RPS-SEPARATION AXIOMS-II

P.Gnanachandra

Department of Mathematics,

Aditanar College, Tiruchendur -628216, India.

ABSTRACT

In this paper, we introduce and study some lower separation axioms using rps-open sets. We discuss their basic properties and their link with existing lower separation axioms.

Keywords and Phrases: pre-closed, rg-closed, semi-pre-closed, pgpr-closed, rps-closed etc.,

MSC 2010: 54A05, 54B05, 54C08

1. Introduction

Shyla Isac Mary and Thangavelu [10] defined the concept of regular pre-semi closed sets in 2010. Askish Kar and Bhattacharyya [3]; Gnanambal [5]; Anitha and Thangavelu[2]; introduced and studied pre- T_i (i=0,1,2), preregular- $T_{1/2}$ and pgpr- $T_{1/2}$, gpr- $T_{1/2}$ spaces respectively. Quit recently, Shyla Isac Mary and Thangavelu [13] introduced and investigated rps- $T_{3/4}$, rps- $T_{1/2}$, rps- $T_{1/3}$ and rps- T_b spaces. The authors [4] further studied pgpr-separation axioms. In this paper, we introduce and study rps- T_i (i=0, 1, 2) spaces.

2. Preliminaries

Given any subset A in a topological space (X,τ) , the closure, interior and complement of A are denoted by cl(A), int(A) and $X\setminus A$ respectively. Let us recall the following definitions, which we shall require later.

A subset A of a topological space (X,τ) is regular open [14] if A=int(cl(A)), regular closed if A=cl(int(A)), pre-open [8] if $A\subseteq int(cl(A))$, pre-closed if $cl(int(A))\subseteq A$, semi-pre-open [1] if $A\subseteq cl(int(cl(A)))$ and semi-pre-closed if $int(cl(int(A)))\subseteq A$. The semi-pre-interior of a subset A of

X is the union of all semi-pre-open sets contained in A and is denoted by spint(A). The pre-closure of a subset A of X is the intersection of all pre-closed sets containing A and is denoted by pcl(A). The semi-pre-closure of a subset A of X is analogously defined and is denoted by spcl(A).

Again a subset B of a topological space (X,τ) is called generalized closed (briefly g-closed) [6] if $cl(B)\subseteq U$ whenever $B\subseteq U$ and U is open in X and regular generalized closed (briefly rg-closed) [8] if $cl(B)\subseteq U$ whenever $B\subseteq U$ and U is regular open in X. The complement of a g-closed set is g-open and that of rg-closed set is rg-open. A subset B of a topological space (X,τ) is called pre-semi-closed [15] if $spclA\subset U$ whenever $A\subset U$ and U is g-open.

Definition 2.1: A subset B of a topological space (X,τ) is called generalized pre-regular closed (briefly gpr-closed) [5] (resp. pre-generalized pre-regular-closed (briefly pgpr-closed)[2]) if $pcl(B)\subseteq U$ whenever $B\subseteq U$ and U is regular open(resp. rg-open) in X.

The intersection of all pgpr-closed sets containing A is called the pgpr-closure of A and denoted by pgpr-cl(A). The complement of a pgpr-closed set is pgpr-open.

Definition 2.2: A subset B of a topological space (X,τ) is called regular pre-semiclosed (briefly rps-closed) [10]) if $spcl(A) \subset U$ whenever $A \subset U$ and U is rg-open.

The intersection of all rps-closed sets containing A is called the rps-closure of A and denoted by rps-cl(A). The complement of a rps-closed set is rps-open.

Definition 2.3: A topological space (X,τ) is pgpr-T₀ [4] if for any two distinct points x and y of X, there exists a pgpr-open set G such that $x \in G$ and $y \notin G$ or $y \in G$ and $x \notin G$.

Definition 2.4: A topological space (X,τ) is pre-T₁ [3] (resp. pgpr-T₁ [4]) if for any two distinct points $x, y \in X$, there exist pre-open (resp. pgpr-open) sets G and H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$.

