ON INTUITIONISTIC FUZZY π gb AND π gb*-SETS

Abdul Gawad A. Al-Qubati¹, Amal M. Al-Dowais²

Department Of Mathematics, College of Science and Arts, NajranUniversity, KSA (On leavefrom HodiedahUniversity, Yemen) E-mail:gawad196999@yahoo.com

2 Department Of Mathematics, College of Science and Arts, Najran University, KSA E-mail:hope.dowais@gmail.com

ABSTRACT

In this paper, two kinds of intuitionistic fuzzy sets called πgb and πgb^* sets in intuitionistic fuzzy topological spaces are introduced and some of their basic properties are studied. In addition the relationships between πgb and πgb^* , also the relationships between πgb and πgb^* separately with other are investigated. Furthermore the πgb and πgb^* continuous functions are introduced which resulted in obtaining some interesting properties of both.

Key words: Intuitionistic fuzzy πgb -closed set, intuitionistic fuzzy πgb^* -closed set.

Corresponding Author: AbdulGawad A. Al-Qubati

1. Intruduction

The concept of fuzzy set was introduced by L. A. Zadah [21]. The fuzzy concept has invaded almost all branches of mathematics. The concept of fuzzy topological space was introduced and developed by C. L. Chang [4]. Atanasov [3] was introduced the concept of intuitionistic fuzzy set, as a generalization of fuzzy set. This approach provided a wide field to the generalization of various concepts of fuzzy mathematics. In 1997 Coker[9] defined intuitionistic fuzzy topological spaces. Recently many concepts of fuzzy topological space have been extended in intuitionistic fuzzy (IF) topological spaces. D. Sreeja and C. Janaki [18] introduced the concepts of πgb -closed set. Dhanya and A. Parvath [7] introduced the concept of πgb * sets. Amal M. Al-Dowais and AbdulGawad A. Al-Qubati [2] have studied the slightly πgb -continuous functions in intuitionistic fuzzy topological spaces. In this paper we introduce two kinds of intuitionistic fuzzy sets which are called πgb and πgb * sets and discuss the relationship between them and several kinds of intuitionistic fuzzy sets such as intuitionistic fuzzy πgb -continuous functions and intuitionistic fuzzy πgb *- continuous functions. Lastly, our discussion focuses on the relationship between intuitionistic fuzzy πgb and πgb * sets.

2. Preliminaries

Definition 2.1[3]LetXbeanon-emptyfixed set. An intuition is ticfuzzy set (IFS in short) A in X is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$, where the function $\mu_A(x): X \to [0,1]$ and $\nu_A(x): X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the setA, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

Definition 2.2[3] Let A and B be IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle : x \in X\}$. Then:

- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$.
- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- (c) $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle : x \in X \}.$
- (d) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) >: x \in X \}.$
- (e) $A \cup B = \{ \langle x, \mu_A(x) \ V \mu_B(x), \nu_A(x) \ \land \nu_B(x) >: x \in X \}.$
- (f) $0_{\sim} = \{ \langle x, 0, 1 \rangle : x \in X \}$ and $1_{\sim} = \{ \langle x, 1, 0 \rangle : x \in X \}$. (g) $0_{\sim}^{c} = 1_{\sim}$ and $1_{\sim}^{c} = 0_{\sim}$

Definition 2.3 [5] Let α , $\beta \in [0, 1]$ such that $\alpha + \beta \le 1$. An intuitionistic fuzzy point (IFP) $p_{(\alpha,\beta)}$ is intuitionistic fuzzy set defined by

$$p_{(\alpha,\beta)}(x) = \begin{cases} (\alpha,\beta)if & x = p\\ (0,1) & if \text{ otherwise} \end{cases}$$

In this case, p is called the support of $p_{(\alpha,\beta)}$ and α , β are called the value and no value of $p_{(\alpha,\beta)}$ respectively.

Clearly an intuitionistic fuzzy point can be represented by an ordered pair of fuzzy point as follows: $p_{(\alpha,\beta)} = (p_{\alpha}, p_{(1-\beta)})$

In IFP $p_{(\alpha,\beta)}$ is said to belong to an IFS $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ denoted by $p_{(\alpha,\beta)} \in A$, if $\alpha \leq \mu_A(x)$ and $\beta \geq \nu_A(x)$.

Definition2.4 [6] Let X and Y be two non-empty sets and $f: X \to Y$ be a function. Then:

(a) If $B=\{\langle y, \mu_B(y), \nu_B(y)\rangle : y \in Y\}$ is an IFS in Y, then the pre image of B under f denoted by $f^{-1}(B)$ is the IFS in X defined by

$$f^{-1}(B) = \{ \langle x, f^{-1}(\mu_B)(x), f^{-1}(\nu_B)(x) \rangle : x \in X \}, \text{ where}$$

$$f^{-1}(\mu_B(x) = \mu_B(f(x)))$$
 and $f^{-1}(\nu_B(x) = \nu_B(f(x)))$.

(b) If $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$ is an IFS in X, then the image of A under f denoted by f(A) is the IFS in Y defined by

$$f(A) = \{ \langle y, f(\mu_A)(y), 1 - f(1 - \nu_A)(y) \rangle : y \in Y \}$$

where,

$$f(\mu_A)(y) = \begin{cases} \sup \mu_A(x) & \text{if } f^{-1}(y) \neq \emptyset \\ \sup \mu_A(y) & \text{otherwise} \end{cases}$$

$$1-f\left(1-\nu_{A}\right)\left(y\right) = \begin{cases} \inf \nu_{A}(x) & \text{if } f^{-1}(y) \neq \emptyset \\ \sup_{x \in f^{-1}(y)} 1, & \text{if otherwise} \end{cases}$$

Replaying fuzzy sets [21] by intuitionistic fuzzy sets in Chang definition of fuzzy topological space [4] we get the following;

Definition 2.5[6] Anintuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms:

- (i) 0_{\sim} , $1_{\sim} \in \tau$
- (ii) If G_1 , $G_2 \in \tau$, then $G_1 \cap G_2 \in \tau$
- (iii) If $G_{\lambda} \in \tau$ for each λ in Λ , then $\bigcup_{\lambda \in \Lambda} G_{\lambda} \in \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFT in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. the complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.6[9] A subset A of an intuitionistic fuzzy space X is said to be cl open if it is intuitionistic fuzzy open set and intuitionistic fuzzy closed set.

Definition 2.7 [4] Let (X, τ) be an IFTS and $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$ bean IFS in X. Then the intuitionistic fuzzy interior and an intuitionistic fuzzy clouser are defined by: $\operatorname{int}(A) = \bigcup \{ G : G \text{ is an IFOS in } X \text{ and } G \subseteq A. \}$, $\operatorname{cl}(A) = \bigcap \{ K : K \text{ is an IFCS in } X \text{ and } A \subseteq K \}$.

