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Abstract

The intend of this paper is to introduce *P-resolvable spaces and precompat-
ible ideals. Relation between *P-resolvable,I-resolvable and resolvable spaces
are analysed. Many characterizations and properties of these two concepts are
also obtained.
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1 Introduction and Preliminaries

Th notion of resolvable space was introduced by Hewitt. Many mathematicians such

as Ganster[16], P.Sharma , S.Sharma[45], Comfort and Feng[7] are working in this area

and found many interesting properties about resolvable spaces. Recently Comfort

and van Mill[9] and also Comfort, Masavea and Zhou[10] studied resolvability of

topological groups. The concept of compatible ideals was introduced by O.Njastad

in 1966.This ideal was also called as supercompact by R.Vaidyanathaswamy. Further

D.Jankovic and T.R. Hamlett are also worked in this area.

Throughout this paper, cl(A) and int(A) denote the closure of A and the interior

of A respectively. An ideal I on a topological space (X,τ) is a nonempty collection of

subsets of X which satisfies

(i) A ∈ I and B ⊆ A implies B ∈ I.

(ii) A ∈ I, B ∈ I implies A ∪ B ∈ I.
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If {Ai, i = 1, 2, 3, .....} ⊆ I, then ∪{Ai : i = 1, 2, 3, .....} ∈ I(countable additivity)

a topological ideal which satisfies also this condition is called σ-ideal. An ideal topo-

logical space denoted by (X, τ, I) is a topological space (X, τ ) with an ideal I on X.

For a subset A of X, A∗P (I) = {x ∈ X :U ∩ A 6∈ I for each pre neighbourhood U

of x} is called the pre local function of A with respect to I and τ . Some important

ideals in a topological space are 1) the ideal of all finite subsets F

2) the ideal of all countable subsets C

3) the ideal of all nowhere dense sets N

4) the ideal of all meager sets M

5) the ideal of all Lebesgue null sets L

For every ideal topological space (X, τ, I), there exists a topology τ ∗P (I),finer

than τ , generated by the base B(PO(X), I) = {U\G : U ∈ PO(X) and G ∈ I}.
Additionally, cl∗P (A) = A ∪ A∗P defines a closure operator for τ ∗P (I).

Definition 1.1 A non-empty topological space (X,τ) is called resolvable if X is the

disjoint union of two dense subsets.

Definition 1.2 A non-empty subset of an ideal topological space, A ⊆ X is said to

*P-dense, if A∗P= X.

Definition 1.3 A non-empty subset of an ideal topological space, A ⊆ X is said to

τ ∗P -dense, if cl∗P (A)= X.

2 *P- resolvable spaces

Definition 2.1 A non-empty ideal topological space (X,τ ,I) is called *P-resolvable

if X is the union of two I∗P -dense subsets, where A and B are disjoint modulo an

ideal(i.e) their intersection is in I.

Proposition 2.2 For a non empty ideal topological space (X,τ ,I) the following con-

ditions are equivalent.
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1) (X,τ) is resolvable space.

2) (X,τ , I) where I =ø ideal is *P-resolvable

Proof. Straightforward.

Proposition 2.3 Every I∗P -dense set is τ ∗P -dense set.

Proof. Let A ⊆ X be I∗P -dense, then A∗P = X which implies cl∗P (A) = A∪A∗P =

X. Thus A is τ ∗P -dense set.

Definition 2.4 An ideal topological space(X,τ ,I) is said to be *P-irresolvable, if it is

not *P-resolvable.

Remark 2.5 An ideal topological space is *P-irresolvable if,

1)I is maximum ideal(i.e)I = P(X)

2)I contains any non empty preopen set.

Theorem 2.6 For a non empty ideal topological space (X,τ ,I) X=X∗P if and only if

the given ideal is completely codense ideal.

Proof. Straightforward.

Theorem 2.7 If (X,τ ,I) is *P-resolvable, then I is completely codense.