Definition 2.5: A topological space (X,τ) is pre-T₂ [3] (resp. pgpr-T₂ [4]) if for any two distinct points x, y \in X, there exist disjoint pre-open (resp. pgpr-open) sets G and H such that x \in G and y \in H.

Theorem 2.6: A subset A of X is rps-open if and only if $F \subseteq spint(A)$ whenever $F \subseteq A$, F is rg-closed. [11]

Definition 2.7[13]: A topological space (X,τ) is called rps- $T_{1/2}$ (resp. rps- $T_{1/3}$, rps- T_b and rps- $T_{3/4}$) if every rps-closed (resp. pre-semi-closed, rps-closed and rps-closed) set is semi-pre-closed(resp. rps-closed, semi-closed and pre-closed).

Definition 2.8: A space (X,τ) is called pgpr- $T_{1/2}[2]$ (resp. gpr- $T_{1/2}[2]$ and preregular- $T_{1/2}[5]$) if every pgpr-closed (resp. gpr-closed and gpr-closed) set is pre-closed (resp. pgpr-closed and pre-closed).

Definition 2.9[11]: A function $f: X \rightarrow Y$ is rps-continuous (resp. rps-irresolute) if $f^{-1}(V)$ is rps-closed for every closed (resp. rps-closed) set V of Y.

Definition 2.10[12]: A function $f: X \rightarrow Y$ is and f is rps-open if f(G) is rps-open in Y for every rps-open set G of X.

Diagram 2.11: closed → pre-closed → pgpr-closed → rps-closed

3. rps-T₀ spaces

In T_0 spaces, two distinct points x, y are separated by means of an open set containing a specific point of x, y and not containing the other. In this section, we introduce rps- T_0 spaces and investigate their basic properties.

Definition 3.1: A topological space (X,τ) is said to be rps-T₀ if for any two distinct points x and y of X there exists a rps-open set G such that $x \in G$ and $y \notin G$ or $y \in G$ and $x \notin G$.

Proposition 3.2: Every topological space is $rps-T_0$.

Proof: Let (X,τ) be a topological space. By using proposition 3.7 of [4], (X,τ) is pgpr-T₀. Since every pgpr-open set is rps-open, (X,τ) is rps-T₀.

Theorem 3.3: In a topological space (X,τ) , the rps-closures of distinct points are distinct.

Proof: Let x and y be two distinct points of a space X. By Proposition 3.2, (X,τ) is rps-T₀. By Definition 3.1, there exists a rps-open set G such that $x \in G$ and $y \notin G$ or $y \in G$ and $x \notin G$. Since G is rps-open, we have X\G is rps-closed. If $x \in G$ and $y \notin G$, then $x \notin X \setminus G$ and $y \in X \setminus G$. Then there is a rps-closed set containing y but not x. It follows that $x \notin rps-cl(\{y\})$. But $x \in rps-cl(\{x\})$. Therefore $rps-cl(\{x\}) \neq rps-cl(\{y\})$. The proof for the case $y \in G$ and $x \notin G$ is similar.

4. rps-T₁ spaces

In this section, we introduce rps- T_1 spaces and investigate their basic properties. In section 3, we have proved that every topological space is rps- T_0 . Therefore, it is worth to define rps- T_1 spaces.

Definition 4.1: A topological space (X,τ) is said to be rps-T₁ if for any two distinct points x and y of X, there exist rps-open sets G and H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$.

Proposition 4.2: (i) Every pgpr- T_1 space is rps- T_1 .

(ii) Every pre- T_1 space is rps- T_1 .

Proof: Suppose (X,τ) is pgpr- T_1 . Let $x\neq y\in X$. Then by Definition 2.4, there exist pgpr-open sets G and H such that $x\in G$ but $y\notin G$ and $y\in H$ but $x\notin H$. Since every pgpr-open set is rps-open, G and H are rps-open sets such that $x\in G$ but $y\notin G$ and $y\in H$ but $x\notin H$. This shows that (X,τ) is rps- T_1 . This proves (i).

