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Abstract: This paper investigates the emergence of quasiperiodic and mode-locked states which 

arises from Neimark-Sacker(NS) bifurcation in Maynard Smith map which is given by 𝐹 𝑥,𝑦 =
 𝑦,𝑎𝑦+ 𝑏−𝑥2 , where 𝑎 and 𝑏 are real parameters. Analytical results are obtained near NS 

bifurcation using normal forms. In our investigation, we have used the techniques of Lyapunov 

exponent, bifurcation diagram and phase portrait to show transition from quasiperiodic and from 

mode-locked states into chaotic states.  

 

1. Introduction: 

In the last three decades, the phenomenon of chaos has been studied extensively and it has attracted 

increasing interests from mathematicians, physicists, engineers, and so on. Since chaotic systems not 

only admit abundant complex and interesting dynamical behaviours [such as bifurcations, chaos and 

strange attractors] but also have many potential practical applications, great efforts have been devoted 

to investigation related to these systems. 

Research on bifurcation, such as Hopf bifurcation, Homoclinic bifurcation and Period Doubling 

bifurcation is one of the most hot topics in the field of nonlinear science. It has been found that 

bifurcation frequently leads to chaos in nonlinear systems. So, it is necessary to explore the 

bifurcation of dynamical systems so as to understand the complex dynamical behaviours. Recently, 

Hopf bifurcation of some famous chaotic systems have been investigated and it has been becoming 

one of the most active topics in the field of chaotic systems. 

The Neimark-Sacker (NS) bifurcation occurs for a discrete system depending on parameter, with a 

fixed point whose Jacobian has a pair of complex conjugate eigenvalues which cross the unit 

circletransversally. The NS bifurcation in case of maps is equivalent to the Hopf bifurcation for flows 

[26, 27, 34, 41]. For instance, in the case of a supercritical NS bifurcation, a stable focus loses its 

stability as a parameter is varied with the consequent birth of a stable cycle or quasi-cycle which is 

known as closed invariant curve. In the case of a subcritical NS bifurcation, a stable focus enclosed by 

an unstable closed curve loses its stability with the consequent disappearance of the closed invariant 

curve as a parameter is varied. 

The most probable route to chaos, for high dimensional discrete time maps, from a fixed point is via 

at least one Neimark-Sacker(NS) bifurcation, followed by persistent zero Lyapunov exponent, and 

finally a bifurcation into Chaos[1]. Orbits that are not periodic and have the Lyapunov exponent equal 

to zero are said to be quasiperiodic[5, 7, 8, 28, 35]. 

In 1971, Rullle and Takens [30] first proposed the quasi-periodic scenario. It is observed that in both 

the cases of NS bifurcation for maps and Hopf bifurcation for flows quasi-periodic scenario come into 

picture. Hopf bifurcation in fact is related to the birth and death of limit cycles in a system. The 

existence of the limit cycles can be observed in fluid dynamics where vortex structures appear 

[19,32]. The theory underlying the quasiperiodic route to chaos tells us only that this scenario may 

lead to chaotic behaviour. In 1978, Newhouse, Rulle and Takens [24] proved more rigorously in case 

of flows that if the state space trajectories of a system are confined to a three dimensional torus, then 
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even a small perturbation of the motion due to external noise, for example will ñdestroyò the motion 

on the torus and lead to chaos and a strange attractor.  

The behaviour of orbits near a NS bifurcation [39]  reveals many interesting features about the motion 

of particles in complex systems. Fixed-point solutions are transformed into quasiperiodic states or 

limit cycles after NS bifurcation. In other words, particles starting in a steady state (or even a mode- 

locked or synchronized state) end up moving in cycles around one or more centres. Such 

transformation are observed, for example, when vortex structures appear in fluid dynamics [19,32], or 

in the solutions of multi-agent models of biological swarming [18]. Examples of such transitions 

emerging from NS bifurcations can also be mentioned: nonlinear beam oscillations excited by lateral 

force in sound and vibration physics[3], the Euler method applied to delay differential equation[14], 

in the pattern formation and oscillations in a system of self-regulating cells in neural science[29], the 

collapse of predator populations in biology[23] and applications in monetary economics[4]. The 

Maynard Smith map[37] may exhibit the above mentioned motion. Since they are two dimensional 

dynamical systems they might be able to reproduce the spatiallyextended properties of quasiperiodic 

motion on a limit cycle. This makes the study of the emergence of synchronised and quasiperiodic 

states in Maynard Smith Map.  

 

2. The Maynard Smith map : 

Discrete models of density-dependent population growth have attracted much attention as examples of 

simple dynamical systems displaying extremely complicated dynamics. These simple models describe 

the growth of a population with non-overlapping generations by an equation of the form 𝑥𝑛+ 1 =
𝑓(𝑥𝑛), where 𝑥𝑛 is the population size at time n and f is some suitably chosen function.  This leads 

naturally to the study of maps of an interval into itself and, following the work of Li and Yorke [17] 

and May [20] families of one dimensional maps with a single turning point have been extensively 

studied.  

