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Abstract  

This study related the Bayesian identification of the multivariate moving average processes 

using the bayes theorem, which combined the approximate likelihood function and a normal 

matrix-wishart prior density as a conjugate prior or a Jeffrey,'s as a vague prior, this 

combination lead to the posterior distribution in order to reach the marginal posterior 

distribution. We use the approximation technique to reach to the approximated likelihood 

function because The Main problem with the  exact Bayesian analysis of VARMA(p,q) 

model is that there is no analytically form for the likelihood function. Because the residuals 

are not quadratic function of the model parameters, in other words VARMA(p,q) model is 

non liner in its coefficients in the VMA(q) part. The Bayesian identification approach is 

called the direct technique; this technique is dealing with  marginal posterior probability mass 

function of the model order ,is developed in a suitable form. 

Then ,one may find out the posterior probabilities over the grid of the order,and select the 

order with the highest probability to solve the identified problem, the multivariate 

autoregressive moving average in the Bayesian approaches is not developed yet, and also is 

not explored yet with any kind of analysis. 

Keyword : approximation technique, identification parameters, bayes, multivariate 

autoregressive, direct technique. 

:الخلاصة   

ٌعرثش الأسهىب انًسرخذو فً اسرشاذٍدٍح انرحذٌذ نًعانى انًُىرج وانزي ٌسًى الأسهىب انًثاشش فً انرحذٌذ يٍ أهى الأسانٍة 

انحذٌثح فً انرعايم يع ًَارج انسلاسم انضيٍُح انًرعذدج وانزي ٌقىو تذيح دانح الإيكاٌ الاعظى انرقشٌثٍح يع انرىصٌعاخ 

انقثهٍح انًخرهفح سىاء كاَد قٍاسٍح أو غٍش قٍاسٍح يٍ أخم انىصىل إنى انرىصٌع انثعذي ثى انىصىل إنى انرىصٌع انثعذي 

انهايشً، فثاسرثُاء ًَارج الاَحذاس انزاذً انخطٍح فً يعهًاذها فئٌ كم يٍ ًَارج انًرىسطاخ انًرحشكح وانًُارج انًخرهطح 

غٍش خطٍح فً يعهًاذها، وٌُدى عٍ رنك أٌ ذصثح دانح الإيكاٌ نهزِ انًُارج يعقذج وٌصعة انرعايم يعها سٌاضٍاً ويًا 

ٌؤدي إنى ذىصٌعاخ تعذٌح وذُثؤٌح غٍش قٍاسٍح، وٌرطهة انرعايم يع يثم هزِ انرىصٌعاخ حساتاخ يعقذج ذعرًذ عهى 

وقذ طشحد أسانٍة يرعذدج نحم هزِ انًشكهح، غٍش . انركايلاخ انشقًٍح تًا ٌصاحثها يٍ يصاعة فً حال انركايم انًرعذد

أٌ أفضم هزِ الأسانٍة هى انهدؤ إنى انرقشٌثاخ انرحهٍهٍح حٍث أَها ذقىدَا إنى ذىصٌعاخ ذقشٌثٍح تعذٌح قٍاسٍح ٌسهم انرعايم 

 ً  يعها حساتٍا

 

. 

 

INTRODUCTION 

    The Time series model building protocol consists of four phases, which is start with 

identification, estimation, diagnostic check and end with forecast, the first phase which is 

identification is considered to be an important phase in which we are trying to estimating the 

order of p and q of the models such as AR(p), MA(q), and ARMA(p,q). The effectiveness of 

the identification technique affects the precision of the forecasting process, which is the final 

objective of Times series analysis, moreover the perfect identification help to avoid 

estimation difficulties arising in such a models having redundant parameters. 