The proof of (ii) follows from (i) and Proposition 4.2 of [4].

However, the converse of Proposition 4.2 is not true as shown in the following example.

Example 4.3: Let $X = \{a,b,c\}$ with $\tau = \{\emptyset, \{a\}, \{b\}, \{a,b\}, X\}$. It can be verified that (X,τ) is rps- T_1 but neither pre- T_1 nor pgpr- T_1 .

The converse of Proposition 4.2 holds in rps- $T_{3/4}$ spaces as shown below.

Proposition 4.4: (i) If a space (X,τ) is rps- $T_{3/4}$ and rps- T_1 , then it is pre- T_1 .

(ii) If a space (X,τ) is rps- $T_{3/4}$ and rps- T_1 , then it is pgpr- T_1 .

Proof: Suppose (X,τ) is rps- $T_{3/4}$ and rps- T_1 . Let $x\neq y\in X$. Since (X,τ) is rps- T_1 , there exist rps-open sets G and H such that $x\in G$ but $y\notin G$ and $y\in H$ but $x\notin H$. Then X\G and X\H are rps-closed in X. Since (X,τ) is rps- $T_{3/4}$, by Definition 2.8, X\G and X\H are pre-closed. This implies that G and H are pre-open sets such that $x\in G$ but $y\notin G$ and $y\in H$ but $x\notin H$. This shows that (X,τ) is pre- T_1 . This proves (i).

The proof of (ii) follows from Proposition 4.2 of [4] and (i).

Proposition 4.5: (i) Every gpr- $T_{1/2}$ space is rps- T_1 .

(iii) Every preregular- $T_{1/2}$ space is rps- T_1 .

Proof: The proof of (i) follows from Lemma 4.5 of [4] and Proposition 4.2(ii).

The proof of (ii) follows from Corollary 4.6 of [4] and Proposition 4.2(ii).

The next examples show that rps- T_1 space need not be gpr- $T_{1/2}$ and preregular- $T_{1/2}$.

Example 4.6: Let X be a countably infinite set. We define the topology τ of finite complements on X by declaring open those sets with finite complements together with \emptyset (and X). Then the only closed sets are \emptyset , X and finite sets. In particular $\{x\}$ is closed for every $x \in X$. It follows that (X,τ) is T_1 and hence it is rps- T_1 . The only regular open sets are \emptyset and X. This implies that every subset of X is gpr-closed. Consider any infinite set $A \neq X$. Then A is open and gpr-closed but not closed. Therefore $cl(int(A)) = cl(A) = X \not\subset A$. That is A is not pre-closed. This shows that (X,τ) is not gpr- $T_{1/2}$.

Example 4.7: Let $X = \{a,b,c,d\}$ with $\tau = \{\emptyset,\{a,b\},\{a,b,c\},X\}$. It can be verified that (X,τ) is rps-T₁ but not preregular-T_{1/2}, since the set $\{a,b,c\}$ is gpr-closed but not rps-closed.

The following examples show that the concepts $rps-T_1$ and $rps-T_{1/2}$, $rps-T_1$ and $rps-T_{1/3}$, $rps-T_1$ and $rps-T_b$, $rps-T_1$ and $rps-T_{3/4}$ are independent.

Example 4.8: Let $X=\{a,b,c\}$ endowed with topology $\tau=\{\emptyset,\{a\},X\}$. Clearly (X,τ) is rps- $T_{1/2}$, rps- $T_{1/3}$, rps- T_b and rps- $T_{3/4}$ but it is not rps- T_1 .

Example 4.9: Let $X=\{a,b,c,d\}$ with topology $\tau=\{\varnothing,\{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\},X\}$. It can be verified that (X,τ) is rps- T_1 but neither rps- $T_{1/2}$ nor rps- $T_{1/3}$.