Definition 2.8 An IFS A of an IFTS (X, τ) is an:

- 1. Intuitionistic fuzzy regular open set (IFROS in short)[9] if int(cl(A))= A.[9]
- 2. Intuitionistic fuzzy regular closed set (IFRCS in short)[9] if cl(intl(A))= A.[9]
- 3. Intuitionistic fuzzy π -open set (IF π OS in short)[15] if the finite union of intuitionistic fuzzy regular open sets.[15]
- 4. Intuitionistic fuzzy π -closed set (IF π CS in short)[15] if the finite inter- section of intuitionistic fuzzy regular closedsets.[15]
- 5.Intuitionistic fuzzy generalized closed set (IFGCS in short)[20] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is an IFOS in X.[20]
- 6.Intuitionisticfuzzy b-open set (IFbOS in short)[10] if $A \subseteq cl(int(A))^{\bigcup} int(cl(A))$.[1]
- 7.Intuitionisticfuzzy b-closed set (IFbCS in short)[10] if $cl(int(A))||int(cl(A)) \subseteq A.[1]$
- 8.Intuitionistic fuzzy semi-closed set (IFSCS in short) if $int(cl(A)) \subseteq A.[9]$
- 9. Intuitionistic fuzzy α -closed set (IF α CS in short) if cl(int(cl(A))) \subseteq A.[9]
- 10.Intuitionistic fuzzy pre-closed set (IFPCS in short) if $cl(int(A)) \subseteq A.[9]$
- 11.Intuitionisticfuzzygb-closedset(IFgbCSinshort)[13]ifbcl(A) \subseteq Uwhenever A \subseteq U and U is IFOS in (X, τ).
- 12.Intuitionistic fuzzy gs-closed set (IFgsCS in short) [16]if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is IFOS in(X, τ).
- 13.Intuitionistic fuzzy gp-closed set (IFgpCS in short) [14]if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is IFOS in (X, τ) .
- 14.Intuitionistic fuzzy αg -closed set (IF αg CS in short) [17]if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is IFOS in (X, τ) .
- 15.Intuitionistic fuzzy πg -closed set (IF πg CSin short) [8]if cl(A) \subseteq U whenever A \subseteq U and U is an IF π OS in (X, τ).
- 16.Intuitionistic fuzzy πgs -closed set (IF $\pi gsCS$ in short) [11]if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IF πOS in (X, τ) .
- 17.Intuitionistic fuzzy $\pi g \alpha$ -closed set (IF $\pi g \alpha CS$ in short) [19]if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IF πOS in (X, τ) .

Issue 10 volume 2 March-April 2020

18.Intuitionistic fuzzy πgp -closed set (IF $\pi gpCS$ in short) [12]if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IF πOS in (X, τ) .

Definition 2.9 [13] Let (X, τ) be an IFTS and A be an IFS in X. Then the intuitionistic fuzzyb-interior and an intuition is tic fuzzyb-clouser are defined by

$$bint(A) = \bigcup \{ G : G \text{ is an IFbOS in } X \text{ and } G \subseteq A. \},$$

$$cl(A) = \bigcap \{K : K \text{ is an IFbCS in } X \text{ and } A \subseteq K\}$$

Theorem 2.10 Let A be an intuitionistic fuzzy set of an IFTS (X, τ) , then :

(i)
$$bcl(A) = A \cup [int(cl(A)) \cap cl(int(A))]$$

bint (A) = A \cap [int(cl(A)) \cdot cl(int(A))]

Proof.

Since bcl(A) is an IFbCS, we have $int(cl(A)) \cap cl(int(A)) \subseteq int(cl(bc(A))) \cap cl(int(bcl(A))) \subseteq bcl(A)$ and we have, $A \subseteq bcl(A)$. Then, $A \cup (int(cl(A)) \cap cl(int(A))) \subseteq bcl(A)$.

On the other hand, Since $\operatorname{int}(\operatorname{cl}(A \cup \operatorname{int}(\operatorname{cl}(A)))) \subseteq A \cup \operatorname{int}(\operatorname{cl}(A))$, and $\operatorname{cl}(\operatorname{int}(A \cup \operatorname{cl}(\operatorname{int}(A)))) \subseteq A \cup \operatorname{cl}(\operatorname{int}(A))$, also

 $int(cl(A \cup (int(cl(A)) \cap cl(int(A))))) \subseteq A \cup int(cl(A))$

 $cl(int(A\cup(cl(int(A))\cap int(cl(A)))))\subseteq A\cup cl(int(A))$

Then, $int(cl(A \cup (int(cl(A)) \cap cl(int(A)))) \cap cl(int(A \cup (cl(int(A)) \cap$

 $\operatorname{int}(\operatorname{cl}(A)))) \subseteq [A \cup \operatorname{int}(\operatorname{cl}(A))] \cap [A \cup \operatorname{cl}(\operatorname{int}(A))] = A \cup [\operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{cl}(\operatorname{int}(A))].$ Hence $A \cup [\operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{cl}(\operatorname{int}(A))]$ is an IFbCS and thus $\operatorname{bcl}(A) \subseteq A \cup [\operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{cl}(\operatorname{int}(A))] - - - - > (2).$

From (1) and (2) it follows that $bcl(A) = A \cup [int(cl(A)) \cap cl(int(A))]$ (ii) can be proved easily by taking complement in (i).

3. Intuitionistic fuzzy πgb -set and Intuitionistic fuzzy πgb *-set

Definition 3.1 [2] An IFS A of an IFTS (X, τ) is an:

- 1. Intuitionistic fuzzy πgb -open set (IF $\pi gbOS$ in short) if $F \subseteq bint(A)$ when- ever $F \subseteq A$ and F is an IF πCS in (X, τ) .
- 2.Intuitionistic fuzzy πgb -closed set (IF πgb CS in short) if bcl(A) \subseteq U when- ever A \subseteq U and U is an IF π OS in (X, τ).

Definition 3.2 Let (X, τ) be an IFTS and $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$ beanIFSin (X,τ) . Then the intuition is ticfuzzy πgb -interior and an intuition is ticfuzzy πgb -clouser of A are defined by:

$$\pi gb\text{-int}(A) = \bigcup \left\{ \; G : G \; \text{is an IF} \pi gbOS \; \text{in X and } G \; \subseteq A. \; \right\} \; ,$$

$$\pi gb\text{-cl}(A) = \cap \; \left\{ K : K \; \text{is an IF} \pi gbCS \; \text{in X and } A \subseteq K \right\} \; .$$

Theorem 3.3 If A is IF π gbCS in X, then π gb-cl(A) = A.

Proof. Since A is an IF π gbCS, π gb-cl(A) is the smallest IF π gbCSwhich contains A, which is nothing but A. Hence π gb-cl(A)=A.

Remark 3.4 If $A = \pi gb\text{-}cl(A)$, then A need not be an IF $\pi gbCS$.