Generalizations of these models take the form of higher dimensional mappings. Notable examples in 

two dimensions being the density-dependent Leslie models of Guckenheimer et al. [10], and the 

delayed logistic equation considered by Aronson et al. [2] to name a few.  

We consider the map𝐹 𝑥,𝑦 = (𝑦,𝑎𝑦+ 𝑏−𝑥2)where a,b  are parameters.  

The model was originally proposed by M. J. Smith [33] who derived the following relationship for the 

growth of a species with egg and adult age classes  𝑛+ 1 = 𝑎𝑥 𝑛 + 𝑏𝑥 𝑛−𝜏 −𝑐𝑥2(𝑛−𝜏)  . 

Here x(n)  denotes the size of the adult population at time n ;τ is the time taken for an egg to develop 

into an adult; 𝑎∈ 0,1   is the probability that an adult at time n  survives to time n + 1 ; b > 0  is the 

number of eggs laid per adult per unit time which in optimal conditions (i.e. low x(n))  survive to 

become adults; and c > 0  represents a density-dependentconstraint on the fertilityof the adults. In 

fact c is simply scaling factor which is removed by the change of scale →𝑥/𝑐 , so that  

𝑥 𝑛+ 1 = 𝑎𝑥 𝑛 + 𝑏𝑥 𝑛−𝜏 −𝑥2(𝑛−𝜏)  

We introduce new variables 

𝑥1 𝑛 = 𝑥 𝑛−𝜏 ,   𝑥2 𝑛 = 𝑥 𝑛−𝜏+ 1 ,…,𝑥𝜏+ 1 = 𝑥(𝑛)  

to obtain, in the usual way, a map of the phase space sending 𝑥𝑖(𝑛)  to 𝑥𝑖(𝑛+ 1) , 1 ≤i ≤τ+ 1 

𝐹:𝑅𝜏+ 1 →𝑅𝜏+ 1 

𝐹: 𝑥1,𝑥2,…𝑥𝜏+ 1 = (𝑥2,…,𝑥𝜏+ 1,𝑎𝑥𝜏+ 1 + 𝑏𝑥1−𝑥1
2)  
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If 𝜏= 0, this gives the function 𝐹 𝑥 =  𝑎+ 𝑏 𝑥−𝑥2   which is equivalent, by a linear coordinate 

change, to the quadratic family𝐹𝜇 𝑥 = 𝜇𝑥(1−𝑥)  considered by May [20] as a simple population 

model.  

Our interest is in the case 𝜏= 1  , where we have  

𝐹 𝑥1,𝑥2 = (𝑥2,𝑎𝑥2 + 𝑏𝑥1−𝑥1
2), 

or after a translation of coordinates 𝑥𝑖→𝑥𝑖−
𝑏

2
,𝐹 𝑥1,𝑥2 = (𝑥2,𝑎𝑥2 + 𝑏 −𝑥1

2) 

where𝑏 =
𝑎𝑏

2
+
𝑏2

4
−
𝑏

2
 

Renaming the coordinates 𝑥1 = 𝑥 ,𝑥2 = 𝑦 and also by writing𝑏 = 𝑏 , we obtain the map we shall 

study in detail, viz.  

𝐹 𝑎,𝑏 (𝑥,𝑦) = (𝑦,𝑎𝑦+ 𝑏−𝑥2) 

We will simply write 𝐹, instead of 𝐹 𝑎,𝑏  remembering that the behavior of the map will depend on 

the parameters a and b. 

𝐹 𝑥,𝑦 = (𝑦,𝑎𝑦+ 𝑏−𝑥2)      (1) 

3. Neimark-Sacker (NS) Bifurcation : 

Let 𝐹 be a two dimensional map from𝑅2 →𝑅2. The NS bifurcation occurs if the Jacobian matrix 𝐽 of 

the linearised system of the map 𝐹 have a complex pair of eigenvalues 𝜆1,2 so that the following 

conditions are satisfied [22, 29, 31] 

(i)  𝜆1,2(𝑎𝑁𝑆) = 1,but       (2) 

(ii) 𝜆1,2
𝑗 𝑎𝑁𝑆 ≠1 for 𝑗= 1,2,3,4,      (3) 

(iii) 
𝑑

𝑑𝑎
  𝜆1,2 𝑎𝑁𝑆   = 𝑑> 0      (4) 

where𝑎𝑁𝑆 is the bifurcation parameter calculated at the bifurcation point, and 𝑑 is a constant. 

Theconditions for NS bifurcation were first derived independently by Neimark in 1959[22], Sacker in 

1964[31] and by Ruelle and Takensin 1971[29]. Landford in 1973 [16] includes the condition 𝜆5 ≠1. 

A modification to deal with thiscase may be found in Iooss[13] who gives more precise details of the 

differentiability conditions required and the regularity of the bifurcating circles. 