Example 4.10: Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset, \{a,b\}, X\}$. It can be verified that (X,τ) is rps- T_1 but not rps- T_b .

Example 4.11: Let $X=\{a,b,c\}$ with topology $\tau=\{\emptyset,\{a\},\{b\},\{a,b\},X\}$. It can be verified that (X,τ) is rps- T_1 but not rps- $T_{3/4}$.

Theorem 4.12: Let Y be a g-closed, open subspace of a topological space (X,τ) . Then $G \cap Y$ is rps-open in Y whenever G is rps-open in X.

Proof: Let G be rps-open in X. Let $F \subseteq Y$ be rg-closed in Y such that $F \subseteq G \cap Y$. Since $F \subseteq Y \subseteq X$ and Y is g-closed and open, by using Theorem 3.4 of [9], F is rg-closed in X. Again since $F \subseteq G \cap Y \subseteq G$ and G is rps-open in X, by using Theorem 2.6, $F \subseteq spint(G)$ and so $F \subseteq Y \cap spint(G)$. Now $spint(G) = G \cap cl(int(cl(G)))$ implies that

$$Y \cap spint (G) = Y \cap (G \cap cl(int(cl(G)))) = (Y \cap G) \cap (Y \cap cl(int(cl(G))))$$
$$= (G \cap Y) \cap cl_Y(int_Y(cl_Y(G \cap Y)))$$

 $=spint_Y(G \cap Y)$, where int_Y , cl_Y and $spint_Y$ denote the corresponding interior, closure and semi-pre-interior in the subspace Y of X. This shows that $F \subseteq spint_Y(G \cap Y)$. By using Theorem 2.6, $G \cap Y$ is rps-open in Y.

The next theorem shows that, the g-closed open subspace of a rps- T_1 space is again a rps- T_1 space.

Theorem 4.13: Let $Y \subseteq X$ be g-closed and open in (X,τ) . If (X,τ) is rps- T_1 then (Y,τ_Y) is also rps- T_1 .

Proof: Let Y be g-closed and open in (X,τ) . Let x and y be any two distinct points of Y. Suppose (X,τ) is a rps- T_1 space. Then there exist rps-open sets G and H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$. By using Theorem 4.12, $Y \cap G$ and $Y \cap H$ are rps-open in Y. Clearly $x \in Y \cap G$ but $y \notin Y \cap G$ and $y \in Y \cap H$ and $x \notin Y \cap H$. This proves that (Y,τ_Y) is also a rps- T_1 space.

Theorem 4.14: A topological space (X,τ) is rps- $T_{1/2}$ if and only if every subset B of X is the intersection of subsets A of X containing B such that A is semi-pre-closed or rg-open.

Proof: Let $B \subseteq X$. Let us first show that $B = \bigcap \{X \setminus \{x\} : x \notin B\}$. For, if $x \notin B$ then $B \subseteq X \setminus \{x\}$. That is $B \subseteq X \setminus \{x\}$ for every $x \notin B$. So we get $B \subseteq \bigcap \{X \setminus \{x\} : x \notin B\}$. On the other hand, let $y \in X \setminus \{x\}$ for every $x \notin B$. Suppose $y \notin B$. Then by our choice of y, we have $y \in X \setminus \{y\}$ that is impossible. This shows that $y \in B$ and $\bigcap \{X \setminus \{x\} : x \notin B\} \subseteq B$. That is $B = \bigcap \{X \setminus \{x\} : x \notin B\}$. Suppose (X, τ) is $ps - T_{1/2}$. By using Theorem 3.10 of [13], $\{x\}$ is semi-pre-open or $ps - \{x\}$. That is $ps - \{x\}$ is $ps - \{x\}$. That is $ps - \{x\}$ is $ps - \{x\}$. Then $ps - \{x\}$ is the intersection of subsets $ps - \{x\}$ of $ps - \{x\}$ and $ps - \{x\}$ is implies that $ps - \{x\}$ is $ps - \{x\}$. Then $ps - \{x\}$ is semi-pre-closed or $ps - \{x\}$. That is $ps - \{x\}$ is semi-pre-closed. By using Theorem 3.10 of $ps - \{x\}$ is $ps - \{x\}$.

