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1. Introduction
Shyla Isac Mary and Thangavelu [10] defined the concept of regular pre-semi closed sets in
2010. Askish Kar and Bhattacharyya [3]; Gnanambal [5]; Anitha and Thangavelu[2];
introduced and studied pre-T; (i=0,1,2), preregular-T1, and pgpr-Tip, gpr-Tie Spaces
respectively. Quit recently, Shyla Isac Mary and Thangavelu [13] introduced and investigated
rps-Tau, rPs-Tap, rps-Tys and rps-Ty, spaces. The authors [4] further studied pgpr-separation

axioms. In this paper, we introduce and study rps-T; (i=0, 1, 2) spaces.

2. Preliminaries
Given any subset A in a topological space (X,t), the closure, interior and complement of A are
denoted by cl(A), int(A) and X\A respectively. Let us recall the following definitions, which we
shall require later.
A subset A of a topological space (X,t) is regular open [14] if A=int(cl(A)), regular closed if
A=cl(int(A)), pre-open [8] if Acint(cl(A)), pre-closed if cl(int(A))cA, semi-pre-open [1] if
Accl(int(cl(A))) and semi-pre-closed if int(cl(int(A)))<A. The semi-pre-interior of a subset A of
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X is the union of all semi-pre-open sets contained in A and is denoted by spint(A). The pre-
closure of a subset A of X is the intersection of all pre-closed sets containing A and is denoted by
pcl(A). The semi-pre-closure of a subset A of X is analogously defined and is denoted by
spcl(A).

Again a subset B of a topological space (X,t) is called generalized closed (briefly g-closed) [6]
if cl(B)cU whenever BcU and U is open in X and regular generalized closed (briefly rg-
closed) [8] if cl(B)cU whenever BcU and U is regular open in X. The complement of a g-
closed set is g-open and that of rg-closed set is rg-open. A subset B of a topological space (X,r)
is called pre-semi-closed [15] if spclAcU whenever AcU and U is g-open.

Definition 2.1: A subset B of a topological space (X,t) is called generalized pre-regular closed
(briefly gpr-closed) [5] (resp. pre-generalized pre-regular-closed (briefly pgpr-closed)[2]) if
pcl(B)cU whenever BcU and U is regular open(resp. rg-open) in X.

The intersection of all pgpr-closed sets containing A is called the pgpr-closure of A and
denoted by pgpr-cl(A). The complement of a pgpr-closed set is pgpr-open.

Definition 2.2: A subset B of a topological space (X,t) is called regular pre-semiclosed (briefly
rps-closed) [10]) if spcl(A)cU whenever AcU and U is rg-open.

The intersection of all rps-closed sets containing A is called the rps-closure of A and denoted
by rps-cl(A). The complement of a rps-closed set is rps-open.

Definition 2.3: A topological space (X,t) is pgpr-To [4] if for any two distinct points X and y of
X, there exists a pgpr-open set G such that xeG and y¢G or yeG and xgG.

Definition 2.4: A topological space (X,t) is pre-Ty [3] (resp. pgpr-T1 [4]) if for any two distinct
points X, ye X, there exist pre-open (resp. pgpr-open) sets G and H such that xeG but y¢ G and
yeH but x¢ H.

Definition 2.5: A topological space (X,t) is pre-T, [3] (resp. pgpr-T [4]) if for any two distinct
points X, ye X, there exist disjoint pre-open (resp. pgpr-open) sets G and H such that xeG and
yeH.

Theorem 2.6: A subset A of X is rps-open if and only if Fcspint(A) whenever FCA, F is rg-
closed. [11]
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Definition 2.7[13]: A topological space (X,t) is called rps-Ti2(resp. rps-Tass, rps-Tpand rps-Tsa)
if every rps-closed (resp. pre-semi-closed, rps-closed and rps-closed) set is semi-pre-closed(resp.
rps-closed, semi-closed and pre-closed).

Definition 2.8: A space (X,1) is called pgpr-Ti2[2](resp. gpr-Ta2[2] and preregular-Ty, [5]) if
every pgpr-closed (resp. gpr-closed and gpr-closed) set is pre-closed (resp. pgpr-closed and pre-
closed).

