm{u})=\mathrm{w}, \mathrm{f}(\mathrm{v})=\mathrm{u}$ and $\mathrm{f}(\mathrm{w})=\mathrm{u}$, clearly f is contra arps $^{+}$-continuousbut f is not contracontinuous, since for the open set $K=\{u\}$ in Y, but $f^{-1}(K)=f^{-1}(\{u\})=\{v\}$ is notclosed set in X.
(ii)Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ with the topologies $\tau=\{\mathrm{X}, \phi,\{\mathrm{u}\},\{\mathrm{v}, \mathrm{w}\}\}$ and $\rho=\{\mathrm{Y}, \phi,\{\mathrm{u}\}\}$. Let f : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \mathrm{\rho})$ be function define by $\mathrm{f}(\mathrm{u})=\mathrm{u}, \mathrm{f}(\mathrm{v})=\mathrm{v}$ and $\mathrm{f}(\mathrm{w})=\mathrm{w}$, clearly f is contra continuous but f is notcontra $\alpha^{\text {rps }}{ }^{+}$-continuous, since for thearps- open set $K=\{1,2\}$ in Y , but $f^{-1}(K)=f^{-1}(\{1,2\})=\{1,2\}$ is notarps-closed set in X.
The following proposition give the condition to make Remark(3-17)is true:

Proposition (3-19):

iff : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ is contra -continuousandY is $\mathrm{T}^{*}{ }_{1 / 2}$-space, then f is contra $\alpha_{1 p s}{ }^{+}$-continuous.

Proof :

Let K be anarps-open set in Y . By hypotheses Y is $\mathrm{T}^{*}{ }_{1 / 2}$-space, then by proposition(2-5) we get, K is an open set in Y. Hence, $f^{-1}(\mathrm{~K})$ isclosed set in X and by Remark(2-3) we get , then $\mathrm{f}^{-1}(\mathrm{~K})$ isarps-closed set in X . Therefore, f is contra $\alpha^{2} \mathrm{ars}^{+1}$-continuous function .
Similarly, we proof the following proposition .

Proposition (3-20):

iff : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ is contra $\alpha \mathrm{arps}^{+}$-continuousand is $\mathrm{T}^{*}{ }_{1 / 2}$-space, then f is contra - continuous.

Definition (3-21):

A function $\mathrm{f}:(\mathrm{X}, \mathrm{x}) \rightarrow(\mathrm{Y}, \sigma)$ is called contra $\boldsymbol{\alpha r p s}{ }^{\text {H\# }}$-continuousfunction if the inverse image of each arps-open set G in Y isclosed set in X.
Example(3-22):-
Let $=\{u, v, w\}$ with the topologies $\tau=\{X, \phi,\{v\},\{u, w\}\}$ and $f:(X, \tau) \rightarrow(X, \tau)$ by $f(u)=u$, $\mathrm{f}(\mathrm{v})=\mathrm{v}$ and $\mathrm{f}(\mathrm{w})=\mathrm{w}$, it is observe that f is contra $\alpha \operatorname{arps}^{+\#+}-$ continuous function.

Proposition(3-23):

A function $\mathrm{f}:(\mathrm{X}, \mathrm{x}) \longrightarrow(\mathrm{Y}, \sigma)$ is contra $\alpha \operatorname{arps}^{+\#}$ - continuous function if and only if $\mathrm{f}^{-1}(\mathrm{G})$ is open set in X , for every arps-closed set G in Y .
Proof :The proof is similar to the proof of proposition(3-3).
Proposition(3-24):-If f: $(\mathrm{X}, \mathrm{x}) \longrightarrow(\mathrm{Y}, \sigma)$ is contra ${\alpha \mathfrak{a r p s}^{+\#}}^{+\#}$-continuous function , then f is
(i) Contra - continuous .
(ii) Contra $\alpha \mathfrak{r p s}$-continuous.
(iii) Contra $\alpha r p s^{+}$-continuous function