Theorem 4.15: A topological space (X,τ) is rps- T_1 if and only if for every $x \in X$, $rps-cl(\{x\})=\{x\}$.

Proof: Let (X,τ) be rps- T_1 and $x \in X$. Then for each $y \neq x$, there exist rps-open sets G and H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$. Since H is rps-open, $X \setminus H$ is rps-closed and $x \in X \setminus H$ but $y \notin X \setminus H$. This implies that $y \notin rps-cl(\{x\})$, for every $y \in X$ and $y \neq x$. Thus $\{x\}=rps-cl(\{x\})$. Conversely, suppose $rps-cl(\{x\})=\{x\}$ for every $x \in X$. Let x, y be any two distinct points in X. Then $x \notin \{y\}=rps-cl(\{y\})$ implies there exists a rps-closed set B_1 such that $y \in B_1$, $x \notin B_1$. This implies that $X \setminus B_1$ is a rps-open set such that $x \in X \setminus B_1$ but $y \notin X \setminus B_2$. Since $y \notin \{x\}=rps-cl(\{x\})$, there exists a rps-closed set B_2 such that $x \in B_2$, $y \notin B_2$. That is $X \setminus B_2$ is a rps-open set such that $y \in X \setminus B_2$ but $x \notin X \setminus B_2$. By Definition 4.1, (X,τ) is rps- T_1 .

Theorem 4.16: Let $f: (X,\tau_1) \rightarrow (Y,\tau_2)$ be bijective.

- (i) If f is rps-continuous and (Y,τ_2) is T_1 , then (X,τ_1) is rps- T_1 .
- (ii) If f is rps-irresolute and (Y,τ_2) is rps- T_1 , then (X,τ_1) is rps- T_1 .
- (iii) If f is rps-open and (X,τ_1) is rps- T_1 , then (Y,τ_2) is rps- T_1 .

Proof: Let $f: (X,\tau_1) \rightarrow (Y,\tau_2)$ be bijective.

Suppose $f: (X,\tau_1) \to (Y,\tau_2)$ is rps-continuous and (Y,τ_2) is T_1 . Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Since f is bijective, $y_1 = f(x_1) \neq f(x_2) = y_2$ for some $y_1, y_2 \in Y$. Since (Y,τ_2) is T_1 , choose open sets G and G such that $y_1 \in G$ but $y_2 \notin G$ and $y_2 \in G$ and $y_2 \in G$ and $y_2 \in G$ and $y_2 \in G$ is bijective, $x_1 = f^{-1}(y_1) \in f^{-1}(G)$ but $x_2 = f^{-1}(y_2) \notin f^{-1}(G)$ and $x_2 = f^{-1}(y_2) \in f^{-1}(G)$ but $x_1 = f^{-1}(y_1) \notin f^{-1}(G)$. Since f is rps- continuous, $f^{-1}(G)$ and $f^{-1}(G)$ are rps-open sets in (X,τ_1) . This shows that, (X,τ_1) is a rps- T_1 space. This proves (i). Suppose $f: (X,\tau_1) \to (Y,\tau_2)$ is rps-irresolute and (Y,τ_2) is a rps- T_1 space. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Since f is bijective, $f_1 = f(x_1) \neq f(x_2) = f(x_2) \neq f(x_2) = f(x_1) \neq f(x_2) = f(x_2) \neq f(x_2) f(x_2) \neq f(x_2$

and $y_2=f(x_2) \in f(H)$. Since f is bijective, we have $y_2=f(x_2) \notin f(G)$ and $y_1=f(x_1) \notin f(H)$. Thus (Y,τ_2) is rps- T_1 . This proves (iii).

5. rps-T₂ spaces

In this section, we introduce rps-T₂ spaces and investigate their basic properties.