Definition 2.9[11]: A function f : X—Y is rps-continuous (resp. rps-irresolute) if f (V) is
rps-closed for every closed (resp. rps-closed) set V of Y.

Definition 2.10[12]: A function f : X—>Y is and f is rps-open if f (G) is rps-open in Y for
every rps-open set G of X.

Diagram 2.11: closed —» pre-closed —» pgpr-closed —» rps-closed

3. rps-T, spaces
In Ty spaces, two distinct points X, y are separated by means of an open set containing a
specific point of x, y and not containing the other. In this section, we introduce rps-T, spaces

and investigate their basic properties.

Definition 3.1: A topological space (X,t) is said to be rps-Ty if for any two distinct points x
and y of X there exists a rps-open set G such that xeG and y¢G or yeG and xgG.

Proposition 3.2: Every topological space is rps-To.

Proof: Let (X,t) be a topological space. By using proposition 3.7 of [4], (X,t) is pgpr-To. Since
every pgpr-open set is rps-open, (X,t) is rps-To.

Theorem 3.3: In a topological space (X,), the rps-closures of distinct points are distinct.
Proof: Let x and y be two distinct points of a space X. By Proposition 3.2, (X,1) is rps-To. By
Definition 3.1, there exists a rps-open set G such that xeG and y¢G or yeG and x¢G. Since G
is rps-open, we have X\G is rps-closed. If xeG and ygG, then xg X\G and ye X\G. Then there
is a rps-closed set containing y but not x. It follows that xgrps-cl({y}). But xerps-cl({x}).

Therefore rps-cl({x})#rps-cl({y}). The proof for the case yeG and xgG is similar.
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4. rps-T, spaces

In this section, we introduce rps-T; spaces and investigate their basic properties. In section 3,
we have proved that every topological space is rps-To. Therefore, it is worth to define rps-T;
spaces.

Definition 4.1: A topological space (X,t) is said to be rps-T; if for any two distinct points x
and y of X, there exist rps-open sets G and H such that xeG but yg G and yeH but x¢ H.
Proposition 4.2: (i) Every pgpr-T; space is rps-T;.

(i) Every pre-T space is rps-Tj.

Proof: Suppose (X,t) is pgpr-Ti. Let x£yeX. Then by Definition 2.4, there exist pgpr-open
sets G and H such that xe G but y¢G and yeH but xgH. Since every pgpr-open set is rps-open,
G and H are rps-open sets such that xeG but y¢ G and yeH but x¢ H. This shows that (X,t) is
rps-T1.This proves (i).

The proof of (ii) follows from (i) and Proposition 4.2 of [4].

However, the converse of Proposition 4.2 is not true as shown in the following example.
Example 4.3: Let X={a,b,c} with t={ & ,{a},{b},{a,b}, X}. It can be verified that (X,t) is
rps-T; but neither pre-T1 nor pgpr-Ta.

The converse of Proposition 4.2 holds in rps-Tg, spaces as shown below.

Proposition 4.4: (i) If a space (X,t) is rps-Tss and rps-Ty, then it is pre-T.

(i) Ifaspace (X,t) is rps-Ts4 and rps-Ty, then it is pgpr-Ti.

Proof: Suppose (X,t) is rps-Ts and rps-Ty. Let x£ye X. Since (X,t) is rps-Ty, there exist
rps-open sets G and H such that xeG but y¢ G and yeH but x¢ H. Then X\G and X\H are
rps-closed in X. Since (X,t) is rps-Ts, by Definition 2.8, X\G and X\H are pre-closed. This
implies that G and H are pre-open sets such that xeG but y¢ G and yeH but x¢ H. This shows
that (X,t) is pre-T1. This proves (i).

The proof of (ii) follows from Proposition 4.2 of [4] and (i).

Proposition 4.5: (i) Every gpr-Ty, space is rps-T;.

(iii)  Every preregular-Ty, space is rps-Ti.

Proof: The proof of (i) follows from Lemma 4.5 of [4] and Proposition 4.2(ii).