4. The normal form:  

The normal form of a bifurcation is a simplified system of equations that approximate the dynamical 

system in the vicinity of a bifurcation point. Application of the method of normal form for 

investigation of different complex systems can be found in [6,25,26, 38]. It describes the local 

property of complex systems near bifurcation points. Any bifurcation has the same normal form for 

all physical models though the coefficients of the normal form change from model to model. In NS 

bifurcation, it can be achieved by using the method described as follows:  

Normal forms of the bifurcating systemsare derived on the central manifold [9,39]. To 

translate the coordinates (𝑥,𝑦)of the dynamical system (1) to the central manifold coordinates 

(𝑢,𝑣)we use the following transformation 

 
𝑢
𝑣
 = 𝐴 

𝑥−𝑥1
𝑦−𝑦1

       (5) 
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where (𝑥1,𝑦1) is the fixed point and 𝐴 is a2 × 2 transformation matrix. The column of 𝐴 are the 

eigenvectors associated to the eigenvalues 𝜆, calculated from the Jacobian matrix of the original 

system. In fact, the above transformation translates the bifurcating equilibrium point to the origin and 

bring the linear part into the normal form.  

 

Substituting 𝜆= 𝑒𝑖𝑐 and 𝜆 = 𝑒−𝑖𝑐 the linear and nonlinear part of the dynamical system can be 

written in the form   

 
𝑢
𝑣
  ↦ 

cos⁡(𝑐) −sin⁡(𝑐)
sin⁡(𝑐) cos⁡(𝑐)

  
𝑢
𝑣
 +  

𝑓(𝑢,𝑣)
𝑔(𝑢,𝑣)

  ,   (6) 

where the constant 𝑐= 𝑎𝑟𝑐𝑡𝑎𝑛
𝐼𝑚 𝜆 

𝑅𝑒[𝜆]
,      (7) 

iscalculated at the bifurcation point. The first and the second term in the right hand side of the 

equation (6)gives the linear and the nonlinear parts respectively. 

Using the transformation 𝑧= 𝑢+ 𝑖𝑣 in the complex plane, it is suitable to write equation (6) as 

𝑧↦𝜆𝑧+ 𝑓 𝑧𝑧  + 𝑖𝑔 𝑧𝑧  .       (8)  

This expression is exactly the dynamical system written in the complex plane and with the bifurcation 

point located at the origin. 

Expanding 𝑓 𝑧𝑧  + 𝑖𝑔 𝑧𝑧   in a Taylor expansion in 𝑧and 𝑧 , we get 

𝑧↦𝜆𝑧+
1

2
𝜉20𝑧

2 + 𝜉11𝑧𝑧 +
1

2
𝜉02𝑧 

2 +
1

2
𝜉02𝑧

2𝑧 + −−−    (9) 

where,   

𝜉20 =
1

8
  𝑓𝑢𝑢−𝑓𝑣𝑣+ 2𝑔𝑢𝑣 + 𝑖 𝑔𝑢𝑢−𝑔𝑣𝑣−2𝑓𝑢𝑣      (10) 

 𝜉11 =
1

4
  𝑓𝑢𝑢+ 𝑓𝑣𝑣 + 𝑖 𝑔𝑢𝑢+ 𝑔𝑣𝑣        (11) 

 𝜉02 =
1

8
  𝑓𝑢𝑢−𝑓𝑣𝑣−2𝑔𝑢𝑣 + 𝑖 𝑔𝑢𝑢−𝑔𝑣𝑣+ 2𝑓𝑢𝑣      (12) 

𝜉21 =
1

16
  𝑓𝑢𝑢𝑢+ 𝑓𝑢𝑣𝑣+ 𝑔𝑢𝑢𝑣+ 𝑔𝑣𝑣𝑣 + 𝑖 𝑔𝑢𝑢𝑢−𝑔𝑢𝑣𝑣−𝑓𝑢𝑢𝑣−𝑓𝑣𝑣𝑣   (13) 

Now considering the transformation 𝜂= 𝜂 𝑧 = 𝑧+ 𝑂  𝑧 2 , theequation (9) is brought to its 

simplest form which is called the normal form in the complex plane: 

𝜂↦𝜆𝜂+ 𝑙𝜂2𝜂 + 𝑂  𝜂 5                 (14) 

where𝑙 being a complex number determined by 

𝑙= [
 1−2𝜆 𝜆 2

𝜆−1
𝜉11𝜉20−

 𝜉11 
2

 1−𝜆3 
−

2 𝜉02 
2

 1−𝜆 
+ 𝜆 𝜉21]     (15)  

Substituting 𝜆= 𝑒𝑖𝜃and𝜂= 𝑟𝑒𝑖∅, in the r.h.s. of the equation (14) we get 

𝑟(1 + 𝑅𝑒 𝑙 𝑟2)𝑒𝑖(𝜃+∅+𝐼𝑚 𝑙 𝑟2)        (16) 
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The radial and angular part of normal form given by (16) can be written as [8] 

𝑟𝑡+ 1 = 𝑟𝑡[1 + 𝑑 𝑎−𝑎𝑁𝑆 + 𝑒𝑟𝑡
2]      (17)

 𝜃𝑡+ 1 = 𝜃𝑡+ 𝑐+ 𝑠𝑟𝑡
2        (18) 

where c, d, e and s are the coefficients of the normal form. The coefficient 𝑑 is determined 

usingequation (4). Comparing (17) and (18) with (16), we get 

𝑒 =  𝑅𝑒[𝑙]and𝑠= 𝐼𝑚[𝑙]  .         (19) 

The properties and stability of solutions near the NS bifurcation depends on the constants 

𝑐,𝑑,𝑒 𝑎𝑛𝑑 𝑠. The stability of a limit cycle is determined by 𝑒. If 𝑒< 0, then the limit cycle is stable 

where as if 𝑒> 0 the limit cycle is unstable. In the first case the bifurcation is called supercritical and 

in the second case the bifurcation is called subcritical.    