Definition 5.1: A topological space (X,τ) is rps-T₂ if for any two distinct points x and y of X, there exist disjoint rps-open sets G and H such that $x \in G$ and $y \in H$.

Proposition 5.2: (i) Every pgpr- T_2 space is rps- T_2 .

(ii) Every pre- T_2 space is rps- T_2 .

Proof: Suppose (X,τ) is pgpr- T_2 . Let $x\neq y\in X$. Since (X,τ) is pgpr- T_2 , by using Definition 2.5, there exist disjoint pgpr-open sets G and H such that $x\in G$ and $y\in H$. Since every pgpr-open set is rps-open, G and H are disjoint rps-open sets such that $x\in G$ and $y\in H$. This shows that (X,τ) is rps- T_2 . This proves (i). The proof of (ii) follows from the fact that every pre- T_2 space is pgpr- T_2 and (i).

The converse of Proposition 4.2 holds in rps- $T_{3/4}$ spaces as shown in the following proposition.

Proposition 5.3: (i) If a space (X,τ) is rps- $T_{3/4}$ and rps- T_2 , then it is pre- T_2 .

(ii) If a space (X,τ) is rps- $T_{3/4}$ and rps- T_2 , then it is pgpr- T_2 .

Proof: Suppose (X,τ) is rps- $T_{3/4}$ and rps- T_2 . Let $x\neq y\in X$. Since (X,τ) is rps- T_2 , by Definition 5.1, there exist disjoint rps-open sets G and H such that $x\in G$ and $y\in H$. Then X\G and X\H are rps-closed in X. Since (X,τ) is rps- $T_{3/4}$, X\G and X\H are pre-closed. That is G and H are disjoint pre-open sets such that $x\in G$ and $y\in H$. Thus (X,τ) is pre- T_2 . This proves (i). Since every pre- T_2 space is pgpr- T_2 , (X,τ) is pgpr- T_2 . This proves (ii).

Proposition 5.4: (i) Every gpr- $T_{1/2}$ space is rps- T_2 .

(iii) Every preregular- $T_{1/2}$ space is rps- T_2 .

Proof: (i) Follows from the Proposition 5.2 and Lemma 5.2 of [4].

(ii) Follows from the Proposition 5.2 and Proposition 5.6 of [4]

Theorem 5.5: Every rps- T_2 space is rps- T_1 .

Proof: Let (X,τ) be a rps- T_2 space. Let $x\neq y\in X$. By Definition 5.1, there exist rps-open sets G and H such that $G\cap H=\emptyset$, $x\in G$ and $y\in H$. Since $G\cap H=\emptyset$, we have $x\notin H$ and $y\notin G$. That is $x\in G$ but $y\notin G$ and $y\in H$ but $x\notin H$. This proves that (X,τ) is rps- T_1 .

However, a rps- T_1 space is not rps- T_2 as shown in the following example.

Example 5.6: Let $X=G\cup\{x_1\}\cup\{x_2\}$, where G denotes any infinite set and x_1, x_2 are two distinct points not in G. Let τ be the family of subsets of X such that (i) $A\in\tau$ if $A\subseteq G$ and (ii) $A\in\tau$ if x_1 or $x_2\in A$ but X\A contains only a finite number of G. Then τ is a topology for X. If $x,y\in X$ with $x\neq y$, then, both, any one or none of x, y may belong to G. Consequently, $(\{x\}, \{y\}), (\{x\}, \{y\}\cup [G\setminus\{x\}])$ and $(\{x\}\cup G, \{y\}\cup G)$ are respectively, then, the pairs of pre-open sets, one containing x but not y while the other containing y but not x. Hence (X,τ) is pre-T₁. Since every pre-T₁ space is rps-T₁, (X,τ) is rps-T₁. Again let A and B be two rps-open sets such that $x_1\in A$ but $x_2\notin A$ while $x_2\in B$ but $x_1\notin B$. To prove (X,τ) is not rps-T₂, it suffices to show that $A\cap B\neq\emptyset$. Suppose A is closed. Then A is rg-closed, X\A is open and $A\subseteq A$. Since A is rps-open, by using Theorem 2.6, $A\subseteq spint(A)$. Always $spint(A)\subseteq A$. Hence A=pint(A) and A is semi-pre-open. Therefore $A\subseteq cl(int(cl(A)))$. Since A is closed $A\subseteq cl(int(A))\subseteq cl(A)\subseteq A$. That is A=cl(int(A)). If A is not open, then $int(A)=A\setminus\{x_1\}$.