    In order to achieve the identification goal we have three approaches. The first one is Box-
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Jenkins methodology (See Box-Jenkins, 2016), they proposed an behavior investigation 

procedure in which both the sample autocorrelation function (ACF) and sample partial 

autocorrelation function (PACF) are used to decide which model to select from the set of 

ARMA(p,q) models. Then examining the plots of these functions using the theoretical (ACF) 

and (PACF) that have a characteristics pattern to determine the orders of the models, the 

problem with Box-Jenkins  approach is the subjectivity of the method in comparing the 

sample (ACF) and (PACF) with the theoretical counterparts to decide which model to choose, 

moreover the difficulty in finding the identified model in the case of the mixed models since 

the case the sample (ACF) and (PACF) cannot give a clear cut about the orders of the model 

that should be identified and then some diagnostic test must be used, Finally we can say that 

this technique depends on the researcher's experience . 

   The second one of the identification approaches is called the automatic identification, 

unlike box-Jenkins approach, the decision is taken automatically without any human 

involvement in the model process ,many method sorcriteria 'swecan defined, such as the 

residual variance criterion (RVC) method to identify AR(p), and then used to identify MA(q) 

and ARMA(p,q), also we have(Akiaka,2019) for propose the final prediction error (FPE) 

approach for (AR), also he propose the adjusted information criteria (AIC) criterion, and 

(BIC) which considered as the Bayesian criterion, which considered be a Bayesian 

modification criterion for (AIC), also (Schwarz,2018) introduced Schwarz criterion (SIC) to 

identify an ARMA(p,q). 

    The third one is applying the Bayesian approach, which implies the usage of Bayes 

theorem concepts and terms such as, likelihood function and prior distributions which include 

non-informative (vague) prior density function as Jeffrey's one, or a proper distribution which 

preferred to be a conjugate prior densities, conjugate prior densities have the property that the 

prior and posterior densities both belong to the same parametric family such as, normal-

gamma prior in the unvariate level and normal matrix- wishart in the multivariate version, 

and finally posterior distribution as a Bayesian tool for the estimation phase. 

    The Bayesian time series analysis considered to be in a developing process, for well 

comprehend causes; the all Bayesian researches was focused and concentrated in the (AR) 

model and a few researches with the (MA) model or to the (ARMA) model, this avoid in the 

Bayesian literature is because the complication of the likelihood assignment, of the (MA) 

processes and also the (ARMA) processes, (Zellner,2011) starts the Bayesian analysis of time 

series witt. the autoregressive and distributed lag models, (Newbold,2013) used the Taylor's 

extension, for the remaining to develop very close to actual Bayesian analysis for the 

coefficients of the convey function models for the Bayesian identification, there is no 

Bayesian solution for the identification problem and it's still under development. The Main 

problem with the exact Bayesian analysis of VARMA(p,q) model is that there is no analytic 

form for the likelihood function in the (VMA) part, Because the residuals are not quadratic 

function of the model parameters,  in other words VMA(q) part is non liner in its coefficients. 

The researchers deals with VARMA(p,q) in VMA(q) process part problem via many 

approaches to study the likelihood function. The used approach in  our study is to use the 

approximation method to deliver the approximating VARMA(p,q) likelihood function.  

    The foundation of this method is to approximate the likelihood function by replacing the 

exact residuals by their least square estimates. Using this approximation, we will develop the 

posterior distribution at the indirect Bayesian identification technique. 

    The main aim of this study is to manage the identification problem of (VARMA)(p,q) 

model from the Bayesian approach of identification, namely the direct approaches. 

 

VECTOR AUTOREGRESSIVE MOVING AVERAGE MODEL PROCESSES. 

        Let (t) be a sequence of integer, p ϵ (0, l, 2, .... ), q ϵ(0, l, 2, ....),k ϵ (1. 2, .... ), (y (t)) a 
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sequence of k X 1 real observable random vectors, and a kpxk unknown matrix of a real 

constants, a kqxk unknown matrix of a real constants, and ε (t) a sequence of independent and 

normally distributed kx1 unobservable random vectors with zero mean and k x k unknown 

precision matrix T, then the k-variate autoregressive moving average process of order 

(p,q)using matrix notation is realize for n observed vectors as: 

y (nxk) = Z (nxk(p+q)) Γ(k(p+q)xk) + U (nxk)                                                                  …  (1) 

 

Where: 

 

y (nxk) = ( y(1) y(2)  .......... y (n)]' 

 

y(t) = (y(t,l)   …… y(t,2) .. y(t, k)]'       , t=l, 2,….., r n. 