The proof of (ii) follows from Corollary 4.6 of [4] and Proposition 4.2(ii).
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The next examples show that rps-T; space need not be gpr-Ti,, and preregular-Ty..
Example 4.6: Let X be a countably infinite set. We define the topology t of finite complements
on X by declaring open those sets with finite complements together with & (and X). Then the
only closed sets are &, X and finite sets. In particular {x} is closed for every xeX. It follows
that (X,t) is Ty and hence it is rps-T;. The only regular open sets are & and X. This implies that
every subset of X is gpr-closed. Consider any infinite set A#X. Then A is open and gpr-closed
but not closed. Therefore cl(int(A))=cl(A)=XzA. That is A is not pre-closed. This shows that
(X,7) is not gpr-Ty..
Example 4.7: Let X={a,b,c,d} with t={ & ,{a,b},{a,b,c},X}. It can be verified that (X,t) is rps-
Ty but not preregular-Ty, since the set {a,b,c} is gpr-closed but not rps-closed.
The following examples show that the concepts rps-Tyand rps-Tys, rps-Trand rps-Tys, rps-Ta
and rps-Ty, rps-T1 and rps-Ts are independent.
Example 4.8: Let X={a,b,c} endowed with topology t={ @ ,{a},X}. Clearly (X,t) is rps-Tis,
rps-Tays, rps-Tp and rps-Tss but it is not rps-T.
Example 4.9: Let X={a,b,c,d} with topology ={J ,{a}{b}{a,b}{b,c}{a,b,c} X}. It can be
verified that (X,t) is rps-T; but neither rps-Ty/, nor rps-Tyys.
Example 4.10: Let X={a,b,c} with topology t={ @ ,{a,b},X}. It can be verified that (X,t) is
rps-T but not rps-Th.
Example 4.11: Let X={a,b,c} with topology ={J ,{a}{b}.{a,b} X}. It can be verified that
(X,7) is rps-T1 but not rps-Tss.
Theorem 4.12: Let Y be a g-closed, open subspace of a topological space (X,t). Then GNY is
rps-open in Y whenever G is rps-open in X.
Proof: Let G be rps-open in X. Let FCY be rg-closed in Y such that FEcGNY. Since FcYcX
and Y is g-closed and open, by using Theorem 3.4 of [9], F is rg-closed in X. Again since
FcGNYcG and G is rps-open in X, by using Theorem 2.6, Fcspint(G) and so FcYnspint(G).
Now spint(G)=Gcl(int(cl(G))) implies that
Yspint (G)=YN\(Gel(int(cl(G))))=(Y ~G) (Y cl(int(cl(G))))
=(GNY)cly(inty(cl v(GNY))
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=spinty(GNY), where inty, cly and spint y denote the corresponding interior,
closure and semi-pre-interior in the subspace Y of X. This shows that Fcspinty (GNY). By
using Theorem 2.6, GNY is rps-openin’Y.
The next theorem shows that, the g-closed open subspace of a rps-T; space is again a rps-T;
space.
Theorem 4.13: Let YcX be g-closed and open in (X,1). If (X,t) is rps-T; then (Y,tv) is also
rps-Ti.
Proof: Let Y be g-closed and open in (X,t). Let x and y be any two distinct points of .
Suppose (X,t) is a rps-T; space. Then there exist rps-open sets G and H such that xeG but y¢
G and yeH but xg H. By using Theorem 4.12, YNG and YnH are rps-open in Y. Clearly
XxeYNG but ygYNG and yeYnH and x¢ YNH. This proves that (Y,ty) is also a rps-T;
space.
Theorem 4.14: A topological space (X,t) is rps-Tis, if and only if every subset B of X is the
intersection of subsets A of X containing B such that A is semi-pre-closed or rg-open.
Proof: Let BX. Let us first show that B=N{X\{x}: x¢B}. For, if x¢B then BcX\{x}. That
is B&cX\{x} for every x¢B. So we get BcN {X\{x}: x¢B}. On the other hand, let yeX\{x} for
every xgB. Suppose y¢B. Then by our choice of y, we have yeX\{y} that is impossible. This
shows that yeB and N{X\{x}: xgB}cB. That is B=N{X\{x}: x¢B}. Suppose (X,1) is rps-T1.
By using Theorem 3.10 of [13], {x} is semi-pre-open or rg-closed for every xeX. That is
X\{x} is rg-open or semi-pre-closed for every xe X. Therefore, B is the intersection of semi-
pre-closed sets or rg-open sets containing B. Conversely, suppose every subset B of X is the
intersection of subsets A of X containing B such that A is semi-pre-closed or rg-open. Fix xeX.
Take B=X\{x}. Then B is the intersection of semi-pre-closed sets or rg-open sets containing B.
The only sets that contain B are B and X. Now B=BNX and B#X. This implies that B=X\{x} is
semi-pre-closed or rg-open. That is {x} is semi-pre-open or rg-closed. By using Theorem 3.10
of [13], (X,1) is rps-Tys.
Theorem 4.15: A topological space (X,7) is rps-Ty if and only if for every xe X,
rps-cl({x})={x}.
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Proof: Let (X,t) be rps-T; and xeX. Then for each y#x, there exist rps-open sets G and H
such that xeG but y¢ G and yeH but x¢ H. Since H is rps-open, X\H is rps-closed and xeX\H
but yg X\H. This implies that ygrps-cl({x}), for every yeX and y#x. Thus {x}=rps-cl({x}).
Conversely, suppose rps-cl({x})={x} for every xeX. Let X, y be any two distinct points in X.
Then xe{y}=rps-cl({y}) implies there exists a rps-closed set B; such that yeBj, x¢ Bj. This
implies that X\B; is a rps-open set such that xe X\B; but ygX\B;. Since yg{x}=rps-cl({x}),
there exists a rps-closed set B, such that xeB,, y¢ B,. That is X\B; is a rps-open set such that
yeX\B; but x¢X\B,. By Definition 4.1, (X,t) is rps-T;.
Theorem 4.16: Let f: (X,t1) —(Y,12) be bijective.