Proof. If X = A ∪ B where A and B are I∗P -dense set, then A∗P (I) = X and

B∗P (I) = X. Therefore PO(X) ∩ A 6∈ I and PO(X) ∩ B 6∈ I. Hence PO(X)∩ I =

ø.(i.e) I is completely codense.

Corollary 2.8 If an ideal topological space is (X, τ ,I) is *P-resolvable, then I is

codense.

Proof. Given (X, τ, I) be a *P-resolvable space by Theorem 6.1.7 then I is com-

pletely codense, we know that every completely codense is codense. Hence the result.

Theorem 2.9 Every *P-resolvable space is I-resolvable space.

Proof. Let X = A ∪ B where A and B are disjoint modulo an ideal. Since the

given space is *P-resolvable then A∗P = X and B∗P = X (i.e) A∗P ⊆ A* and B∗P ⊆
B*, then by the hypothesis, we get A∗ and B∗ = X. Hence X = A ∪ B where A and

B are I-dense subsets. Therefore X is I-resolvable.
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Theorem 2.10 If an ideal topological space (X,τ ,I) is *P-resolvable, then (X,τ ,I) is

I- Hausdorff.

Proof. Let A and B be disjoint I∗P -dense subsets of X such that X = A ∪ B. Since

A∗P = X and B∗P = X implies A∗ and B∗ = X. Therefore A ⊆ int(A*), similarly

B, then A and B are I-open sets. Let x,y be any two element of X and both x and y

are in A. Take U = A \{y} and V = B ∪{y} then U and V are also disjoint I-open

sets containing x and y in U and V respectively.

Definition 2.11 An ideal topological space is said to be *P- Hausdorff , if for every

point x,y ∈ X, there exists two disjoint I∗P -open sets containing each respectively.

Theorem 2.12 If (X,τ ,I) is *P-resolvable, then (X,τ ,I) is I∗P - Hausdorff.

Proof. Let A and B be disjoint I∗P -dense subsets of X such that X = A ∪ B. Since

A∗P = X and B∗P = X. Therefore A ⊆ int(A∗P ), similarly B, then A and B are

I∗P -open sets. Let x,y be any two element of X and both x and y are in A. Take U =

A \{y} and V = B ∪{y} then U and V are also disjoint I∗P -open sets containing x

and y in U and V respectively.

Remark 2.13 Let (X,τ ,I) be an ideal topological space then,

1) If τ and τ1 are any topologies with τ ⊆ τ1, if (X, τ, I) is *P-resolvable then (X,

τ1, I) is *P-resolvable space.

2) If τ and τ1 are any topologies with τ ⊆ τ1, if (X, τ, I) is *P-resolvable then (X,

τ1, I) is I-resolvable space.

3 Precompatibility

Definition 3.1 Let (X,τ) be a topological space with I an ideal on X, then τ is pre-

compatible with I if for every A ⊆ X and for every x ∈ A there exists a U ∈ PO(x)

such that U ∩ A ∈ I, then A ∈ I and it is denoted by τ ∼P I

Theorem 3.2 If (X, τ ,I) is an ideal topological space, then the following statements

are equivalent
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1. τ ∼P I

2. If A has a cover of preopen sets each of whose intersection with A is in I, then

A is in I

3. For every, A ⊆ X, A ∩ A∗P = ø implies A ∈ I

4. For every, A ⊆ X, A −A∗P ∈ I

5. For every τ ∗P -closed subset A, A −A∗P ∈ I

6. For every A ⊆ X, if A contains no nonempty subset B with B ⊆ B∗P , then A

∈ I

Proof 1) ⇒ 2)⇒ 3) are straightforward from the definitions.