 

 

Z(nXk(p+q)) = 

 
 
 
 

𝑍 ′ 0 

𝑍 ′ 1 
…

𝑍′(n − 1) 
 
 
 

 

 

 

Γ(k(p+q)xk) = 

 
 
 
 
 
 
 
 
∅ 1,1          ∅ 1,2  …    ∅ 1, 𝑘 

∅ 2,1         ∅ 2,2  …    ∅ 2, 𝑘 
…             ….              …

∅ 𝑘𝑝, 1      ∅ 𝑘𝑝, 2  …    ∅ 𝑘𝑝, 𝑘 

𝜃 1,1           𝜃 1,2  …    𝜃 1, 𝑘 

𝜃 2,1          𝜃 2,2  …    𝜃 2, 𝑘 
…                …                  …

𝜃 𝑘𝑞, 1      𝜃 𝑘𝑞, 2  …    𝜃 𝑘𝑞, 𝑘  
 
 
 
 
 
 
 

 =  
Ф𝑘𝑝𝑥𝑘

𝛩𝑘𝑞𝑥𝑘
 . 

 

And  U (N×K) = (ε 1 ε2 …… ε N)' 

 

Where  ε (t) = ε[(t.1) ε (t.2) ….. ε (t.k)]'          , t=1,2,……,n 

 

THE DIRECT IDENTIFICATION OF VARMA MODELS 

    the multivariate autoregressive process (VAR). The version of the multivariate moving 

average model (VARMA)(p,q) in the direct Bayesian approach in coincidence phase of the 

multivariate times series has not been developed yet, direct technique propose to choose the 

order of a multivariate moving average process (VARMA)(p,q) on the basis of n vectors 

observations. In this technique, the orders of the model are considered random variables and 

then the technique drives the posterior mass function for the chosen orders. After that, the 

posterior probabilities are computed to choose the orders with maximum probability as point 

estimates for the orders. 

The technique also assumes that Conditioning on the first p observed vectors and assuming 

that ε(p - 1) = ... = ε (P - q - 1) = 0. 

   The main aim of this part is to develop the posterior probability mass function of the order 

p and q under the conditions summarized above, In regularly to do that we need to combine 

three terms.  

First, the likelihood function of the k-varaite moving average process of order q VARMA 

(p,q), which can be written as: 

https://dx.doi.org/10.26808/rs.st.i11v1.04


DOI : https://dx.doi.org/10.26808/rs.st.i11v1.04 

International Journal of Advanced Scientific and Technical Research                                           ISSN 2249-9954 

Available online on http://www.rspublication.com/ijst/index.html       Issue 11 volume 1 January- February 2021 

©2021 RS Publication, rspublicationhouse@gmail.com Page 42 

 

L(Г,T/S(n)) ∝ (2𝜋)−𝑘(𝑛−𝑝)/2|𝑇|𝑛−𝑝/2 exp  − 
1

2
 𝑡𝑟  (𝜀 ′ 𝑡 𝑇 𝜀 𝑡 )𝑛

𝑡=𝑝+1   

L(Г,T/S(n)) ∝ (2𝜋)−𝑘(𝑛−𝑝)/2|𝑇|𝑛−𝑝/2 exp − 
1

2
 𝑡𝑟  (𝑦 𝑡 𝑛

𝑡=𝑝+1 − Г ′𝑍(𝑡 − 1)(𝑦 𝑡 −

Г ′𝑍𝑡−1′)𝑇          …(2) 

 

generally, the term (2) is very complex because the residuals c(t) are nonlinear function of the 

coefficients r. Moreover, to see this, let us rewrite yet) , c(t) and r as follows: 

y(t) =  𝑦 1, 𝑡        𝑦 2, 𝑡   . . . 𝑦(𝑘, 𝑡) ′ 
𝜀(t) =  𝜀 1, 𝑡        𝜀 2, 𝑡    . . . 𝜀(𝑘, 𝑡) ′ 