Q) If f isrps-continuous and (Y,t2) is Ty, then (X,t1) iS rps-Ty .

(i) If f isrps-irresolute and (Y,t2) is rps-Ty, then (X,t1) is rps-T; .

(iii)  If f isrps-openand (X,ty) is rps-Ty, then (Y,t2) is rps-T; .

Proof: Let f: (X,11) > (Y,12) be bijective.
Suppose f: (X,t1) > (Y,12) is rps-continuous and (Y,t2) is T;. Let X3, Xoe X with X;#x,. Since

f is bijective, y;=f(x1)£f(x2)=y. for some y;, y.€Y. Since (Y,t2) is T1, choose open sets G
and H such that y;eG but y,¢G and y,eH but y;¢H. Since f is bijective, x;=f *(y1)ef *(G)
but x=f (y2) ef (G) and xo=f *(y2)ef (H) but x;=f *(y1)ef *(H). Since f is rps- continuous,
f 1(G) and f *(H) are rps-open sets in (X,t1). This shows that, (X,t1) is a rps-T: space. This
proves (i). Suppose f : (X,t1) > (Y,12) is rps-irresolute and (Y,t2) is a rps-T; space. Let X,
XoeX with X;#x,. Since f is bijective, y1=f(x1)#f(x2)=y. for some y;, y.€Y. Since (Y,t,) is a
rps-Ty space, choose rps-open sets G and H such that y;eG but y,¢G and y,eH but y; ¢ H.
Again since f is bijective, x;=f *(y1)ef (G) but x,=f (y2)ef (G) and xo=f *(y2)ef *(H) but
xi=f Y(y1)ef *(H). Since f is rps-irresolute, f *(G) and f *(H) are rps-open sets in (X,tq). It
follows that (X,ty) is rps-Ti1. This proves (ii). Suppose f is rps-open and (X,t;) is rps-T;. Let
yi#y2€Y. Since f is bijective, there exist X1, Xz in X such that f(x;)=y1 and f(xz)=y, with X;#x.
Since (X,t1) is rps-Ty, there exist rps-open sets G and H in X such that x;eG but x,G and

x2eH but x3¢H. Since f is rps-open, f(G) and f(H) are rps-open in Y such that y;=f(x;) ef(G)
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and y,=f(x2) ef(H). Since f is bijective, we have y,=f(x2)¢f(G) and y1=f(x1) ¢f(H). Thus (Y,12)
IS rps-T1. This proves (iii).

5. rps-T, spaces

In this section, we introduce rps-T, spaces and investigate their basic properties.