Example 3.5 Let $X = \{a, b, c\}$ and let $\tau = \{0, 1, A, B, C\}$ is IFT on X, where $A = \{\langle a, 1, 0 \rangle, \langle b, 0, 1 \rangle, \langle c, 0, 1 \rangle\}$, $B = \{\langle a, 0, 1 \rangle, \langle b, 0.8, 0.2 \rangle\}$, $\langle c, 0, 1 \rangle$ and $C = \{\langle a, 1, 0 \rangle, \langle b, 0.8, 0.2 \rangle, \langle c, 0, 1 \rangle\}$. Clearly $\pi gb - cl(C) = C$ but C is $notIF\pi gbCS$.

Theorem 3.6 If A is IF π gbOS in X, then π gb-int(A) = A.

Proof. Similar to the(theorem3.3)

Remark 3.7 If $A = \pi gb\text{-int}(A)$, then A need not be an IF $\pi gbOS$.

Example 3.8 Let $X = \{a, b, c\}$ and let $\tau = \{0, 1, A, B, C\}$ is IFT on X, where $A = \{\langle a, 1, 0 \rangle, \langle b, 0, 1 \rangle, \langle c, 0, 1 \rangle\}$, $B = \{\langle a, 0, 1 \rangle, \langle b, 0.8, 0.2 \rangle$, $\langle c, 0, 1 \rangle\}$ and $C = \{\langle a, 1, 0 \rangle, \langle b, 0.8, 0.2 \rangle, \langle c, 0, 1 \rangle\}$. let $D = \{\langle a, 0, 1 \rangle, \langle b, 0.2, 0.8 \rangle, \langle c, 1, 0 \rangle\}$, clearly πgb -int(D = D but D is not IF $\pi gbOS$.

Remark 3.9 The union of two IF π gb-closed sets is generally not aIF π gb-closedsetandtheintersectionoftwoIF π gb-opensetsisgenerallynotanIF π gb- openset

Example 3.10 Let $X = \{a, b\}$ and let $\tau = \{0, 1, A, B, C\}$ is IFT on X,where $A = \{< a, 1, 0>, < b, 0, 1>\}$, $B = \{< a, 0, 1>, < b, 0.9, 0.1>\}$ and $C = \{< a, 1, 0>, < b, 0.9, 0.1>\}$. Then the IFSs A^c , B^c are IF π gbOSs but $A^c \cap B^c = C^c$ is not an IF π gbOS of X, since $C^c \subseteq C^c$ and $C^c \not\subset Dint(C^c) = 0$. And the IFSs A, B are IF π gbCSs but $A \cup B = C$ is not an IF π gbCS of X, since $C \subseteq C$ and $C^c \subset C$ and $C^c \subset C$ and $C^c \subset C$ and $C^c \subset C$.

Theorem 3.11 Every intuitionistic fuzzy closed set is an intuitionistic fuzzy π gb-closed set.

Proof. Let A be an intuitionistic fuzzy closed set of (X, τ) such that $A \subseteq U$ and U is an $IF\pi$ -open set in (X, τ) . Since $int(cl(A)) \cap cl(int(A)) \subseteq int(cl(A)) = cl(A) = A$, $A \cup [int(cl(A)) \cap cl(int(A))] \subseteq A \cup A = A$, then $bcl(A) \subseteq A \subseteq U$. Hence A is an intuitionistic fuzzy πgb -closed set.

The converse of above theorem is not true in general, as we will see in the following example.

Example 3.12 Let $X = \{a, b\}$ and let $\tau = \{0, 1, U\}$ is an IFT on X, where $U = \{< a, 0.5, 0.4 >, < b, 0.6, 0.4 >\}$. Let $A = \{< a, 0.3, 0.6 >, < b, 0.2, 0.8 >\}$, then A is an IF π gbCS but it is not IFCS. Since $cl(A) = U^c \neq A$.

Theorem 3.13 Every intuitionistic fuzzy semi-closed set is an intuitionistic fuzzy π gb-closed set.

Proof. Let A be an intuitionistic fuzzy semi-closed set of (X, τ) such that $A \subseteq U$ and U is an $IF\pi$ -open set in (X, τ) . Since $int(cl(A)) \cap cl(int(A)) \subseteq int(cl(A))$ $\Rightarrow int(cl(A)) \cap cl(int(A)) \subseteq A$ and $A \cup (int(cl(A)) \cap cl(int(A))) \subseteq A \cup A = A$ This implies $bcl(A) \subseteq A \subseteq U$. Hence A is an intuitionistic fuzzy πgb -closed set.

The converse of above theorem is not true in general, as we will see in the following example.

Example 3.14 Let $X = \{a, b\}$ and let $\tau = \{0, 1, V\}$ is an IFT on X, where $U = \{\langle a, 0.8, 0.2 \rangle, \langle b, 0.9, 0.1 \rangle\}$. Let $A = \{\langle a, 0.4, 0.6 \rangle, \langle b, 0.5, 0.5 \rangle\}$, then A is an IF π gbCS but it is not IFSCS. Since int(cl(A)) = 1 $\not\subset$ A.

Theorem 3.15 Every intuitionistic fuzzy α -closed set is an intuitionistic fuzzy π gb-closed set.

Proof. Let A be an intuitionistic fuzzy α -closed set of (X, τ) such that $A \subseteq U$ and U is an $IF\pi$ -open set in (X, τ) . Since $A \subseteq cl(A)$, $cl(int(A)) \subseteq cl(int(cl(A))) \Rightarrow cl(int(A)) \subseteq A$ and $cl(int(A)) \cap int(cl(A)) \subseteq A \cap cl(int(cl(A))) \Rightarrow cl(int(A)) \cap int(cl(A)) \subseteq A \cap cl(int(cl(A))) \Rightarrow cl(int(A)) \cap int(cl(A)) \subseteq A$ then $A \cup (cl(int(A)) \cap int(cl(A))) \subseteq A \cup A = A$

This implies $bcl(A) \subseteq A \subseteq U$. Hence A is an intuitionistic fuzzy πgb -closedset.

The converse of above theorem is not true in general, as we will see in the following example.

Example3.16 Let $X=\{a,b,c\}$ and let $\tau=\{0,1,A,B,C\}$ is an IFT on X, where $A=\{<a,1,0>,<b,0,1>,<c,0,1>\}, B=\{<a,0,1>,<b,0.8,0.2>,<c,0.3,0.7>\}$ and $C=\{<a,1,0>,<b,0.8,0.2>,<c,0.3,0.7>\}$ and $C=\{<a,1,0>,<b,0.8,0.2>,<c,0.3,0.7>\}$. Then B is an IF π gbCS but it is not IF α CS. Since $cl(int(cl(B))) = A^c \not\subset B$.

Theorem 3.17 Every intuitionistic fuzzy pre-closed set is an intuitionistic fuzzy π gb-closed set.