 

Г(k(p+q)xk) = 

 
 
 
 
 
 
 
 
∅ 1,1          ∅ 1,2  …    ∅ 1, 𝑘 

∅ 2,1         ∅ 2,2  …    ∅ 2, 𝑘 
…             ….              …

∅ 𝑘𝑝, 1      ∅ 𝑘𝑝, 2  …    ∅ 𝑘𝑝, 𝑘 

𝜃 1,1           𝜃 1,2  …    𝜃 1, 𝑘 

𝜃 2,1          𝜃 2,2  …    𝜃 2, 𝑘 
…                …                  …

𝜃 𝑘𝑞, 1      𝜃 𝑘𝑞, 2  …    𝜃 𝑘𝑞, 𝑘  
 
 
 
 
 
 
 

 =  
Ф𝑘𝑝𝑥𝑘

𝛩𝑘𝑞𝑥𝑘
 . 

 

 

Moreover, the residuals are given from the following  m  recurrence 

𝜀′𝑖(t) = 𝑦′
𝑖
(t) – 𝑍′𝑖(t − 1)Г𝑖           , where i=1,2,….,m                                                             … (3) 

In addition, using the g-th component of 𝜀𝑖(t) can be written as: 

𝜀 𝑔, 𝑡 = 𝑦 𝑔, 𝑡 

−  𝜀 𝑟, 𝑡 − 𝑗 𝛷𝑖 𝑟 + 𝑘𝑗 − 𝑘, 𝑔 
𝑝𝑖

𝑗=1

𝑘

𝑟=1

+    𝜀 𝑟, 𝑡 − 𝑗 𝛩𝑖 𝑟 + 𝑘𝑗 − 𝑘, 𝑔   

   
                        

      

𝑞𝑖

𝑖=1

𝑘

𝑟=1
 

  𝑤ℎ𝑒𝑟𝑒 𝑔 = 1,2,… , 𝑘                                                                                                          …(4)                  

      

 The recurrence (4) reasons the major problem in developing the accurate analysis of the 

multivariate VARMA models, however, this recurrence can be used to estimate the residuals 

repetition if one knows r and the primary values of the residuals. That is why we need to 

apply the approximation approached which made by (broemeling and Shaarawy, 2014); the 

suggest approximation is based on replacing the exact residuals by their non-linear least 

squares estimates and assuming that E(p) = eip - 1) = ... = E(p _ q _ 1) = O.  

Thus, we estimate the residuals recursively by: 

𝜀 𝑔, 𝑡 = 𝑦(𝑔, 𝑡)  −  𝜀 𝑟, 𝑡 − 𝑗 𝛷 𝑖 𝑟 + 𝑘𝑗 − 𝑘, 𝑔  

𝑝𝑖

𝑟=1

 

𝑘

𝑟=1

+   𝜀 𝑟, 𝑡 − 𝑗 𝛩 𝑖 𝑟 + 𝑘𝑗 − 𝑘, 𝑔 

𝑞𝑖

𝑟=1

𝑘

𝑟=1

 

 

 

Where g=1,2, ... k, Therefore, employ the estimates of the residuals, we can write the 

likelihood function approximately as: 

L(Г𝑖 ,T/𝑆𝑛) ∝  𝑇 
𝑛−𝑝

2 exp(−
1

2
𝑡𝑟  (𝑛

𝑡=𝑝+1 𝑦 𝑡 − Г′𝑍 (𝑡 − 1))(𝑦 ′ 𝑡 − 𝑍 ′(𝑡 − 1)Г)𝑇) 
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Second, as a convenient selected of the 