The formula for ólôgiven in (15) is computed by Iooss[13] and by Wan[36]. A detail study of normal 

form is found in Guckenhammer and Holmos [9], Kunzostov[15], Iooss-Joseph[12], Wiggins [39]and 

Nayfish[21]. 

5. Discussion of analytical and numerical results: 

Fixed Points and stability: 

The fixed point of the map(1) are given by the equations 𝑦= 𝑥and 𝑎𝑦+ 𝑏−𝑥2 = 𝑦. Solving these 

equations we get two fixed points 𝑀1 ≡(𝑥1,𝑥1)and 𝑀2 = (𝑥2,𝑥2) wherethe values of 𝑥1,2 are  

 𝑥1,2 =
−1+𝑎±  1−𝑎 2+4𝑏

2
       (20) 

whichare real for  1−𝑎 2 + 4𝑏≥0.       (21) 

i.e.𝑏≥−
 1−𝑎 2

4
 

In order to determine the stability of the fixed points in the parameter plane we need to calculate the 

eigenvalues of the Jacobian matrix of the mapping (1)at those fixed points. The Jacobian matrix for 

the map we have considered is given by  

𝐴=  
0 1
−2𝑥 𝑎

  

The eigenvalues of the Jacobian matrix are given by  

𝜆1,2 =
𝑎± 𝑎2−8𝑥

2
        (22) 

which can assume real or complex conjugate values, depending on the sign of𝑎2−8𝑥. 

In order to study the stability of a specific orbit it is necessary to substitute (𝑥,𝑦)  by the related values 

of 𝑥1,2 from Eq. (20). 
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Verifying the stability conditions we observe that the fixed point 𝑀1(𝑥1,𝑥1) is stable in the region 1 

of Fig 1 and the fixed point 𝑀2(𝑥2,𝑥2)  is unstable in the same region.  

First we consider the real eigenvalues and the fixed point 𝑀1.The condition 𝜆1 = 1 or 𝜆2 = 1 gives  

𝑏= −
 1−𝑎 2

4
         (23) 

which is a curve (marked as A) on the parameter space where a stable period-1 orbit is born as shown 

in the fig. 1. 

The condition 𝜆1 = −1or 𝜆2 = −1, gives 

𝑏=
(3𝑎−1)(𝑎+ 1)

4
         (24) 

which defines a curve in the parameter space where a bifurcation 1 →2 from the fixed point occurs. 

This is the curve which defines the doubling boundary B of Fig. 1 and is the first curve of the 

sequence of curves related with the 1 × 2𝑛 period doubling bifurcations. 

 

Fig. 1 

Verification of NS Conditions: 

For NS bifurcation we consider the complex eigenvalues. 

The complex conjugates eigenvalues are given by  

𝜆=
𝑎+𝑖 8𝑥−𝑎2

2
         (25) 

𝜆 =
𝑎−𝑖 8𝑥−𝑎2

2
         (26) 

For the point 𝑀1 the first NS condition  𝜆 =  𝜆  = 1 (see Eq. (2)) leads to 2𝑎+ 4𝑏= 3, which is 

exactly the straight line which defines the boundary C of Fig 1. The solution of this equation, i.e., 

𝑎≡𝑎𝑁𝑆=
3−4𝑏

2
,         (27) 

defines the bifurcation boundary.This line is called the Neimark-Sacker line. 

Region 1 

C 

A 
B 
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The third condition of the NS bifurcation gives 𝑑=
3−2𝑎

2
, which is greater than zero for 𝑎<

3

2
. 

Moreover, from simple calculations we can verify that the second condition of the NS bifurcation is 

satisfied in case of our considered map.  

From above, it is seen that the NS bifurcation conditionsare satisfied for the parameter range −2 <

𝑎<
3

2
 and so, theoretically the existence of a NS bifurcation in case of our considered map is 

validated for the above mentioned range. 

Finding óeô and ósô for our model: 

To compute 𝑒and 𝑠 we apply the changes of coordinates      

  𝑥′,𝑦′ = (𝑥−𝑥1,𝑦−𝑦1)       (28) 

where𝑥1 =
1

2
,𝑦1 =

1

2
 are fixed points at the bifurcation point, which translate the bifurcating 

equilibrium to the origin. 

The eigenvectors corresponding to eigenvalues𝜆 and 𝜆 (these are calculated on the NS line) are, 

respectively, given by  
1

2
 

2
𝑎+ 𝑖𝜒

  and 
1

2
 

2
𝑎−𝑖𝜒

  

where𝜒=  4−𝑎2.  