Proof. Let A be an intuitionistic fuzzy pre-closed set of (X, τ) such that $A \subseteq U$ and U is an IF π -open set in (X, τ) . Since $int(cl(A)) \cap cl(int(A)) \subseteq cl(int(A))$ and $int(cl(A)) \cap cl(int(A)) \subseteq A$

then $A \cup (int(cl(A)) \cap cl(int(A))) \subseteq A \cup A = A$ This implies $bcl(A) \subseteq A \subseteq U$. Hence A is an intuitionistic fuzzy πgb -closedset.

The converse of above theorem is not true in general, as we will see in the following example.

Example3.18 LetX={a,b,c} and let τ ={0, ,1, ,A,B,C} is an IFT on X, where A={<a,1,0>,<b,0,1>,<c,0,1>},B={<a,0,1>,<b,0.5,0.4>,<c,0.4,0.6>} and C={<a,1,0>,<b,0.5,0.4>,<c,0.4,0.6>}. Then B is an IF π gbCS but it is not IFPCS. Since cl(int(B)) = A^c $\not\subset$ B.

Theorem 3.19 Every intuitionistic fuzzy b-closed set is an intuitionistic fuzzy π gb-closed set.

Proof.Let A be an intuitionistic fuzzy b-closed set of (X,τ) such that $A\subseteq U$ and U is an $IF\pi$ open set in (X,τ) . Since $bcl(A)=A\subseteq U$. Hence A is an intuitionistic fuzzy πgb -closed set.

The converse of above theorem is not true in general, as we will see in the following example.

Example 3.20 Let $X = \{a, b\}$ and let $\tau = \{0, 1, U\}$ is an IFT on X, where $U = \{\langle a, 0.8, 0.2 \rangle, \langle b, 0.9, 0.1 \rangle\}$. Let $A = \{\langle a, 0.9, 0.1 \rangle, \langle b, 1, 0 \rangle\}$, then A is an IF π gbCS but it is not IFbCS, since int(cl(A)) \cap cl(int(A))=1, $\not\subset$ A.

Theorem 3.21 Every intuitionistic fuzzy g-closed set is an intuitionistic fuzzy π gb-closed set.

Proof. Let A be an intuitionistic fuzzy g-closed set of (X,τ) such that $A \subseteq U$ and U is an IF π -open set in (X,τ) , since every IF π -open set is an intuitionistic fuzzy open set and $cl(A) \subseteq U$. Since

 $\operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{cl}(\operatorname{int}(A)) \subseteq \operatorname{int}(\operatorname{cl}(A)) \subseteq \operatorname{cl}(\operatorname{cl}(A)) = \operatorname{cl}(A)$, $A \cup (\operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{cl}(\operatorname{int}(A))) \subseteq A \cup \operatorname{cl}(A) = \operatorname{cl}(A)$

This implies $bcl(A) \subseteq cl(A) \subseteq U$. Hence A is an intuitionistic fuzzy πgb -closed set.

The converse of above theorem is not true in general, as we will see in the following example.

Example 3.22 Let $X = \{a, b\}$ and let $\tau = \{0, 1, U\}$ is an IFT on X, where $U = \{< a, 0.7, 0.3 >, < b, 0.6, 0.4 >\}$. Let $A = \{< a, 0.2, 0.8 >, < b, 0.4, 0.6 >\}$, then A is an IF π gbCS but it is not IFgCS. Since cl(A) = $U^c \not\subset U$.

Theorem 3.23 Every intuitionistic fuzzy αg -closed set is an intuitionistic fuzzy πgb -closed set.

Proof. Let A be an intuitionistic fuzzy αg -closed set of (X, τ) such that $A \subseteq U$ and U is an $IF\pi$ -open set in (X, τ) . Since every $IF\pi$ -open set is an intuitionistic fuzzy open set, $\alpha cl(A) \subseteq U$. Since

 $A \subseteq cl(A)$

- $\operatorname{cl}(\operatorname{int}(A)) \subseteq \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))$
- $\operatorname{cl}(\operatorname{int}(A))\cap\operatorname{int}(\operatorname{cl}(A))\subseteq\operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))\cap\operatorname{int}(\operatorname{cl}(A))$
- \Rightarrow cl(int(A)) \cap int(cl(A)) \subseteq cl(int(cl(A))) \cap cl(int(cl(A)))
- \Rightarrow cl(int(A)) \cap int(cl(A)) \subseteq cl(int(cl(A)))

then $A \cup (cl(int(A)) \cap int(cl(A))) \subseteq A \cup cl(int(cl(A)))$

This implies $bcl(A)\subseteq \alpha cl(A)\subseteq U$. Hence A is an intuitionistic fuzzy πgb -closed set. The converse of above theorem is not true in general, as we will see in the following example.

```
Example 3.24 Let X={a,b} and let \tau={0, ,1, ,U} is an IFT on X, where U = {< a, 0.3, 0.4 >, < b, 0.3, 0.4 >}. Let A = {< a, 0.1, 0.5 >, < b, 0.1, 0.6 >}, then A is an IFπgbCS but it is not IFαgCS, since αcl(A) = U°\not\subset U.
```

Theorem 3.25 Every intuitionistic fuzzy gs-closed set is an intuitionistic fuzzy π gb-closed set.

Proof. Let A be an intuitionistic fuzzy gs-closed set of (X, τ) such that $A \subseteq U$ and U is an IF π -open set in (X, τ) . Since every IF π -open set is an intuitionistic fuzzy open set, $scl(A) \subseteq U$. Since

```
\begin{split} & \text{int}(cl(A)) \cap \ cl(\text{int}(A)) \subseteq \ \text{int}(cl(A)) \\ & \text{then} \qquad A \cup \ (\text{int}(cl(A)) \cap \ cl(\text{int}(A))) \subseteq \ A \cup \ \text{int}(cl(A)) \\ & \text{This implies bcl}(A) \subseteq \ \text{scl}(A) \subseteq \ U \ . \ \text{Hence A is an intuitionistic fuzzy $\pi$gb-closed set.} \end{split}
```

The converse of above theorem is not true in general, as we will see in the following example.

Example 3.26 Let $X = \{a, b\}$ and let $\tau = \{0, 1, 1, U\}$ is an IFT on X, where $U = \{\langle a, 0.7, 0.2 \rangle, \langle b, 0.7, 0.3 \rangle\}$. Let $A = \{\langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.5 \rangle\}$, then A is an IF π gbCS but it is not IFgsCS, since scl(A) = $1 \neq U$.

Theorem 3.27 Every intuitionistic fuzzy gp-closed set is an intuitionistic fuzzy π gb-closed set.