The prior density of the parameter F, T is the following matrix normal- wishart distribution 

since  

  ξ (Г,T) α𝜉1 
Г
𝑇  𝜉2 𝑇  

 where 

𝜉1 
Г
𝑇  α |𝑇|𝑘(𝑝+𝑞)/2𝑒𝑥 𝑝  −

1

2
𝑡𝑟  Г − Г  

′
𝑉 Г − Г  𝑇      

And, 𝜉2 𝑇  α |𝑇|
1

2
(𝑎− 𝑘+1 ) exp𝑇𝑟  −

1

2
𝑀𝑇 ,Then we can write ξ (Г,T) as next: 

ξ (Г,T) α |𝑇|
1  

2
 (𝑘 𝑝+𝑞 +(𝑎−(𝑘+1))𝑒𝑥 𝑝−

1

2
𝑇𝑟    Г− 𝐷 ′𝑉 Г −𝐷 + 𝑀 𝑇                        …(5) 

 

 

As a prior distribution for a natural, conjugate distribution. 

 

If the one cannot or is unwilling to specify the hyper-parameters , V, 

M r then we can use the jefferys vague prior as following: 

𝑓 𝑇 = |𝑇|
1

2
(𝐾+1)

                                                                                                                …(6) 

Last, we will need to have a prior probability mass function of the order q, which can be 

written as: 

βi = Pr(q = i)    ,i = 1'2'……... 'Q                                                                                         …(7) 

 

Theroy : 

Combining the approximation conditional likelihood function in (4) with the priors (5) and 

(7), the approximation marginal posterior mass function of order q, the order of VARMA 

model has form : 

ℎ 𝑝, 𝑞 𝑆 𝑛    𝛼𝛽𝑖 |𝐴𝑞 |−𝐾 2  |𝑉𝑞 |𝑘/2  |𝐶𝑞 |−
1

2
[𝑛+𝑎]  Γ  

[𝑛+𝑎+𝑗−𝑘 𝑝+𝑞 ]

2
 𝑘

𝑗=1                            …(8) 

Since 

L(Γ, 𝑝, 𝑞,T/𝑆 𝑛 ) ∝ 𝛽𝑖  𝑇 
𝑛−𝑝+𝑘 𝑝+𝑞 +𝑎− 𝑘+1 

2 exp(−
1

2
𝑡𝑟{ Γ −𝐷 ′𝑉 Γ− 𝐷 + 𝑀 +

 (𝑛
𝑡=𝑞+1 𝑦 𝑡 − Г

′𝑍 𝑡 − 1 𝑇 𝑦 𝑡 − Γ′𝑍 𝑡 − 1 ′ }T)                                                       … (9)  

 

Then we can re-write the last equation as 

next:L(Γ, 𝑝, 𝑞,T/𝑆 𝑛 )𝛼𝛽𝑖  𝑇 
𝑛−𝑝+𝑘 𝑝+𝑞 +𝑎− 𝑘+1 

2 exp(−
1

2
𝑡𝑟{ Γ − 𝐷 ′𝑉 Γ −𝐷 + 𝑀 +

 (𝑛
𝑡=𝑝+1 𝑦 𝑡 − Г

′𝑍 𝑡 − 1 𝑇 𝑦 𝑡 − Γ′𝑍 𝑡 − 1 ′ }T)                                                      ...(10) 

 

L(Γ, 𝑝, 𝑞,T/𝑆 𝑛 )𝛼𝛽𝑖  𝑇 
𝑊(Γ) 2 exp(−

1

2
𝑡𝑟{ Γ −𝐷 ′𝑉 Γ− 𝐷 + 𝑀 +  (𝑛

𝑡=𝑝+1 𝑦 𝑡 −

Г
′𝑍 𝑡 − 1 𝑇 𝑦 𝑡 − Γ′𝑍 𝑡 − 1 ′ }T)                                                                               …(11) 

If w(Γ) =n − p + k(p + g) + a − (k + 1)                                                          …(12) 

 

The term between { } in the exponent of equation (11) can be written as: 

 