To separate the linear part from the nonlinear part, as in equation (6), a new basis is introduced which 

allows the transformation  

 
𝑥
𝑦 = 𝑇 

𝑢
𝑣
  , where  𝑇=  

𝜒

2

𝑎

2

0 1
  

& 
𝑢
𝑣
 = 𝑇−1 

𝑥
𝑦 , where 𝑇−1 =

1

𝑝
 
2 −𝑎
0 𝜒

  

Under thetransformation =
𝜒

2
𝑢+

𝑎

2
𝑣 ,  𝑦= 𝑣the equation (1) becomes 

 
𝑢
𝑣
 =  

𝑎

2

𝜒

2

−
𝜒

2

𝑎

2

  
𝑢
𝑣
 +  

𝑓 𝑢,𝑣 

𝑔 𝑢,𝑣 
  

where the nonlinear terms are  

𝑓 𝑢,𝑣 =
𝑎

4𝜒
 𝜒𝑢+ 𝑎𝑣 2 

𝑔 𝑢,𝑣 = −
1

4
 𝜒𝑢+ 𝑎𝑣 2 

andwe have the following:  

𝑓𝑢𝑢=
𝑎𝑝

2
 ,  𝑓𝑢𝑣=

𝑎2

2
,  𝑓𝑣𝑣=

𝑎3

2𝑝
,  𝑔𝑢𝑢= −

𝑝2

2
, 𝑔𝑢𝑣= −

1

2
𝑎𝑝, 𝑔𝑣𝑣= −

𝑎2

2
 

Using (10), (11), (12) and (13) we obtain 

𝜉20 = −
−3+𝑞

4 −2+𝑞 
−𝑖

1

4
,     𝜉11 =

𝑞

2 4−𝑞2
−𝑖

1

2
,    𝜉02 = −

𝑞 −3+𝑞2 

4 4−𝑞2
+ 𝑖

1

4
(−1 + 𝑞2),  𝜉21 = 0 
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Substituting these, the coefficients e and s can be determined from Eq. (19), and they are  

 𝑒= −
−3+𝑎

4(−2+𝑎)
         (29) 

 𝑠=
−2+5𝑎+ 2𝑎2−𝑎3

4(−2+𝑎)(1+𝑎) 4−𝑎2
        (30) 

In fact, the condition 𝑒≠0, guarantees the existence of an invariant limit cycle above 𝑎𝑁𝑆 [9,11] 

which we have verified in our numerical simulations which are shown in the following figures [Fig.2]. 

 

Fig.2: PhasePortrait of the map(a)before the NS bifurcation𝑎= −0.1,𝑏= 0.75with initial point 

𝑥0 = 0.5,𝑦0 = 0.5, the origin is stable and iterates spiral to it and (b)after the NS bifurcation at the 

parameter value 𝑎= 0.1, 𝑏= 0.75with initial point𝑥0 = 0.5,𝑦0 = 0.5, the origin is unstable and 

iterates spiral away from it and onto a smooth invariant closed curve encircling it (c)phase portrait at 

the parameter value 𝑎= 0.1, 𝑏= 0.75with initial point&𝑥0 = 0.2,𝑦0 = 0.2 which is outside the 

invariant circle. The iterates spiral towards the invariant circle. 

 

We have already mentioned that the NS bifurcation conditions are satisfied for the parameter range 

−2 < 𝑎<
3

2
 and soif we plot the graph of (29) for this range (shown in Fig 3) then we can conclude 

that the coefficient e is always negative for the above mentioned range. The limit cycle is therefore 

stable for these values of 𝑎. From the results obtained for e (equation 29) and d (equation 4), it is 

possible to conclude that the fixed point 𝑀1 suffers a NS bifurcation along the line (27) in the 

parameter space. All conditions for a NS bifurcation mentioned in section 3 are satisfied and the limit 

cycle, which exist for 𝑎> 𝑎𝑁𝑆 [i.e. on the upper side of the line C from Fig. 1], is stable.   

 

Fig.3. Coefficient e from the normal form (29) as a function of the parameter 𝑎. Since 𝑒< 0 in the 

considered  intervals, the limit cycles are stable in the same intervals. 

The Local dynamics described by the normal forms (17) and (18) is very rich. It is possible,  

for example, to obtain information related to the radius of the limit cycle and the rotation number. 

Making 𝑟𝑡+ 1 = 𝑟𝑡= 𝑟  in Eq. (17), the radius of the limit cycle is determined by 

𝑟=  −
𝑑

𝑒
(𝑎−𝑎𝑁𝑆)         (31) 

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.7

0.6

0.5

0.4

a

e

𝑒 

(a) (b) (c) 
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Observe that r is always real because the limit cycles only exist for 𝑎> 𝑎𝑁𝑆,𝑑> 0and 𝑒< 0. 