Proof. Let A bean intuitionistic fuzzy gp-closed set of (X, τ) such that $A \subseteq U$ and U is an IF π -open set in (X, τ) . Since every IF π -open set is an intuitionistic fuzzy open set, $pcl(A) \subseteq U$. Since

 $\operatorname{int}(\operatorname{cl}(A))\cap\operatorname{cl}(\operatorname{int}(A))\subseteq\operatorname{cl}(\operatorname{int}(A))$, $A\cup\operatorname{(int}(\operatorname{cl}(A))\cap\operatorname{cl}(\operatorname{int}(A)))\subseteq A\cup\operatorname{cl}(\operatorname{int}(A))$ This implies $\operatorname{bcl}(A)\subseteq\operatorname{pcl}(A)\subseteq U$. Hence A is an intuitionistic fuzzy π gb-closed set. The converse of above theorem is not true in general, as we will see in the following example.

Example 3.28 Let $X=\{a,b\}$ and let $\tau=\{0,1,1,U\}$ is an IFT on X,where $U=\{\langle a,0.5,0.5\rangle,\langle b,0.2,0.6\rangle\}$. Let A=U, then A is an IF π gbCS but it is not IFgpCS, since pcl(A)= $U^c \not\subset U$.

Theorem 3.29 Every intuitionistic fuzzy gb-closed set is an intuitionistic fuzzy π gb-closed set.

Proof. Let A be an intuitionistic fuzzy gb-closed set of (X, τ) such that $A \subseteq U$ and U is an IF π -open set in (X, τ) . Since every IF π -open set is an intuitionistic fuzzy open set, $bcl(A) \subseteq U$. Hence A is an intuitionistic fuzzy πgb -closedset.

The converse of above theorem is not true in general, as we will see in the following example.

Example3.30 Let $X=\{a,b\}$ and let $\tau=\{0,1,U\}$ is an IFT on X, where $U=\{\langle a,0.6,0.3\rangle,\langle b,0.8,0.2\rangle\}$. Let A=U, then A is an IF π gbCS but it is not IFgbCS, since bcl(A)=1, $\not\subset U$.

Theorem 3.31 Every intuitionistic fuzzy πg -closed set is an intuitionistic fuzzy πg b-closed set.

Proof. Let A be an intuitionistic fuzzy πg -closed set of (X,τ) such that $A \subseteq U$ and U is an IF π -open set in (X,τ) . Then $cl(A) \subseteq U$ and $asbcl(A) \subseteq cl(A) \subseteq U$. Hence A is an intuitionistic fuzzy πgb -closed set.

The converse of above theorem is not true in general, as we will see in the following example.

Example 3.32 Let $X = \{a, b\}$ and let $\tau = \{0, 1, 1, U\}$ is an IFT on X, where $U = \{\langle a, 0.1, 0.9 \rangle, \langle b, 0.3, 0.7 \rangle\}$. Let $A = \{\langle a, 0, 1 \rangle, \langle b, 0.2, 0.7 \rangle\}$, then A is an IF π gbCS but it is not IF π gCS, since cl(A) = $U^c \not\subset U$.

Theorem 3.33 Every intuitionistic fuzzy $\pi g\alpha$ -closed set is an intuitionistic fuzzy πgb -closed

set.

Proof. Let A be an intuitionistic fuzzy $\pi g \alpha$ -closed set of (X,τ) such that $A \subseteq U$ and U is an IF π -open set in (X,τ) . Then $\alpha cl(A) \subseteq U$, and $asbcl(A) \subseteq \alpha cl(A) \subseteq U$. Hence A is an intuitionistic fuzzy πgb -closed set.

The converse of above theorem is not true in general, as we will see in the following example.

Example 3.34 Let $X = \{a, b\}$ and let $\tau = \{0, 1, U\}$ is an IFT on X, where $U = \{< a, 0.3, 0.6 >, < b, 0.5, 0.5 >\}$. Let $A = \{< a, 0.2, 0.8 >, < b, 0.4, 0.6 >\}$, then A is an IF π gbCS but it is not IF π gaCS, since α cl(A) = U^c $\not\subset$ U.

Theorem 3.35 Every intuitionistic fuzzy πgp -closed set is an intuitionistic fuzzy πgb -closed set.

Proof. Let A be an intuitionistic fuzzy πgp -closed set of (X, τ) such that $A \subseteq U$ and U is an $F\pi$ -open set in (X, τ) . Then $pcl(A) \subseteq U$, and $asbcl(A) \subseteq pcl(A) \subseteq U$. Hence A is an intuitionistic fuzzy πgb -closed set.

The converse of above theorem is not true in general, as we will see in the following example.

Example 3.36 Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, 1_{\sim}, U_1, U_2, U_3\}$ is an IFT on X, where $U_1 = \{< a, 0, 1>, < b, 0.7, 0.3>\}, U_2 = \{< a, 0.8, 0.2>, < b, 0, 1>\},$ $U_3 = \{< a, 0.8, 0.2>, < b, 0.7, 0.3>\}$. Let $A = U_2$, then A is an IF π gbCS but it is not IF π gpCS, since pcl(A) = $U^c \not\subset U_3$.

Theorem 3.37 Every intuitionistic fuzzy πgs -closed set is an intuitionistic fuzzy πgb -closed set.

Proof Let A be an intuitionistic fuzzy πgs -closed set of (X,τ) such that $A\subseteq U$ and U is an $IF\pi$ -open set in (X,τ) . Then $scl(A)\subseteq U$, and $asbcl(A)\subseteq scl(A)\subseteq U$. Hence A is an intuitionistic fuzzy πgb -closed set.

The converse of above theorem is not true in general, as we will see in the following example.

Example3.38Let X={a,b} and let τ ={0~,1~,U1,U2,U3,U4,U5} is an IFT on X, where U1={<a,0.1,0.4>,<b,0.3,0.2>},U2={<a,0.3,0.2>,<b,0.2,0.3>},U3={<a,0.1,0.4>,<b,0.2,0.3>},U4={<a,0.3,0.2>,<b,0.3,0.2>},U6={<a,0.4,0.2>,<b,0.3,0.2>}.Let A={<a,0.3,0.4>,<b,0.3,0.4>}, then Aisan IFπgbCS but it is not IFπgsCS, since scl(A)=U5⊄U4.

Definition 3.39 An IFS A of an IFTS (X, τ) is an :

- 1. Intuitionistic fuzzy $\pi gb'$ -open set (IF $\pi gb'$ OSinshort) if $F\subseteq cl(bint(A))$ whenever $F\subseteq A$ and F is an IF π CS in (X, τ) .
- 2. Intuitionistic fuzzy πgb^{τ} -closed set (IF $\pi gb^{\tau}CS$ inshort) if int(bcl(A)) $\subseteq U$ whenever $A \subseteq U$ and U is an IF πOS in (X, τ) .

Remark 3.40 The union off inite $IF\pi gb^{\dagger}$ -closed sets is generally no tan $IF\pi gb^{\dagger}$ -closed set and the intersection off inite $IF\pi gb^{\dagger}$ -open sets is generally no tan $IF\pi gb^{\dagger}$ -open set.