Now
$$cl(int(A))=cl(A\setminus\{x_1\})=\begin{cases}A\setminus\{x_1\}\neq A \ if \ A \ is \ finite\\A\cup\{x_1,x_2\}\neq A \ otherwise\end{cases}$$
, $\sin ce \ x_1\in A \ and \ x_2\notin A$

This is a contradiction to A=cl(int(A)). Therefore A is open. Now by the definition of τ , $X\setminus A$ containing x_2 contains only a finite number of members of G. This contradicts the assertion that $X\setminus A$ is open. So, A is not closed, and hence $X\setminus A$ is not open. Since $x_2\in X\setminus A$, $X\setminus (X\setminus A)=A$ cannot have only a finite number of G, by the definition of τ . That is A contains all points G except possibly finite number of points of G. Similarly, it can be shown that B contains all points of G except possibly a finite number of points of G. Hence $A\cap B\neq \emptyset$.

Theorem 5.7: A topological space (X,τ) is rps-T₂ if and only if the intersection of all rps-closed, rps-neighborhoods of each point of the space is reduced to that point.

Proof: Let (X,τ) be a rps-T₂ space and $x \in X$. Then for each $y \neq x$ in X, there exist disjoint rps-open sets U and V such that $x \in U$, $y \in V$. Now $U \cap V = \emptyset$ implies $x \in U \subseteq X \setminus V$. That is $X \setminus V$ is a rps-neighborhood of x. Since V is rps-open, $X \setminus V$ is rps-closed and rps-neighborhood of x to which y does not belong. That is there is a rps-closed, rps-neighborhood of x, which does not contain y. So we get the intersection of all rps-closed, rps-neighborhoods of x is $\{x\}$. Conversely, let x, $y \in X$ such that $x \neq y$ in X. Then by our assumption, there exists a rps-closed,

rps-neighborhood V of x such that $y \notin V$. Since V is a rps-neighborhood of x, there exists a rpsopen set U such that $x \in U \subseteq V$. Thus, U and $X \setminus V$ are disjoint rps-open sets containing x and y respectively. It follows that (X,τ) is rps-T₂.

The next theorem shows that, a g-closed open subspace of a rps-T₂ space is again a rps-T₂ space.

Theorem 5.8: Let Y be a g-closed and open subspace of X. If (X,τ) is rps-T₂ then (Y,τ_Y) is also rps-T₂.

Proof: Suppose (X,τ) is rps- T_2 . Let x and y be any two distinct points in Y. Then $x,y \in X$. Since (X,τ) is rps- T_2 , by using Definition 5.1, there exist disjoint rps-open sets G and H in X such that $x \in G$ and $y \in H$. By using Theorem 4.12, $Y \cap G$ and $Y \cap H$ are disjoint rps-open sets in Y. Clearly $x \in Y \cap G$ and $y \in Y \cap H$. This proves that (Y,τ_Y) is also a rps- T_2 space.

Theorem 4.8: Let $f: (X,\tau_1) \rightarrow (Y,\tau_2)$ be bijective.

- (i) If f is rps-continuous and (Y,τ_2) is T_2 , then (X,τ_1) is rps- T_2 .
- (ii) If f is rps-irresolute and (Y,τ_2) is rps- T_2 , then (X,τ_1) is rps- T_2 .
- (iii) If f is rps-open and (X,τ_1) is rps- T_2 , then (Y,τ_2) is rps- T_2 .