3) ⇒ 4) Let A ⊆ X, then by 3) (A −A∗P ) ∩ (A− A∗P )∗P = ø which implies

A −A∗P ∈ I

4) ⇒ 5) Since 4) is true for every A ⊆ X it is also true for every τ ∗P -closed subset

A such that A −A∗P ∈ I

5) ⇒ 1) For A ⊆ X and for every x ∈ A there exists U ∈ PO(x) such that U ∩ A ∈
I,then A ∩ A∗P = ø

To prove A ∈ I: Since A ∩ A∗P = ø⇒ A∗P = ø. Then (A ∪A∗P ) is τ ∗P -closed by 5)

we get (A ∪A∗P )− ((A ∪ A∗P )∗P ) ∈ I
(A ∪A∗P )− ((A ∪ A∗P )∗P ) ∈ I = (A ∪ A∗P )− A∗P ∪ (A∗P )∗P

= (A ∪A∗P )− A∗P = A Therefore A ∈ I

4) ⇒ 6) A ⊆ X and A has no nonempty subset B with B ⊆ B∗P . From 4) we get

A− A∗P ∈ I, A ∩A∗P ⊆ (A ∩ A∗P )∗P . Since (A ∩A∗P )∗P =

A∗P and hence A ∩A∗P = ø. Therefore A = A −A∗P and A ∈ I
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6) ⇒ 4) For A ⊂ X, Since (A −A∗P ) ∩ (A − A∗P )∗P = ø then A − A∗P contains no

non-empty subset B with B ⊆ B∗P . Therefore by 6) we have A −A∗P ∈ I.

Theorem 3.3 Let (X,τ) be a space with I an ideal on X. Then the following are

equivalent if τ ∼P I, then

1. For every A ⊆ X, A ∩ A∗P = ø ⇒ A∗P = ø

2. For every A ⊆ X,(A −A∗P )∗P = ø

3. For every A⊆ X, (A∩A∗P )∗P ⊆ A∗P

Proof: (1) and (2) follow from (3) and (4) of Theorem 6.1.15.

3) by 1) (A ∩ A∗P )∗P ⊆ A∗P ∩ (A∗P )∗P

(A ∩ A∗P )∗P ⊆ A∗P

Theorem 3.4 Let (X,τ) be a space and I an ideal on X such that τ ∼P I. A set is

closed with respect to τ ∗P if and only if it is the union of a set which is preclosed with

respect to τ and a set in I.

Proof. Let A be τ ∗P -closed then cl∗P (A) = A since cl∗P (A) = A ∪ A∗P = A, (i.e)

A∗P ⊆ A

A = (A −A∗P )∪A∗P where A −A∗P ∈ I by Theorem 6.1.15(4) and A∗P is preclosed.

Conversely, if A =B ∪ I1, where B is preclosed and I1 ∈ I then A∗P = B∗P ∪ I∗P1 ,

always I∗P1 = ø. ⇒ A∗P = B∗P ⊆ pcl(B) = B ⊆ A, thus A∗P ⊆ A and therefore A is

τ ∗P -closed.

Theorem 3.5 Let (X, τ) be a space with an ideal I on X such that τ ∼P I and

{x} ∈ I for each x ∈ X. If a set A ⊆ X is closed with respect to τ ∗P , then A is the

union of a set which is *P-perfect with respect to τ and a set in I.

Proof. Let A ⊆ X be closed with respect to τ ∗P then by Theorem6.1.17 A can be

written as a union of A = A∗P ∪ I1 with I1 ∈ I
A∗P − (A∗P )∗P ⊆ (A − A∗P )∗P we have (A − A∗P )∗P = ø by theorem 6.1.16(2).

Therefore A∗P − (A∗P )∗P = ø implies A∗P = (A∗P )∗P .
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Definition 3.6 If I and J are ideals on (X,τ), then the pre-extension of I via J

denoted by I *p J = {A ⊆ X : A∗P (I) ∈ J}

Definition 3.7 The pre-extension of I over the ideal of nowhere dense sets N is

denoted by I∼p = {A ⊆ X, int(A∗P (I) = ø}

Definition 3.8 The countable extension of I denoted by I∼σP = {A ⊆ X : A =

∪n∈NAn, An ∈ I∼p for each n ∈ N}

Remark 3.9 Every extension of I via J(I * J) is pre-extension of I via J

(I *p J).