Example 3.41 Let $X = \{a, b\}$ and let $\tau = \{0_{\circ}, 1_{\circ}, A, B, C\}$ is IFT on X, where $A = \{< a, 1, 0>, < b, 0, 1>\}$, $B = \{< a, 0, 1>, < b, 0.9, 0.1>\}$ and $C = \{< a, 1, 0>, < b, 0.9, 0.1>\}$. Then the IFSsA°, B^c are IF π gb'Oss but $A^c \cap B^c = C^c$ is not an

IF π gb'O So fX, since $C^c \subseteq C^c$ and $C^c \not\subset cl(bint(C^c)) = 0$.

And the IFSs A,B are IF π gb CSs butA \cup B=CisnotanIF π gb CSofX, since C \subseteq C and int(bcl(C)) = 1 $_{\sim} \not\subset$ C.

Theorem 3.42

- 1. Every intuitionistic fuzzy closed set is an intuitionistic fuzzy πgb^* -closed set.
- 2. Every intuitionistic fuzzy semi-closed set is an intuitionistic fuzzy πgb^* closed set.
- 3. Every intuitionistic fuzzy pre-closed set is an intuitionistic fuzzy πgb^* closed set.
- 4. Every intuitionistic fuzzy α closed set is an intuitionistic fuzzy πgb^* -closed set.
- 5. Every intuitionistic fuzzy b- closed set is an intuitionistic fuzzy πgb^* -closed set.
- 6. Every intuitionistic fuzzy g- closed set is an intuitionistic fuzzy πgb^* -closed set.
- 7. Every intuitionistic fuzzy gs- closed set is an intuitionistic fuzzy πgb^* -closed set.
- 8. Every intuitionistic fuzzy gp- closed set is an intuitionistic fuzzy πgb^* -closed set.
- 9. Every intuitionistic fuzzy $g\alpha$ -closed set is an intuitionistic fuzzy πgb^* closed set.
- 10. Every intuitionistic fuzzy gb- closed set is an intuitionistic fuzzy πgb^* -closed set.
- 11. Every intuitionistic fuzzy πg closed set is an intuitionistic fuzzy $\pi g b^*$ -closed set.
- 12. Every intuitionistic fuzzy πgs -closed set is an intuitionistic fuzzy πgb^* closedset. 13. Every intuitionistic fuzzy $\pi g\alpha$ -closed set is an intuitionistic fuzzy πgb^* - closedset.
- 14. Every intuitionistic fuzzy πgp -closed set is an intuitionistic fuzzy πgb^* closed set.

Proof. It is similar to that of (theorems (3.11), (3.13), (3.15), (3.17), (3.19), (3.21), (3.23), (3.25), (3.27), (3.29), (3.31), (3.33), (3.35) and (3.37)).

4. Intuitionistic Fuzzy πgb Continuous Functions and Intuitionistic Fuzzy $\pi gb*$ Continuous Functions

Definition 4.1 [2] Let f be a function from an IFTS(X, τ) into an IFTS(Y, σ). Then f is said to be an intuitionistic fuzzy π gb-continuous if $f^{-1}(F)$ is an intuitionistic fuzzy π gb-closed in (X, τ) for every intuitionistic fuzzy closed set F of (Y, σ).

Theorem 4.2 A function $f: (X, \tau) \to (Y, \sigma)$ is intuitionistic fuzzy πgb - continuous if and only if the inverse image of every intuitionistic fuzzy open set of (Y,σ) is intuitionistic fuzzy πgb -open set in (X,τ) .

Proof. Necessity: Let A be an IFOS in(Y, σ). Then A^c is an IFCS in (Y, σ). By hypothesis, $f^{-1}(A^c)$ is an IF π gbCSin(X, τ). Then $f^{-1}(A^c) = (f^{-1}(A))^c$, implies $f^{-1}(A)$ is an IF π gbOSin(X, τ).

Sufficiency: Let A be an IFCS in (Y, σ) . Then A^c is an IFCS in (Y, σ) . By hypothesis, $f^{-1}(A^c)$ is an IF π gbOSin (X,τ) . But $f^{-1}(A^c)=(f^{-1}(A))^c$, which in turn implies $f^{-1}(A)$ is an IF π gbCSin (X,τ) . Hence f is intuitionistic fuzzy π gb-continuous.

Theorem 4.3 Let $f: (X, \tau) \to (Y, \sigma)$ from a IFTS (X, τ) to another IFTS (Y, σ) is IF π gb-continuous. Then the following statements hold.

- 1. $f(\pi gb\text{-}cl(A))\subseteq cl(f(A))$, for every intuitionistic fuzzy set A in (X,τ) .
- 2. $\pi \text{gb-cl}(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B))$, for every intuition is ticfuzzy set $B \text{in}(Y, \sigma)$.

Proof.

1. Let A beany set in (X, τ) . Then cl(f(A)) is an IFCS in (Y, σ) . Since f is an IF π gb-continuous, $f^{-1}(cl(f(A)))$ is an IF π gbCSin (X, τ) . Since $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(cl((f(A))))$ and $f^{-1}(cl((f(A))))$ is an IF π gbCS, implies π gb-cl $(A) \subseteq \pi$ gb-cl $(f^{-1}(cl((f(A))))) = f^{-1}(cl((f(A))))$. Hence

 $f(\pi gb\text{-}cl(A)) \subseteq (cl((f(A))).$

2. Replacing A by
$$f^{-1}(B)$$
 in (i), we get $f(\pi gb - cl(f^{-1}(B))) \subseteq cl(f(f^{-1}(B))) \subseteq cl(B)$ $f(\pi gb - cl(f^{-1}(B))) \subseteq cl(B)$ Hence $\pi gb - cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

Definition 4.4 A bijection function $f:(X,\tau)\to (Y,\sigma)$ is called an intuitionistic fuzzy πgb homeomorphism (IF πgb homeinshort) if f and f^{-1} are IF πgb - continuous functions.

Example 4.5 Let
$$X = \{a, b\}$$
, $Y = \{u, v\}$ and $U_1 = \{< a, 0.3, 0.6 >, < b, 0.3, 0.7 >\}$, $U_2 = \{< u, 0.4, 0.4 >, < v, 0.8, 0.2 >\}$, then $\tau = \{0_{\sim}, 1_{\sim}, U_1\}$

And $\sigma = \{0, 1, U_2\}$ are IFT's on X and Y, respectively. Define a bisection function $f:(X,\tau) \to (Y,\sigma)$ by f(a)=v and f(b)=u. Then f is an IF πgb - continuous function and f^{-1} is also an IF πgb -continuous function. Therefore f is an intuitionistic fuzzy πgb homeomorphism.

Definition 4.6 Let f be a function from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy πgb^* -continuous if $f^{-1}(F)$ is an intuitionistic fuzzy πgb^* -closedin (X,τ) for every intuitionistic fuzzy closed set F of (Y,σ) .

Theorem 4.7 Let $f: (X, \tau) \to (Y, \sigma)$ from a IFTS (X, τ) to another IF (Y, σ) is IF πgb^* -continuous. Then the following statements hold.