Proof(i) :Let K be an open set in Y, since [every open set is α rps-open set], then K is $\alpha \mathrm{rrps}^{-}$ open set in Y. Also, since f is contraarps ${ }^{+\#}$ - continuous function. Thus, $\mathrm{f}^{-1}(\mathrm{~K})$ is closed set in X . Therefore, f iscontra-continuousfunction .
The proof of step -ii- and -iii- are similar to step-i- .
The converse of proposition (3-24) need not be true in general the following examples to show:
Example (3-25):-Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ with the topologies $\tau=\{\mathrm{X}, \phi,\{\mathrm{u}\},\{\mathrm{v}, \mathrm{w}\}\}$ and $\rho=\{\mathrm{Y}$, $\phi,\{u\}\}$, and define $f:(X, \tau) \rightarrow(Y, \rho)$ by $f(u)=u, f(v)=w$ and $f(w)=v$, clearly f is contra continuous (resp. contraarps - continuous) function, but f is not contra $\boldsymbol{\alpha} \boldsymbol{r p s}^{\#+\#}$-continuous function, since for the $\boldsymbol{\alpha r p s}$-open set $\mathrm{K}=\{\mathrm{u}, \mathrm{w}\}$ in Y , but $\mathrm{f}^{-1}(\mathrm{~K})=\mathrm{f}^{-1}(\{\mathrm{u}, \mathrm{w}\})=\{\mathrm{u}, \mathrm{v}\}$ is not closed(resp. $\boldsymbol{\alpha} \mathbf{r p s}$ - closed) set in X .
Example (3-26):-Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ with the topologies $\tau=\{\mathrm{X}, \phi,\{\mathrm{u}\},\{\mathrm{u}, \mathrm{w}\}\}$ and $\rho=\{\mathrm{Y}$, $\phi,\{u\}\}$.Let $f:(X, \tau) \rightarrow(Y, \rho)$ define by $f(u)=v, f(v)=w$ and $f(w)=u$, clearly f iscontraarps ${ }^{+\#}$-continuous, but f is notcontra continuous (resp. contraarps -continuous) function , since for the open (resp. α rps- open) set $K=\{u\}$ in Y, but $f^{-1}(K)=f^{-1}(\{u\})=\{w\}$ is not closed set in X .
The following proposition give the condition to make proposition(3-24) are true:

Proposition (3-27):A functionf : $(, \tau) \rightarrow(\mathrm{Y}, \rho)$ is contra $\boldsymbol{\alpha r p s}{ }^{\# \#}$-continuousif
(i) f is contra -continuous and Y is $\mathrm{T}^{*}{ }_{1 / 2}$-space.
(ii) f is contraarps - continuous and Y is $\mathrm{T}^{*}{ }_{1 / 2}$-space.
(iii) f is contra $\alpha_{\mathrm{rps}}{ }^{+}$-continuous and X is $\mathrm{T}^{*}{ }_{1 / 2}$-space.

Proof (i):Let K be an α rps-open set in Y . By hypotheses Y is $T^{*}{ }_{1 / 2}$-space, then by proposition(2-5) we get, K is an open set in Y. Also , since f is contracontinuous.Hence, $\mathrm{f}^{-1}(\mathrm{~K})$ isclosed set in X . Therefore, f is contra $\alpha^{2} \mathrm{rs}^{\# \#}$-continuous function.

The proof of step -ii-and -iii-are similar to step-i- .

Remark (3-28):

The composition of two contra $\alpha \mathrm{rps}^{-c o n t i n u o u s ~ f u n c t i o n s ~ n e e d ~ n o t ~ b e c o n t r a ~}$ arps -continuous function, the following example to show that:

Example (3-29):

Let $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ with the topologies $\tau=\{\mathrm{X}, \phi,\{\mathrm{u}\},\{\mathrm{v}\},\{\mathrm{u}, \mathrm{v}\}\}, \rho=\{\mathrm{Y}, \phi,\{\mathrm{u}\}\{\mathrm{u}, \mathrm{w}\}\}$ and $\quad \mu=\{Z \quad, \phi,\{u\}\}, \quad$ where $\quad \alpha \operatorname{RPSC}(X \quad, \tau)=\{X, \phi,\{w\},\{u, \quad w\},\{v, \quad w\}\}$ and $\alpha \operatorname{RPSC}(\mathrm{Y}, \rho)=\{\mathrm{Y}, \phi,\{\mathrm{v}\},\{\mathrm{w}\},\{\mathrm{v}, \mathrm{w}\}\}$. Define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ by $\mathrm{f}(\mathrm{u})=\mathrm{v}, \mathrm{f}(\mathrm{v})=\mathrm{w}$ and $\mathrm{f}(\mathrm{w})=\mathrm{u}$ and $\mathrm{g}:(\mathrm{Y}, \rho) \rightarrow(\mathrm{Z}, \mu)$ by $\mathrm{g}(\mathrm{u})=\mathrm{v}, \mathrm{g}(\mathrm{v})=\mathrm{u}$ and $\mathrm{g}(\mathrm{w})=\mathrm{w}$ clearly f and g arecontrawrps -continuous functions, but gof $:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is not contraarps -continuous , since for the open set $K=\{u\}$ in $Z,(g o f)^{-1}(K)=f^{-1}\left(g^{-1}(K)\right)=f^{-1}\left(g^{-1}(\{u\})\right)=f^{-1}(\{v\})=\{u\}$ is notarps- closed set in X .