Proof. I * J = {A ⊆ X : A∗(I) ∈ J}. Always A∗P (I) ⊆ A∗(I) and also J is an

ideal. Therefore, if A∗(I) ∈ J , then all subsets of A∗(I) are also element of J.(i.e)

A∗P (I) ∈ J . Therefore I * J implies I ∗pJ .

Theorem 3.10 Let (X, τ, I) be an ideal topological space, if β = I ∪ N then for every

subset A of X,

1. (A∗P (I))∗P (N) = (A∗P (I ∗ pN))∗P (N) = (A∗P (I∼p ))∗P (N) = A∗P (I∼p )

2. (A∗P (I))∗P (N) = A∗P (β))∗P (N)

3. (A∗P (β))∗P (N) ⊆ A∗P (N)

Proof: (1) First we prove (A∗P (I))∗P (N) ⊂ A∗P (I∼p ). Let x 6∈ A∗P (I∼p ). Then there

exists an preopen set G containing x such that G ∩ A ∈ I∼p and so (G∩A)∗P (I) ∈
N ⇒ G ∩ A∗P (I) ∈ N, which implies x 6∈ (A∗P (I))∗P (N)

(A∗P (I))∗P (N) ⊂ A∗P (I∼p ) ⊂ A∗P (I)

then ((A∗P (I))∗P (N))∗P (N) ⊂ (A∗P (I∼p ))∗P (N) ⊆ (A∗P (I))∗P (N)

since N∼p τ (i.e) nowhere dense ideal is compatible⇒ (A∗P (I∼p ))∗P (N) = (A∗P (I))∗P (N)

Thus (A∗P (I∼p ))∗P (N) = A∗P (I∼p) Hence proved.

2) Since I ⊂ β ⊂ I∼p
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A∗P (I∼p ) ⊂ A∗P (β) ⊂ A∗P (I)

(A∗P (I∼p ))∗P (N) ⊆ A∗P (β))∗P (N) ⊆ (A∗P (I))∗P (N)

Therefore by (1), they are equal.

3) Since N ⊂ β

implies A∗P (β) ⊂ (A∗P )(N)

((A∗P (β))∗P (N) ⊂ ((A∗P )(N))∗P (N) = A∗P (N)

Therefore, ((A∗P (β))∗P (N) = A∗P (N).

Theorem 3.11 An ideal space (X,τ ,I) is *P-resolvable if and only if it is I∼p -resolvable.

Proof: Suppose X is *P-resolvable. Let A be any I∗P -dense subset of X, then

A∗P (I) = X and so (A∗P (I))∗P (N) = X∗P (N)

[X is *P-resolvable implies I is completely codense then X⊆ X∗P ]

Therefore X∗P (N) = X by Theorem 6.1.23 (A∗P (I))∗P (N) = A∗P (I∼p )

Hence A∗P (I∼p ) = X which implies X is I∼p -resolvable.

Converse part is proved using the relation between the ideals.(i.e) I ⊂ I ∗ pN
implies I ⊂ I∼p . Therefore A∗P (I∼p ) ⊆ A∗P (I). Since the space is I∼p -resolvable

A∗P (I∼p ) = X implies A∗P (I) = X then the space is also *p-resolvable space.

Theorem 3.12 If (X, τ ,I) is an ideal space, I is precompatible and β = I ∪N , then

β = β ∗ pN
Proof: Let A ∈ β ∗ pN ⇒ A∗P (β) ∈ N which implies ((A∗P )(β))∗P (N) = ø

Using theorem 6.1.23 (2) we have (A∗P (I))∗P (N) = ø then A∗P (I) ∈ N and so

A∩A∗P (I) ∈ N . Since I is precompatible, A−A∗P (I) ∈ I. Hence A = (A−A∗P (I))∪
(A ∩ A∗P (I)) which implies A ∈ I ∪ N = β. Therefore β ∗ pN ⊆ β and always

β ⊆ β ∗ pN . Therefore β = β ∗ pN .
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