Definition 5.1: A topological space (X,t) is rps-T, if for any two distinct points x and y of X,
there exist disjoint rps-open sets G and H such that xeG and yeH.

Proposition 5.2: (i) Every pgpr-T, space is rps-T».

(i) Every pre-T, space is rps-To.

Proof: Suppose (X,t) is pgpr-T,. Let x£yeX. Since (X,t) is pgpr-Tz, by using Definition 2.5,
there exist disjoint pgpr-open sets G and H such that xeG and yeH. Since every pgpr-open set
is rps-open, G and H are disjoint rps-open sets such that xeG and yeH. This shows that (X,t)
is rps-T,. This proves (i). The proof of (ii) follows from the fact that every pre-T, space is pgpr-
T, and (i).

The converse of Proposition 4.2 holds in rps-Tss spaces as shown in the following proposition.
Proposition 5.3: (i) If a space (X,t) is rps-Ts and rps-To, then it is pre-To.

(ii) I1f a space (X,t) is rps-Ts4 and rps-To, then it is pgpr-To.

Proof: Suppose (X,t) is rps-Ts;s and rps-T,. Let x£yeX. Since (X,t) is rps-T,, by Definition
5.1, there exist disjoint rps-open sets G and H such that xeG and yeH. Then X\G and X\H are
rps-closed in X. Since (X,t) is rps-Tau, X\G and X\H are pre-closed. That is G and H are
disjoint pre-open sets such that xeG and yeH. Thus (X,t) is pre-T,. This proves (i). Since
every pre-T, space is pgpr-To, (X,t) is pgpr-T». This proves (ii).

Proposition 5.4: (i)  Every gpr-Ty, space is rps-To.

(iii)  Every preregular-Ty/, space is rps-To.

Proof: (i) Follows from the Proposition 5.2 and Lemma 5.2 of [4].

(ii) Follows from the Proposition 5.2 and Proposition 5.6 of [4]

Theorem 5.5: Every rps-T, space is rps-Tj.

Proof: Let (X,t) be a rps-T, space. Let x#yeX. By Definition 5.1, there exist rps-open sets G
and H such that GnH=J, xeG and yeH. Since GNH=J, we have xgH and y¢G. That is
xeG but y¢G and yeH but xgH. This proves that (X,t) is rps-T;.
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However, a rps-T; space is not rps-T, as shown in the following example.

Example 5.6: Let X=Gu{xi}{x2},where G denotes any infinite set and x1, X are two distinct
points not in G. Let t be the family of subsets of X such that (i) Aet if AcG and (ii)Aet if x;
or X2€A but X\A contains only a finite number of G. Then t is a topology for X. If x,yeX with
x2Y, then, both, any one or none of x, y may belong to G. Consequently, ({x}, {y}), {x}, {y}v
[G\{x}] ) and ({x}uG,{y}UG) are respectively, then, the pairs of pre-open sets, one containing
x but not y while the other containing y but not x. Hence (X,t) is pre-T;. Since every pre-T;
space is rps-Ti, (X,t) is rps-T;. Again let A and B be two rps-open sets such that x;eA but
x2¢ A while x,eB but x;¢B. To prove (X,t) is not rps-T,, it suffices to show that AnB#J.
Suppose A is closed. Then A is rg-closed, X\A is open and AcA. Since A is rps-open, by using
Theorem 2.6, Acspint(A). Always spint(A)cA. Hence A=pint(A) and A is semi-pre-open.
Therefore Accl(int(cl(A))). Since A is closed Accl(int(A))ccl(A)cA. That is A=cl(int(A)). If
A is not open, then int(A)=A\{x}.

AN{x}= Aif Ais finite

Now cl(int(A))=cl(A\{x1}) = _,since ;e Aand x, ¢ A
(nA)=el(Aibab) {Au{xl,xz};tAotherWlse ! 2

This is a contradiction to A=cl(int(A)). Therefore A is open. Now by the definition of 7, X\A
containing X, contains only a finite number of members of G. This contradicts the assertion that
X\A is open. So, A is not closed, and hence X\A is not open. Since x,eX\A, X\(X\A)=A cannot
have only a finite number of G, by the definition of t. That is A contains all points G except
possibly finite number of points of G. Similarly, it can be shown that B contains all points of G
except possibly a finite number of points of G. Hence AnB#J.