Therefore the radius of the invariant circle grows as  𝑎−𝑎𝑁𝑆 
1/ 2 [11,32] 

Substituting 𝑟 from Eq. (31) in Eq. (17), the rotation number on the limit cycle can be obtained from  

𝜃𝑡+ 1 = 𝜃𝑡+ 𝛼(𝑎) ,         (32) 

where 𝛼 𝑎 = 𝑐+ 𝑠𝑟2 = 𝑐−
𝑠𝑑

𝑒
(𝑎−𝑎𝑁𝑆)       (33)  

For points on the Neimark-Sacker line C(𝑎= 𝑎𝑁𝑆), the radius r is zero. 

So, from (33), we have   𝛼(𝑎𝑁𝑆) = 𝑐, 

where c is obtain from Eq. (7) 

𝑐= arctan 
𝐼𝑚𝜆

𝑅𝑒𝜆
 = arctan

𝜒

𝑎
  with −2 < 𝑎<

3

2
. 

Thus we have  𝛼 𝑎𝑁𝑆 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝜒

𝑎
 where  𝜒=  4−𝑎2    (34)  

It can be observed from (32), that for rational values of
𝛼(𝑎𝑁𝑆)

2𝜋
, points on the limit cycle will be 

repeated whereasfor irrational values of 
𝛼(𝑎𝑁𝑆)

2𝜋
, points on the limit cycle will never repeat. Therefore, 

two cases have to be considered, depending on the ratio 
𝛼(𝑎𝑁𝑆)

2𝜋
.  

(1) Mode-locking: If 
𝛼(𝑎𝑁𝑆)

2𝜋
=
𝑚

𝑛
 is a rational number, a periodic regime is obtained. In this case a 

mode-locked state or synchronization is obtained, with n being the period of the orbit and m 

its multiplicity.    

(2) Quasiperiodicity: If 
𝛼(𝑎𝑁𝑆)

2𝜋
 is an irrational number, the motion is quasiperiodic. 

The parameter value at which the mode-locked states occur can be obtained analytically by choosing a 

period n (and multiplicity m) and substituting  
𝛼(𝑎𝑁𝑆)

2𝜋
=
𝑚

𝑛
 in the relation (34), simplification of  

which leads to   𝑎= ± 2 cos 
2𝜋𝑚

𝑛
      (36) 

Using the (36) and (27) we get the corresponding parameter values of a and bfor some of the different 

mode-locked states which are shown in the following table. 

𝛼(𝑎𝑁𝑆)

2𝜋
 

Parameter 𝑎 Parameter 𝑏 

1/ 3 -1 1.25 

1/ 4 0 0.75 

1/ 5 0.618 0.44098 

1/ 6 1 0.25 

 

Fig. 4, 5, 6 shows the (a) bifurcation diagram and (b) behaviour of the maximal Lyapunov exponent, 

h, for different ranges of the parameters 𝑎and 𝑏. Different motions based on calculated Lyapunov 

exponents can be observed, namely, for negative exponents (periodic motion), zero exponent 

(quasiperiodic states) and positive exponent (chaotic motion with some windows of mode-locked 
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states where 𝑕< 0). We have used the ópull backômethod [40] to find the Lyapunov exponent during 

our investigation. 

 

The arrow in Fig. 4(b), 5(b) and 6(b)indicates the range of quasiperiodic motion which begins at the 

NS bifurcation pointswhere a fixed-point solution is transformed into a quasiperiodic motion. The 

quasiperiodic motion continueswith the increase of the parameter value 𝑎and eventually it either goes 

to chaos (𝑕> 0)  or it continues with the existing state until the attractor gets destroyed in a boundary 

crisis. In the quasiperiodic region the bifurcation diagram is filled out like the chaotic region making it 

difficult to draw conclusions about the state depending solely on the bifurcation diagram. At this 

confusing state we must take help of the values of the Lyapunov exponent which is zero for 

quasiperiodic state and positive for chaotic state.For all the figures the trajectories were initialised at 
 𝑥0,𝑦0 = (0.1,0) . 

The final state diagram even in the case of quasiperiodic state and mode-locked state in the 

neighbourhood of the NS bifurcation point looks similar. We can distinguish their differences by 

magnifying the final state diagram in the neighbourhood of the NS bifurcation point. So, we have 

drawn the figures in 4(c), 5(c)and 6(c) which are the blown up portions within the squares shown in 

figures 4(a), 5(a), 6(a) respectively. Depending on the above methodology we have discussed the 

following cases. 

Mode-locked state for b=0.25: 

 

 

𝑥 

𝑎 4(c) 

𝑥 

4(a) 

𝑎 

𝑕 

4(b) 

𝑞𝑢𝑎𝑠𝑖𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦 
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In the above case fig 4(a) and 4(b) shows that the quasiperiodic state continues from 𝑎 =  1.0to 

𝑎 = 1.312…  𝑕= 0.0000…  approximately for the fixed value 𝑏 =  0.25 and then the attractor 

vanishes in a boundary crisisat𝑎 = 1.314…. The system in this case does not go to chaos. The fig. 4(c) 

which is the magnification of the portion within the square in 4(a) which is in the neighbourhood of 

the NS bifurcation point shows that it meets with the 1: 6 mode-locked state. The following figure 

4(d), 4(e) which are the phase portraits just before and after the NS bifurcation justifies our claim. We 

have drawn the figure with the initial point (𝑥= 0.5,𝑦= 0.5)  and allowing the attractor 10000000 

number of iterations and then neglecting 9990000 initial iterations. For the figure 4(d) the parameter 

value 𝑎 was taken to be 0.99 which is just prior to the NS bifurcation and for the figure 4(e) the 

parameter value 𝑎 was taken to be 1.00000001 which is just after the NS bifurcation.  The single point 

in the fig 4(d) ascertains that the system is regular with period 1 and the 6 points in the figure 4(e) 

shows that the system attains the mode-locked state 1: 6.   