{Γ
′[𝑉 +  𝑍 𝑡 − 1 𝑍′ 𝑡 − 1 ]𝑛

𝑡=𝑝+1 Γ − Γ′[VD +  𝑍 𝑡 − 1 𝑦′(𝑡)]𝑛
𝑡=𝑝+1 − [𝐷′𝑉 +

 𝑦(𝑡)𝑍′ 𝑡 − 1 ]𝑛
𝑡=𝑝+1 Γ + 𝐷′𝑉𝐷 + 𝑀 +  𝑦 𝑡 𝑦 ′ 𝑡 𝑛

𝑡=𝑝+1 }                                            ... (13)    

By completing the square on I', the last form can be also re-written as next: 

= [Γ − 𝐴−1B]'𝐴[Γ− 𝐴−1B]+C                                                                                         …(14) 
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Where, 

𝐴 = 𝑉 +  𝑍 𝑡 − 1 𝑍′ 𝑡 − 1 𝑛
𝑡=𝑝+1                                                                                   …(15)    

 

𝐵 = 𝑉𝐷 +  𝑍 𝑡 − 1 𝑦′(𝑡)𝑛
𝑡=𝑝+1                                                                                      … (16) 

And 

𝐶 = 𝐷′𝑉𝐷 + 𝑀 +  𝑦(𝑡)𝑦′(𝑡)𝑛
𝑡=𝑝+1 − 𝐵′𝐴−1𝐵                                                                …(17) 

 

Substitute from (14) in (11), we find that: 

L(Γ, 𝑝, 𝑞,T/𝑆 𝑛 )𝛼𝛽𝑖  𝑇 
𝑊(Γ) 2 exp(−

1

2
𝑡 𝑟𝐶𝑇 ∗ exp(−

1

2
𝑡𝑟[Γ − 𝐴−1𝐵]′𝐴[Γ− 𝐴−1B]  𝑇 … (18) 

Since,  

 … 
∞

−∞
 exp⁡(−

1

2

∞

−∞
(𝑥 − 𝜂)'𝐶−1 𝑥 − 𝜂 𝑑𝑥1 …  𝑑𝑥𝑛 = ( 2𝜋)𝑛 |𝐶|

1

2 

 

then; Integrating (18) consideration to Γ, we can have a joint posterior distribution of p, q and 

T as next: 

 

𝑔1(𝑝, 𝑞, 𝑇 𝑆 𝑛  )𝛼𝛽𝑖  𝑇 
𝑊(Γ)

2 exp(−
1

2
𝑡 𝑟𝐶𝑇 ∗  2𝜋 − 𝑝+𝑞 𝑘2 2 |𝐴|−𝑘 2 |𝑇|− 𝑝+𝑞 𝑘 2          … (19) 

It might be refer that the integral of (18) with consideration  to r is done employ the matrix 

normal complete. However, (19) could be written as next: 

𝑔1 𝑝, 𝑞, 𝑇 𝑆 𝑛   𝛼𝛽𝑖 2𝜋 
 𝑝+𝑞 𝑘

2 |𝐴|−
𝑘

2 |V|
𝑘

2|T|
1

2
 𝑊 Γ −𝐾 𝑝+𝑞 +2 −1 ∗ exp(−

1

2
𝑡 𝑟𝐶𝑇 .             …(20) 

In addition, since 

 |𝑇|
1

2
𝑞−1

𝑇>0

𝑒𝑥𝑝  −
1

2
𝑡𝑟 𝑇𝐵 𝑑𝑇 = |𝐵|−

1

2
(𝑞+𝑘−1)2

1

2
𝑘(𝑞+𝑘−1)

Γ𝑘  
𝑞 + 𝑘 − 1

2
  

then Integrating (20) regard to T  we can have a joint posterior distribution of p and q, which 

is the marginal posterior mass function as next: 

 

ℎ(𝑝, 𝑞/𝑆 𝑛 )𝛼   𝛽𝑖    2𝜋 
 𝑝+𝑞 𝑘

2    𝐴 −
𝑘

2    𝑉 
𝑘

2    𝐶 −
1

2
 𝑞𝑝+𝑞+𝑘−1   2

1

2
𝑘 𝑞𝑝+𝑞+𝑘−1 ∗

  𝛤𝑘(
 𝑞𝑝+𝑞+𝑘−1 

2
                                                                                      …(21) 

Where, qp+q = w(Γ) - k(p + q) + 2 and Γk is a generalized gamma function, (Box and Tiao, 

1973). 