Theorem 5.7: A topological space (X,t) is rps-T, if and only if the intersection of all rps-
closed, rps-neighborhoods of each point of the space is reduced to that point.

Proof: Let (X,t) be a rps-T, space and xeX. Then for each y#x in X, there exist disjoint rps-
open sets U and V such that xeU, yeV. Now UnV=¢ implies xeUcX\V. That is X\V is a
rps-neighborhood of x. Since V is rps-open, X\V is rps-closed and rps-neighborhood of x to
which y does not belong. That is there is a rps-closed, rps-neighborhood of x, which does not
contain y. So we get the intersection of all rps-closed, rps-neighborhoods of x is {x}.

Conversely, let x, yeX such that x#y in X. Then by our assumption, there exists a rps-closed,
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rps-neighborhood V of x such that ygV. Since V is a rps-neighborhood of x, there exists a rps-
open set U such that xeUcV. Thus, U and X\V are disjoint rps-open sets containing x and
y respectively. It follows that (X,7) is rps-To.
The next theorem shows that, a g-closed open subspace of a rps-T, space is again a rps-T,
space.
Theorem 5.8: Let Y be a g-closed and open subspace of X. If (X,t) is rps-T2 then (Y,ty) is also
rps-To.

Proof: Suppose (X,t) is rps-T,. Let x and y be any two distinct points in Y. Then x,yeX. Since
(X,1) is rps-To, by using Definition 5.1, there exist disjoint rps-open sets G and H in X such that
xeG and yeH. By using Theorem 4.12, YNG and YH are disjoint rps-open sets in Y. Clearly
xeYNG and ye YNH. This proves that (Y,tv) is also a rps-T, space.
Theorem 4.8: Let f: (X,t1) —>(Y,t2) be bijective.

Q) If f isrps-continuous and (Y,t2) is T, then (X,t1) is rps-T, .

(i) If f isrps-irresolute and (Y,t2) is rps-To, then (X,t1) is rps-T, .

(iii)  If f isrps-openand (X,ty) is rps-To, then (Y,12) is rps-To .

Proof: Let f: (X,t1) —(Y,t2) be a bijective function. Suppose (Y,t2) is T, and f is
rps-continuous. Let xi;, x;eX with X;#x,. Since f is bijective, y1=f(x1)#f(x2)=y. for some
y1,Yy2€Y. Since (Y,t2) is Ty, there exist disjoint open sets G and H such that y;eG and y,eH.
Since f is bijective, x;=f *(y1)ef (G) and x,=f *(y2)ef *(H). Since f is rps-continuous, f *(G)
and f (H) are rps-open sets in (X,t1). Moreover, f 1(G)nf *(H)=f (GnH)=f (&)=T. Thus
(X,11) is rps-T,. This proves (i). Suppose f : (X,t1) = (Y,t2) is rps-irresolute and (Y,t2) is rps-
T,. Let X3, XoeX with x3#x,. Since f is bijective, y1=f(x1)#f(x2)=y. for some y;,y,€Y. Since
(Y,t2) is rps-T,, by using Definition 5.1, there exist disjoint rps-open sets G and H such that
y1eG and y,eH. Since f is a bijective map, we have xi=f (y1)ef (G) and xo=f *(y,)ef *(H).
Since f is rps-irresolute, f *(G) and f *(H) are rps-open sets in (X,t1). Also f *(G)f *(H)

=f Y(GNH)=f (&)= . This shows that, (X,t1) is rps-T. This proves (ii). Suppose f is rps-open
and (X,t1) is rps-Ta. Let yi£y2€Y. Now since f is bijective, there exist xi, Xz in X such that

f(x1)=y1, f(x2)=y2and xi#x,. Since (X,t1) is rps-T,, by Definition 5.1, there exist disjoint rps-
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open sets G and H in X such that x;€G and x,eH. Since f is rps-open, f(G) and f(H) are disjoint

rps-open sets in Y such that y;=f(x;) ef(G) and y,=f(x2) ef(H). Therefore, (Y,t2) is rps-T,. This

proves (iii).
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