 

Fig. 4.  (a) Bifurcation diagram and (b) maximal Lyapunov exponent for 𝑏= 0.25. No chaotic motion 

observed (1/6) (c) Blown up portion of the bifurcation diagram inside the square (d)Phase-portrait at 

𝑎= 0.99just before the NS bifurcation point (e) Phase Portrait 𝑎= 1.00000001just after the NS 

bifurcation point.  

Mode-locked state for b=0.75: 

 

𝑥 

5(a) 

𝑕 

𝑎 5(b) 

𝑞𝑢𝑎𝑠𝑖𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦 

4(𝑑)  4(𝑒)  
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Fig.5. (a) Bifurcation diagram and (b) maximal Lyapunov exponent for 𝑏= 0.75. The arrow shows 

the range of quasiperiodic motion. (1/4) 

In the above case fig 5(a) and 5(b) shows that the quasiperiodic state continues from 𝑎 =  0.0 to 

𝑎 = 0.65  𝑕=  0.0171  approximately for the fixed value 𝑏 =  0.75with some intermittent periodic 

windowsand then the attractor goes to chaos before it gets destroyed in a boundary crisis near 

𝑎 =  0.879.The measures of the Lyapunov exponents in this case further shows that the system is 

strongly chaotic(𝑕=  0.167193 at 𝑎= 0.878). The fig. 5(c) which is the magnification of the portion 

within the square in 5(a) which is in the neighbourhood of the NS bifurcation point shows that it 

meets with the 1: 4 mode-locked state. 

Quasiperiodic State at  𝒃= 𝟎.𝟔 :  

Fig. 6 shows the (a) bifurcation diagram and (b) behaviour of the maximal Lyapunov exponent, 𝑕, for 

0 < 𝑎< 1 and 𝑏= 0.6 for our considered map. The arrow in Fig. 6(b) indicates the range of 

quasiperiodic motion which begins at the NS bifurcation points (𝑎,𝑏) = (0.3,0.6) , where a fixed-point 

solution is transformed into a quasiperiodic motion. The quasiperiodic motion continueswith the 

increase of the parameter value 𝑎until the chaotic motion is reached (𝑕> 0) .For both Figures the 

trajectories were initialised at  𝑥0,𝑦0 = (0.1,0) . 

  

𝑞𝑢𝑎𝑠𝑖𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦 

𝑥 

𝑕 

6(a) 

6(b) 𝑎 

𝑎 

𝑥 

5(c) 
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In the above case fig 6(a) and 6(b) shows that the quasiperiodic state continues from 𝑎 =  0.3to 

𝑎 = 0.883  𝑕= 1.73795 × 10−6 approximatelyfor the fixed value 𝑏 =  0.6with some intermittent 

periodic windows and then the attractor goes to chaos  𝑎= 0.889,𝑕=  0.01147 before it gets 

destroyed in a boundary crisis near 𝑎 =  0.99. There is a marked difference of this case with the 

previous two cases regarding their behaviour near the NS bifurcation point. The fig. 6(c) which is the 

magnification of the portion within the square in 6(a) which is in the neighbourhood of the NS 

bifurcation point shows that it meets with quasiperiodic state instead of the mode-locked state. 

In fact, from figures of magnified portions of the final state diagram near the NS bifurcation point we 

can draw conclusions whether the state is quasiperiodic or mode-locked near this bifurcation point. 

Though we could count the periods of mode-locked states in the previous cases from figures 4(c) and 

5(c), it is not possible in the present case from figure 6(c). The phase portraits in this case which are 

shown in figures 6(d) and 6(e) further clarifies this point. Though the phase portraits results in some 

discrete points in the earlier cases, in the present case they show innumerable non repeated points 

forming a limit cycle. 

 

 

 

Another important observation is made in this case. Figure 6(a) shows that the system after showing 

quasiperiodic nature up to certain value of the parameter 𝑎ultimately settles in to chaotic state. But 

within the chaotic state also there are some periodic regionsin which the calculated Lyapunov 

exponent is found to be zero which shows that the windows are having quasiperiodic nature. Probably 

we can term them as quasiperiodic windows(for e.g. 𝑎= 0.968 𝑡𝑜 𝑎= 0.974). In particular for 

𝑎 =  0.97 and 𝑏 =  0.6 we see the following phase portraits which shows the existence of 8 limit 

cycles which is shown in the following figure6(f). 