The last equation (3.19)/ can be written as next: 

ℎ(𝑝, 𝑞/𝑆 𝑛 )𝛼   𝛽𝑖   𝐴 
−
𝑘

2    𝑉 
𝑘

2    𝐶 −
1

2
 𝑞𝑝+𝑞+𝑘−1   2

𝑘𝑞𝑝+𝑞

2 ∗   𝛱𝑗=1
𝑘 𝛤(

 𝑞𝑝+𝑞+𝑗−1 

2
)                   …(22) 

Finally, with direct substitution of qp+Q' we get the next form: 

 

 

ℎ(𝑝, 𝑞/𝑆 𝑛 )𝛼𝛽𝑖   𝐴 
−
𝑘

2    𝑉 
𝑘

2    𝐶 −
1

2
 𝑛−𝑝+𝑎     𝛱𝑗=1

𝑘 𝛤(
 𝑛−𝑝+𝑎+𝑗−𝑘 

2
)                                  ... (23) 

While, n-p+a-k > o.  

 

 Corollary : 

    Combining the approximation conditional likelihood function in (4) with the Jeffrey's 

priors (6), the approximation marginal posterior mass function of order q, the order of 

VARMA model has the form: 

 

ℎ1(𝑞/𝑆 𝑛 )𝛼  𝐴∗ −
𝑘

2    𝐶𝑞  
−

1

2
 𝑛−𝑝− 𝑝+𝑞 𝑘 

 𝛱𝑗=1
𝑘 𝛤(

 𝑛−𝑝−𝑘−𝑘 𝑝+𝑞 +𝑗  

2
)                   …(24) 
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If the one has a little information about the parameters and wants to use the Jeffrey's vague 

prior, one will have the following posterior mass function of the order q , 

 since 

𝐿(𝛤, 𝑝, 𝑞, 𝑇/𝑆 𝑛 )𝛼 𝑇 
𝑛−𝑘−1

2 exp⁡(−
1

2
  (𝑌 𝑡 − 𝛤 ′𝑍 𝑡 − 1 𝑇(𝑌 𝑡 − 𝛤 ′𝑍 𝑡 − 1 ′

𝑛

𝑡=𝑝+1

 𝑇) 

 

With following, the same procedure which has been developed in theorem  

Where: 

𝐴∗ =  𝑍 𝑡 − 1 𝑍 ′(𝑡 − 1)

𝑛

𝑡=𝑝+1

 

𝐵∗ =  𝑍 𝑡 − 1 𝑌′(𝑡)

𝑛

𝑡=𝑝+1

 .هُا انًعادنح اكرة

𝐶 =  𝑌 𝑡 𝑌′ 𝑡 − 𝐵∗′𝐴∗−1𝐵∗

𝑛

𝑡=𝑝+1

 .هُا انًعادنح اكرة

 

We will reach to next as: 

 

ℎ1(𝑝, 𝑞/𝑆 𝑛 )𝛼  𝐴∗ −
𝑘

2    𝐶 −
1

2
 𝑛−𝑝+ 𝑝+𝑞 𝑘  𝛱𝑗=1

𝑘 𝛤(
 𝑛−𝑝−𝑘−𝑘 𝑝+𝑞 +𝑗  

2
)                           … (25) 

While, n-p-k-kp+1 > 0. 

 

The last two forms (24) and (25) are the forms of the posterior mass function, which is a 

suitable and easy to mange it with a computer. Then one may inspect the plot of the posterior 

mass function over the grid of the P and Q and pick out the value of the p and q at which the 

posterior mass function attains its maximum to be the identified the order of the time series 

data being analyzed. 
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