Proof: Let $f: (X,\tau_1) \to (Y,\tau_2)$ be a bijective function. Suppose (Y,τ_2) is T_2 and f is rps-continuous. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Since f is bijective, $y_1 = f(x_1) \neq f(x_2) = y_2$ for some $y_1,y_2 \in Y$. Since (Y,τ_2) is T_2 , there exist disjoint open sets G and H such that $y_1 \in G$ and $y_2 \in H$. Since f is bijective, $x_1 = f^{-1}(y_1) \in f^{-1}(G)$ and $x_2 = f^{-1}(y_2) \in f^{-1}(H)$. Since f is rps-continuous, $f^{-1}(G)$ and $f^{-1}(H)$ are rps-open sets in (X,τ_1) . Moreover, $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(\emptyset) = \emptyset$. Thus (X,τ_1) is rps- T_2 . This proves (i). Suppose $f: (X,\tau_1) \to (Y,\tau_2)$ is rps-irresolute and (Y,τ_2) is rps- T_2 . Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Since f is bijective, $y_1 = f(x_1) \neq f(x_2) = y_2$ for some $y_1,y_2 \in Y$. Since (Y,τ_2) is rps- T_2 , by using Definition 5.1, there exist disjoint rps-open sets G and G and G and G and G is a bijective map, we have G and G are an analogous and G and G and G and G and G and G a

open sets G and H in X such that $x_1 \in G$ and $x_2 \in H$. Since f is rps-open, f(G) and f(H) are disjoint rps-open sets in Y such that $y_1 = f(x_1) \in f(G)$ and $y_2 = f(x_2) \in f(H)$. Therefore, (Y, τ_2) is rps-T₂. This proves (iii).

References

- [1] D.Andrijevic, Semi-preopen sets. *Mat, Vesnik.*, 38(1986), 24-32.
- [2] M. Anitha and P.Thangavelu, On pre-generalized pre-regular closed sets, Acta Ciencia Indica, 31 (4)(2005), 1035-1040.
- [3] Ashish Kar and Paritosh Bhattacharyya, Some weak separation axioms, *Bull. Cal. Math. Soc.*, 82 (1990), 415-422.
- [4] P.Gnanachandra and P.Thangavelu, pgpr-separation axioms, *International J. of Math. Sci. & Engg. Appls.*, 6(3) (2012), 303-314.
- [5] Y. Gnanambal, On generalized pre regular closed sets in topological spaces, *Indian .J. Pure .appl.Math.* 28(3)(1997), 351-360.
- [6] N.Levine, Semi-open sets and Semi- continuity in topological spaces, *Amer. Math.Monthly*, 70(1) (1963), 36-41.
- [7] N.Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palermo*19(2)(1970), 89-96.
- [8] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On Precontinuous and Weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt* 53(1982), 47-53.
- [9] N. Palaniappan and K.C. Rao, Regular generalized closed sets, *Kyungpook Math. J.*33 (1993), 211-219.
- [10] Shyla Isac Mary T and P.Thangavelu, On regular pre-semi closed sets in topological spaces. *KBM J. of Math. Sciences & Comp. Applications*. 1(1)(2010),9-17.
- [11] T.Shyla Isac Mary and P.Thangavelu, On rps-continuous and rps-irresolute functions, International Journal of Mathematical Archive, 2(1)(2011), 159-162.

- [12] T. Shyla Isac Mary and P. Thangavelu, On regular pre-semi open sets in topological spaces, *International Journal of general Topology*, 4(1-2)(2011),17-26.
- [13] T. Shyla Isac Mary and P. Thangavelu, On rps-separation axioms, *International Journal of Modern Engineering Research*, 1(2)(2011),683-689.
- [14] M. H. Stone, Applications of the theory of Boolean rings to the general topology, *Trans.*A.M.S. 41(1937), 375-481.
- [15] M.K.R.S. Veerakumar, Pre-semiclosed sets, Indian J.Math., 44(2)(2002), 165-181.