- (i) $f(\pi gb^{\dagger} cl(A)) \subseteq cl(f(A))$, for every intuitionistic fuzzy set A in (X, τ) .
- (ii) $\pi gb' cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$, for every intuitionistic fuzzy set B in (Y, σ) .

Proof. It is similar to that of(theorem4.3).

Definition 4.8 A bijection function $f: (X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy $\pi gb'$ homeomorphism(IF $\pi gb'$ home in short) if f and f^{-1} are IF $\pi gb'$ -continuous functions.

Theorem 4.9

- 1. Every intuitionistic fuzzy continuous function is an intuitionistic fuzzy π gb-continuous.
- 2. Every intuitionistic fuzzy semi-continuous function is an intuitionistic fuzzy πgb -continuous.
- 3. Every intuitionistic fuzzy pre-continuous function is an intuitionistic fuzzy πgb-continuous.
- 4. Every intuitionistic fuzzy α -continuous function is an intuitionistic fuzzy πgb -continuous.
- 5. Every intuitionistic fuzzy b-continuous function is an intuitionistic fuzzy πgb -continuous.
- 6. Every intuitionistic fuzzy g-continuous function is an intuitionistic fuzzy πgb-continuous.
- 7. Every intuitionistic fuzzy gs-continuous function is an intuitionistic fuzzy πgb -continuous.
- 8. Every intuitionistic fuzzy gp-continuous function is an intuitionistic fuzzy πgb-continuous.
- 9. Every intuitionistic fuzzy $g\alpha$ -continuous function is an intuitionistic fuzzy πgb continuous.
- 10. Every intuitionistic fuzzy gb-continuous function is an intuitionistic fuzzy

 π gb- continuous.

- 11. Every intuitionistic fuzzy πg -continuous function is an intuitionistic fuzzy πgb continuous.
- 12. Every intuitionistic fuzzy π gs-continuous function is an intuitionistic fuzzy π gb- continuous.
- 13. Every intuitionistic fuzzy $\pi g\alpha$ -continuous function is an intuitionistic fuzzy πgb continuous.
- 14. Every intuitionistic fuzzy πgp -continuous function is an intuitionistic fuzzy πgb continuous.

Proof.

1.Let $f:(X,\tau)\to (Y,\sigma)$ be an intuitionistic fuzzy continuous function. Let V be an intuitionistic fuzzy closed set in (Y,σ) . Since f is an intuitionistic fuzzy continuous $f^{-1}(V)$ is an intuitionistic fuzzy closed set in (X,τ) . As every intuitionistic fuzzy closed set is an intuitionistic fuzzy πgb -closed set, $f^{-1}(V)$ is an intuitionistic fuzzy πgb -continuous.

2. It is similar to that of above. ■

The converse of above theorem is not true in general, as we will see in the following example.

Example 4.10 Let $X = \{a, b\}$, $Y = \{u, v\}$ and $U_1 = \{< a, 0.1, 0.8 >, < b, 0.5, 0.5 >\}$, $U_2 = \{< u, 0.6, 0.4 >, < v, 0.9, 0.1 >\}$, then $\tau = \{0_{\circ}, 1_{\circ}, U_1\}$

And $\sigma = \{0, 1, V_2\}$ are IFT's on X and Y respectively. Define A function $f:(X,\tau)\to (Y,\sigma)$ by f (a)=v and f (b)=u. Therefore f is an intuitionistic fuzzy π gb-continuous but not an intuitionistic fuzzy continuous function, since

$$f^{-1}(U_2^c) = \{ \langle a, 0.1, 0.9 \rangle, \langle b, 0.4, 0.6 \rangle \}, cl(f^{-1}(U_2^c)) = U_2^c \neq f^{-1}(U_2^c) \}$$

Theorem 4.11

- 1. Every intuitionistic fuzzy continuous function is an intuitionistic Fuzzy πgb^* -continuous.
- 2. Every intuitionistic fuzzy semi-continuous function is an intuitionistic fuzzy πgb^* -continuous.
- 3. Every intuitionistic fuzzy pre-continuous function is an intuitionistic fuzzy πgb^* -continuous.
- 4. Every intuitionistic fuzzy α -continuous function is an intuitionistic fuzzy πgb^* -continuous.
- 5. Every intuitionistic fuzzy b-continuous function is an intuitionistic fuzzy πgb^* -continuous.
- 6. Every intuitionistic fuzzy g-continuous function is an intuitionistic fuzzy πgb^* -continuous.
- 7. Every intuitionistic fuzzy $g\alpha$ -continuous function is an intuitionistic fuzzy πgb^* -continuous.
- 8. Every intuitionistic fuzzy gs-continuous function is an intuitionistic fuzzy πgb^* continuous.
- 9. Every intuitionistic fuzzy gp-continuous function is an intuitionistic fuzzy πgb^* continuous.
- 10. Every intuitionistic fuzzy gb-continuous function is an intuitionistic fuzzy πgb^* -continuous.
- 11. Every intuitionistic fuzzy πg -continuous function is an intuitionistic fuzzy $\pi g b^*$ -continuous.
- 12. Every intuitionistic fuzzy πgs -continuous function is an intuitionistic fuzzy πgb^* -

continuous.

- 13. Every intuitionistic fuzzy πgp -continuous function is an intuitionistic fuzzy πgb^* -continuous.
- 14. Every intuitionistic fuzzy $\pi g\alpha$ -continuous function is an intuitionistic fuzzy πgb^* -continuous.

Proof. It is similar to that of (theorem 4.9).

5 RelationBetween IF πgb -Setsand IF πgb^* -Sets

Theorem 5.1 Every intuitionistic fuzzy πgb -closed set is an intuitionistic fuzzy πgb^* -closed set.

Proof. Let A be an intuitionistic fuzzy πgb -closed set of (X, τ) such that $A \subseteq U$ and U is an $IF\pi$ -open set in (X, τ) . Since every $IF\pi$ -open set is an IF open set, $bcl(A) \subseteq U$. Thus $int(bcl(A)) \subseteq int(U) = U$. Hence A is an intuitionistic fuzzy πgb^* -closedset.

The converse of above theorem is not true in general, as we will see in the following example

Example 5.2 Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, 1_{\sim}, U_1, U_2, U_3\}$ is an IFT on X, where $U_1 = \{\langle a, 0, 1 \rangle, \langle b, 0.7, 0.3 \rangle\}, U_2 = \{\langle a, 0.8, 0.2 \rangle, \langle b, 0, 1 \rangle\}, U_3 = \{\langle a, 0.8, 0.2 \rangle, \langle b, 0.7, 0.3 \rangle\}$. Let $A = \{\langle a, 0.7, 0.3 \rangle, \langle b, 0.7, 0.3 \rangle\}$, then A is an IF π gb'CS butitisnot IF π gbCS, since $bcl(A) = \{\langle a, 0.7, 0.3 \rangle, \langle b, 1, 0 \rangle\} \not\subset U_3$.