6(𝑑) 6(𝑒) 

𝑦 𝑦 

𝑥 𝑥 

𝑎 

𝑥 

6(c) 
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Fig. 6. (a) Bifurcation diagram and (b) maximal Lyapunov exponent for  𝑏= 0.6. The arrow shows 

the range of quasiperiodic motion (c). Blown up portion of the bifurcation diagram inside the square 

(d) Phase portrait at 𝑎= 0.200 just before occurrence of NS bifurcation (e) Phase portrait at 

𝑎= 0.301 just after occurrence of NS bifurcation.(f) Phase portrait for a=0.97, b=0.6, where eight 

limit cycle formed inside the chaotic region. 

 

Evolution of the attractor at 1 : 4 mode-locked state : 

From the earlier discussions it is quite clear that the NS bifurcation is marked by creation of limit 

cycles which keeps on growing in radius and ultimately gets deformed when the chaotic state is 

reached. The basic difference which takes place in case of mode-locked state and the quasiperiodic 

state in the immediate vicinity of the NS bifurcation point is that in the earlier case the state of the 

system changes from period one to two or more (depending upon the mode-locked state) and then it 

forms a stable limit cycle whereas in the quasiperiodic case the limit cycle gets immediately created 

just after crossing the NS bifurcation point. In the following diagrams we have shown the evolution of 

the limit cycles which is created after the NS bifurcation point in case of 1 : 4 mode-locked state.  

 

In the figure where 𝑎 = −0.01 which is just before the NS bifurcation, the phase portrait consists of a 

single point signifying period one behaviour whereas for a = 0.000001 which is just after the NS 

bifurcation point the phase portrait consists of four points signifying period four behaviour suggesting 

1 : 4 mode-locked state. If we still increase the parameter 𝑎 the limit cycle comes in to the picture 

which signify the quasiperiodic state and the limit cycles grows in radius with the increase of the 

parameter 𝑎 and ultimately gets deformed when the chaotic state is reached.  In between there are 

certain stages (for e.g.  𝑎 =  0.335,0.70,0.71,0.81) where the phase portraitsare marked by some 

points  which show intermittent periodic behaviour within the quasiperiodic and chaotic states. The 

bifurcation diagram and the Lyapunov exponent shown in figure 5(a) and 6(b) supports this 

conclusion. 

𝑥 

𝑦 

6(𝑓) 
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Fig.7. Phase-space plot for b=0.75 showing the evolution of attractors for the ¼ mode-lock state. 

6. Conclusion: 

In this paper, we have analysed the quasiperiodic behaviour of the Maynard Smith map. Maynard 

Smith map which undergoes the Neimark-Sacker bifurcation exhibits both quasiperiodic and mode-

locked state. We have made a comparison between the mode locked and quasiperiodic state in the 

neighbourhood of the NS bifurcation point.The normal form gives us good results near the Neimark-

Sacker bifurcation points.Using the normal form we have analytically determined the parameter value 

where the quasiperiodic and mode-locked states occur. After the NS bifurcation, a fixed point solution 

is transformed into a mode-locked or synchronized state. For very specific conditions, the fixed point 

solution is transformed into a mode-locked or synchronised state.  

We can also conclude that the occurrence of quasiperiodicity does not always lead to chaos. For 

example in 1:6 mode-locked state which we have discussed in detailthough quasiperiodicity creeps 

into the system,itnever become chaotic. 

𝑎= 0.86, 𝑏= 0.75 

𝑥 

𝑎= 0.84, 𝑏= 0.75 a=0.87, b=0.75 

𝑥 𝑥 

𝑦 
𝑦 𝑦 

𝑎= 0.83, 𝑏= 0.75 𝑎= 0.81, 𝑏= 0.75 

𝑥 𝑥 𝑥 

𝑦 𝑦 𝑦 

𝑎= 0.82, 𝑏= 0.75 

𝑥 𝑥 𝑥 

𝑎= 0.758, 𝑏= 0.75 𝑎= 0.75, 𝑏= 0.75 

𝑦 𝑦 
𝑦 

𝑎= 0.771, 𝑏= 0.75 

𝑥 𝑥 𝑥 

𝑦 

𝑎= 0.74, 𝑏= 0.75 

𝑦 

𝑎= 0.73, 𝑏= 0.75 𝑎= 0.71, 𝑏= 0.75 

𝑦 



International Journal of Advanced Scientific and Technical Research               Issue 3 volume 6, Nov.-Dec. 2013                  

Available online on   http://www.rspublication.com/ijst/index.html                                              ISSN 2249-9954                                   
 

R S. Publication (http://rspublication.com), rspublicationhouse@gmail.com  Page 53 
 

We also observed that inside the chaotic region there may occur some quasiperiodic region which we 

may term as quasiperiodic window like periodic window.  

We have further shown the deformations of the limit cycles through the phase portraits in case of 1:4 

mode-locked state.  

In case of mode-locked states the systems behaviour just after the NS bifurcation remains periodic for 

a certain range of parameter value and after that the systems behaviour becomes quasiperiodic and the 

limit cycle is formed. Whereas in case of quasiperiodic state the limit cycle is formed just after the NS 

bifurcation and we see no periodic behaviour in the immediate neighbourhood of the NS bifurcation 

point. 
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