Proposition (3-30):- Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ and $\mathrm{g}:(\mathrm{Y}, \rho) \rightarrow(\mathrm{Z}, \mu)$ be any functions Then, gof $:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contraorps -continuous function if
(i) f is contraarps - continuous function and g is continuous function .
(ii) f is contraarps - continuous function and g is stronglyorps -continuous function .

Proof (i):
Let K be an open set in Z, since g is continuous function. Thusg ${ }^{-1}(K)$ is an open set in Y. Also, since f iscontraarps -continuous function, thenf $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{G})\right)=(\mathrm{gof})^{-1}(\mathrm{G})$ isarps-closed set in X.Therefore, gof :(X, $\tau) \rightarrow(\mathrm{Z}, \mu)$ is contrawrps -continuous function.

The proof of step -ii- is similar to step-i- .

Proposition (3-31): Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ and $\mathrm{g}:(\mathrm{Y}, \rho) \rightarrow(\mathrm{Z}, \mu)$ be any functions. Then , $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contraarps - continuous function if
(i) f isarps -irresolute continuousfunction and g is contraarps -continuous function .
(ii) f is strongly $\alpha \mathrm{arps}^{-c o n t i n u o u s f u n c t i o n ~ a n d ~} \mathrm{~g}$ iscontraarp - continuous function.

Proof(i) :-
Let K be an open set in Z, since g is contra α arps-continuous. Thus, $g^{-1}(K)$ is $\alpha r p s-c l o s e d ~ s e t ~$ in Y.Also, since f is α rps -irresolute continuous function, then $f^{-1}\left(g^{-1}(K)\right)=(\mathrm{gof})^{-1}(\mathrm{~K})$ is α rps closed set in X .Therefore, gof : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contrawrps - continuous function The proof of step -ii- is similar to step-i- .

Similarly, we proof of the following proposition.

Proposition (3-32):- Iff : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ and $\mathrm{g}:(\mathrm{Y}, \rho) \rightarrow(\mathrm{Z}, \mu)$ are any functions then, $\mathrm{g} \circ \mathrm{f}$ $:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contra $\alpha \mathrm{arps}^{+}$-continuousfunction if
(i) f is $\alpha \mathrm{rps}^{-i r r e s o l u t e ~ c o n t i n u o u s f u n c t i o n ~ a n d ~} \mathrm{~g}$ is contraarps ${ }^{+1}$-continuous.
(ii) f is strongly arps^{-}- continuous function and g is contraarps ${ }^{+}$-continuous .

Proposition (3-33):-

Iff: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ is a contraarps ${ }^{+1}$-ccontinuous function and $\mathrm{g}:(\mathrm{Y}, \rho) \rightarrow(\mathrm{Z}, \mu)$ isarps - continuous, then gof: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contraarps - continuous function.
Proof: -Let K be an open set in Z .Thus, $\mathrm{g}^{-1}(\mathrm{~K})$ is α rps-open set in Y. Also, since f iscontra arps $^{+}$-irresolute continuous, thenf ${ }^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~K})\right)$ isarps-closed set in X. But $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~K})\right)=(\mathrm{gof}){ }^{-}$ ${ }^{1}(\mathrm{~K})$.Therefore, $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contraarps -continuous function .

Proposition (3-34):-

Iff : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ is a contraarps ${ }^{+}$- continuous function and $\mathrm{g}:(\mathrm{Y}, \rho) \rightarrow(\mathrm{Z}, \mu)$ is any function, then $g \circ f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contraarps ${ }^{+1}$ - continuous function if
(i) g is $\alpha \mathrm{aps}$-irresolutecontinuous function.
(ii) g is strongly $\alpha \mathrm{arps}^{-}$-continuous function .

Proof (i): Let K be anarps- open set in Z, since g is $\alpha \mathrm{rps}_{5}$-irresolutecontinuous function . Thus , $\mathrm{g}^{-1}(\mathrm{~K})$ isarps-open set in Y. Also, since f iscontraarps ${ }^{+1}$ - continuous function ,then $\mathrm{f}^{-1}($ $\left.\mathrm{g}^{-1}(\mathrm{~K})\right)=(\mathrm{gof})^{-1}(\mathrm{~K})$ isarps-closed set in X.Therefore, $\mathrm{g} \circ \mathrm{f}:(, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contraarps ${ }^{+1}$ continuous function

The proof of step -ii- is similar to step-i- .