Theorem 5.3 Every intuitionistic fuzzy πgb -continuous function is an intu- itionistic fuzzy πgb^* -continuous.

Proof.Let $f: (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy πgb -continuous function. Let V be an intuitionistic fuzzy closed set in (Y, σ) . Since f is an intuitionistic fuzzy πgb -continuous $f^{-1}(V)$ is an intuitionistic fuzzy πgb -closed set in (X, τ) . As every intuitionistic fuzzy πgb -closed set, $f^{-1}(V)$ is an intuitionistic fuzzy πgb^* -closed set. Hence f is an intuitionistic fuzzy πgb^* -continuous.

The converse of above theorem is not true.

Example5.4 Let $X=\{a,b\}, Y=\{u,v\}$ and $U_1=\{< a,0,1>,< b,0.6,0.4>\},$ $U_2=\{< a,0.7,0.3>,< v,0,0.1>\},$ $U_3=\{< a,0.7,0.3>,< b,0.6,0.4>\},$ $U_4=\{< u,0.4,0.6>,< v,0.4,0.6>\},$ then $\tau=\{0_{\sim},1_{\sim},U_1,U_2,U_3\}$ and $\sigma=\{0_{\sim},1_{\sim},U_4\}$ are IFT's on X and Y respectively. Define A function $f:(X,\tau)\to (Y,\sigma)$ by f (a)=u and f(b)=v. Therefore f is an intuitionistic fuzzy πgb^* - continuous but not an intuitionistic fuzzy πgb -continuous function.

Theorem 5.5 Every intuitionistic fuzzy πgb homeomorphism is an intuitionistic fuzzy πgb^* homeomorphism.

Proof.Let $f: (X, \tau) \to (Y, \sigma)$ be an IF π gb homeomorphism. Then f and f^{-1} are IF π gb-continuous functions. This implies f and f^{-1} are IF π gb' - continuous functions. Therefore, f is an intuitionistic fuzzy π gb' homeomorphism. \blacksquare The converse of above theorem is not true.

Example 5.6 LetX ={a,b},Y={u,v} and U₁={<a,0,1>,<b,0.6,0.4>}, U₂ = {< a, 0.8, 0.2>, < b, 0, 1>}, U₃ = {< a, 0.8, 0.2>, <b, 0.6, 0.4>}, U₄ = {< u, 0.4, 0.6>, <v, 0.4, 0.6>}, then $\tau = \{0_{\sim}, 1_{\sim}, U_1, U_2, U_3\}$ and $\sigma = \{0_{\sim}, 1_{\sim}, U_4\}$ are IFT's on X and Y, respectively. Define a bijection function $f:(X,\tau) \rightarrow (Y,\sigma)$ by f(a)=uand f(b)=v. Then f is an intuitionistic fuzzy πgb^* homeomorphism but not an intuitionistic fuzzy πgb^* homeomorphism, since f is not an IF πgb homeomorphism.

Conclusion

As an extension of this paper, can be study more properties of intuitionistic fuzzy πgb and πgb^* -sets with other intuitionistic fuzzy sets.

References

- [1] D. Adnadjevic, "On b-OpenSets", Matematioki Vesink, 48 (1996), pp. 59-64.
- [2] Amal M. Al-Dowa is and Abdul Gawad A. Al-Qubati, "ON Intuitionistic Fuzzy Slightly πgb-Continuous Functions", IARJSET, Vol.4(2017), Issue, pp. 84 88.
- [3] K. T. Atanassov, "Intuitionistic fuzzy sets", Fuzzy Sets and Systems, 20(1986),pp.87-96.
- [4] C. L. Chang, "Fuzzy topological space", J. Math. Anal. Appl., 24 (1968), pp.182 -190.
- [5]D. Coker, M. Demirci, "On intuitionistic fuzzy points", Notes IFS, 1,2 (1995), pp. 79-84.
- [6] D. Coker and A. Es. Hyder, "An introduction to intuitionistic fuzzy topological spaces", Fuzzy Sets and Systems, 88(1997), pp. 81-89.
- [7] R. Dhanya and A.Parvathi,"On πgb^* -closed sets in topological spaces", IJIRSET, Vol. 3 (2014), Issue 5 pp 2319-8753.
- [8] J. Dontche and T. Noiri, "Quasi Normal Spaces and πg -closed sets", Acta math. Hungar., 89(3) (2000), pp. 211-219.
- [9] H. Gurcay, A. Haydar and D. Coker, "On fuzzy continuity in intuitionistic fuzzy topological spaces", jour. of fuzzy math, 5 (1997), pp.365-378.
- [10] I. M. Hanafy, "Intuitionistic fuzzy γ continuity", Canad. Math Bull, 52(2009), pp. 1-11.
- [11] S. Maragathavalli and K. Ramesh, "Intuitionistic fuzzy π -generalized semi closed sets",

Advances in Theoretical and Applied Mathematics, 1 (2012), pp. 33-42.

- [12] J. H. Park, "On π gp-closed sets in Topological Spaces", Indian J.Pure Appl. Math., (2004).
- [13] P. Rajarajeswari and R. Krishna Moorthy, "On intuitionistic fuzzy generalized b closed sets", International journal of Computer Applications, 63(2013), pp. 41-46.
- [14] P. Rajarajeswari and L. Senthil Kumar, "Generalized pre-closed sets in intuitionistic fuzzy topological spaces", Apple. Math. Sci. (Ruse), 6(94) (2012), pp. 4691-4700.
- [15] M.S.Sarsak, N.Rajesh," π -Generalized Semi-Preclosed Sets", Int. Math- ematical Forum, 5 (2010), pp.573-578.
- [16] R. Santhi and K. Sakthivel, "Intuitionistic fuzzy generalized semi continuous mappings", Advances in Theoretical and Applied Mathematics, 5(2009), pp. 73-82.
- [17] K. Sakthivel, "Intuitionistic fuzzy Alpha generalized continuous mappings and intuitionistic fuzzy Alpha generalized irresolute mappings", Applied Mathematical Sciences, Vol. 4, No. 37, (2010), pp. 1831-1842.
- [18] D. Sreeja and C.Janaki,"On πgb-closed sets in topological spaces",Int. International Journal of Mathematical Archieve, 2(8) (2011),pp. 1314-1320.
- [19] N. Seenivasagan, O. Ravi and S. SatheeshKanna, "πgα Closed Sets in intuitionistic fuzzy topological spaces", J. of Advanced Research in Scientific Computing, 6 (2014), pp. 1-15.
- [20] S. S. Thakur and Rekha Chaturvedi, "Regular generalized closed sets in intuitionistic fuzzy topological spaces", Universitatea Din Bacau Studii Si Cercertar Stiintifice, 6 (2006), pp. 257-272.
- [21] L.A. Zadeh, "Fuzzy Sets", Inform. And control, 8 (1965), pp.338 353