Proposition (3-35):- Iff : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ is any function and $\mathrm{g}:(\mathrm{Y}, \rho) \rightarrow(\mathrm{Z}, \mu)$ is contra $\alpha_{10} s^{+\#}$-continuous function, then gof $:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contraarps ${ }^{\#+}$ - continuous function if f is
(i) continuous function.
(ii) stronglyarps -continuous function.

Proof (i):
Let K be an α aps - open set in Z. Thus, $g^{-1}(K)$ is closed set in Y. Also, since f iscontinuous function, then $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~K})\right)=(\mathrm{gof})^{-1}(\mathrm{~K})$ is closed set in X.Therefore, gof: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contraorps ${ }^{\# \#}$ - continuous function
The proof of step -ii- is similar to step-i- .
Similarly, we proof the following propositions .
Proposition (3-36):- Iff : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ is any function and $\mathrm{g}:(\mathrm{Y}, \rho) \rightarrow(\mathrm{Z}, \mu)$ is contra arps $^{+\#}$-continuous function, then gof: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contraorps ${ }^{\# \#}$ - continuous function if f is
(i) α aps-continuous function .
(ii) $\alpha \mathfrak{p s}$ - irresolutecontinuous function.

Proposition(3-37):-Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \rho)$ and $\mathrm{g}:(\mathrm{Y}, \rho) \rightarrow(\mathrm{Z}, \mu)$ be any functions, then
(i) gof: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contra $\alpha \mathrm{aps}^{\#+}-$ continuous function iff is a contra $\alpha \mathrm{arps}^{\#+\#}-$ continuous function and g is $\alpha \mathrm{rps}$-irresolutecontinuous.
(ii) gof: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contra ${\alpha \mathrm{rps}^{\#+\#}}^{\text {- continuous function if } \mathrm{f} \text { is a contra }}$ α rps $^{+\#}$ - continuous function and g strongly $\alpha \operatorname{rrps}^{-c o n t i n u o u s ~}$
(iii) gof: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \mu)$ is contra $\alpha \mathbf{r} \mathrm{ps}$ - continuous function if f is a contra $\alpha \mathrm{rps}^{+4+}$ continuous function and g isarps - continuous.

Remark (3-38):-

Here in the following diagram illustrates the relation between thecontraarps -continuous function kinds.

References :-

1-Andrijevic D; " Semi-preopen sets " , Mat.Vesnik,38(1986),24-32.
2-DontchevJ,"Contra-Continuous Functions and Strongly S-closed Spaces ", Int. J. Pure Appl.Math.,28(3),1997.
3-DunyaM .Hamed," Onarps-closed set in topological spaces ", Eng and Tech. Journal. Vol. 32 , part (B) , No(2), 2014 .
4-Jafer S,Caldas M," A New Generalization of Contra Continuity Via Levine g-Closed Sets ," Chaos, Solition and Fractals,32,2007,1597-1603.
5-JaferS and NoiriT ," Contra α-Continuous Function Between Topological Spaces ", Iranian Int .J.Sci ., 2(2),2001,153-167.
6-LevineN;"Semi-open sets and semi-continuity In topological spaces" Amer.Math.Monthly.70(1963),36-41.
7- LevineN; "Generalized closed in topology ",Rend..Mat.Palermo,(1970),89-96.
8-Mary TSI, Thangavelu P ," On Regular Pre-semi-closed Sets in Topological Spaces ", J Math SciComputAppl 1, 2010,9-17.
9-NjastadO"On some classes of nearly open sets "J.Math., (1965),961-970.
10-Palaniappan N and RaoKC;" Regular generalized closed sets", Kyung-Pook,Math.J.;33(1993),211-219.
11-Ravi.O ,Lellis. M and Nagendran .R ,"Contra rg-Continuous Maps ", Antarctica J.Math.,7(3),2010, 255-260 .

12-ShylaI.M and Thangavelu P "On regular pre-semiclosed sets in topological spaces", KBM Journal of Math .Sciences and Comp.Applications, 1(1)(2010),9-17.
13-StoneMH"Application of the theory of Boolean ring to general topology", Trans,Amer. Math Soc.,41(1937),374-481.
14-VadivelA and Vairamanickam K" rg α-Closed sets and rg α-Open sets in topological spaces",Int.Journal of Math .Analysis. Vol.3,2009.no.37,1803-1819

