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In this paper, we introduce and study some lower separation axioms using rps-open sets. 

We discuss their basic properties and their link with existing lower separation axioms.  

 

Keywords and Phrases: pre-closed, rg-closed, semi-pre-closed, pgpr-closed, rps-closed etc., 

MSC 2010: 54A05, 54B05, 54C08  

 

 

1. Introduction 

Shyla Isac Mary and Thangavelu [10] defined the concept of regular pre-semi closed sets in 

2010. Askish Kar and Bhattacharyya [3]; Gnanambal [5]; Anitha and Thangavelu[2]; 

introduced and studied pre-Ti (i=0,1,2), preregular-T1/2 and  pgpr-T1/2, gpr-T1/2 spaces 

respectively. Quit recently, Shyla Isac Mary and Thangavelu [13] introduced and investigated 

rps-T3/4, rps-T1/2, rps-T1/3 and rps-Tb spaces. The authors [4] further studied pgpr-separation 

axioms. In this paper, we introduce and study rps-Ti (i=0, 1, 2) spaces. 

 

2.   Preliminaries 

Given any subset A in a topological space (X,), the closure, interior and complement of A are 

denoted by cl(A), int(A) and X\A respectively. Let us recall the following definitions, which we 

shall require later. 

A subset A of a  topological space (X,) is  regular open [14] if A=int(cl(A)),  regular closed if  

A=cl(int(A)), pre-open [8] if Aint(cl(A)), pre-closed if cl(int(A))A, semi-pre-open [1] if 

Acl(int(cl(A))) and  semi-pre-closed if int(cl(int(A)))A. The semi-pre-interior of a subset A of 
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X is the union of all semi-pre-open sets contained in A and is denoted by spint(A). The pre-

closure of a subset A of X is the intersection of all pre-closed sets containing A and is denoted by 

pcl(A). The semi-pre-closure of a subset A of X is analogously defined and is denoted by 

spcl(A).  

Again a subset B of a topological space (X,) is called generalized closed (briefly g-closed) [6] 

if cl(B)U whenever BU and U is open in X and regular generalized closed (briefly rg-

closed) [8] if cl(B)U whenever BU and U is regular open in X. The complement of a g-

closed set is g-open and that of rg-closed set is rg-open. A subset B of a topological space (X,) 

is called pre-semi-closed [15] if  spclAU whenever AU and U is g-open. 

Definition 2.1: A subset B of a topological space (X,) is called generalized pre-regular closed 

(briefly gpr-closed) [5] (resp. pre-generalized pre-regular-closed (briefly pgpr-closed)[2]) if 

pcl(B)U whenever BU and U is regular open(resp. rg-open) in X.  

The intersection of all pgpr-closed sets containing A is called the pgpr-closure of A and 

denoted by pgpr-cl(A). The complement of a pgpr-closed set is pgpr-open.  

Definition 2.2: A subset B of a topological space (X,) is called regular pre-semiclosed (briefly 

rps-closed) [10]) if spcl(A)U whenever AU and U is rg-open.  

The intersection of all rps-closed sets containing A is called the rps-closure of A and denoted 

by rps-cl(A). The complement of a rps-closed set is rps-open.  

Definition 2.3: A topological space (X,) is pgpr-T0 [4] if for any two distinct points x and y of 

X, there exists a pgpr-open set G such that xG and yG or yG and xG. 

Definition 2.4: A topological space (X,) is pre-T1 [3] (resp. pgpr-T1 [4]) if for any two distinct 

points x, yX, there exist pre-open (resp. pgpr-open) sets G and H such that xG but yG and 

yH but xH. 

Definition 2.5: A topological space (X,) is pre-T2 [3] (resp. pgpr-T2 [4]) if for any two distinct 

points x, yX, there exist disjoint pre-open (resp. pgpr-open) sets G and H such that xG and 

yH. 

Theorem 2.6: A subset A of X is rps-open if and only if Fspint(A) whenever FA, F is rg-

closed. [11] 
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Definition 2.7[13]: A topological space (X,τ) is called rps-T1/2(resp. rps-T1/3, rps-Tb and rps-T3/4) 

if  every rps-closed (resp. pre-semi-closed, rps-closed and rps-closed) set is semi-pre-closed(resp. 

rps-closed, semi-closed and pre-closed). 

Definition 2.8: A space (X,τ) is called pgpr-T1/2[2](resp. gpr-T1/2[2]  and preregular-T1/2 [5]) if  

every pgpr-closed (resp. gpr-closed and gpr-closed) set is pre-closed (resp. pgpr-closed and pre-

closed). 

Definition 2.9[11]: A function f : XY is rps-continuous (resp. rps-irresolute)  if  f 
-1

(V)  is  

rps-closed for every closed (resp. rps-closed) set V of Y. 

Definition 2.10[12]: A function f : XY is and f  is rps-open if  f (G) is rps-open in Y for 

every rps-open set G of X. 

Diagram 2.11: closed         pre-closed         pgpr-closed          rps-closed 

3. rps-T0 spaces 

In T0 spaces, two distinct points x, y are separated by means of an open set containing a 

specific point of x, y and not containing the other. In this section, we introduce rps-T0 spaces 

and investigate their basic properties. 

 

Definition 3.1: A topological space (X,) is said to be rps-T0 if for any two distinct points x 

and y of X there exists a rps-open set G such that xG and yG or yG and xG. 

Proposition 3.2: Every topological space is rps-T0. 

Proof: Let (X,) be a topological space. By using proposition 3.7 of [4], (X,) is pgpr-T0. Since 

every pgpr-open set is rps-open, (X,) is rps-T0. 

Theorem 3.3: In a topological space (X,), the rps-closures of distinct points are distinct. 

Proof: Let x and y be two distinct points of a space X. By Proposition 3.2, (X,) is rps-T0. By 

Definition 3.1, there exists a rps-open set G such that xG and yG or yG and xG. Since G 

is rps-open, we have X\G is rps-closed. If xG and yG, then xX\G and yX\G. Then there 

is a rps-closed set containing y but not x. It follows that xrps-cl({y}). But xrps-cl({x}). 

Therefore rps-cl({x})≠rps-cl({y}). The proof for the case yG and xG is similar.        
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4.  rps-T1 spaces 

In this section, we introduce rps-T1 spaces and investigate their basic properties. In section 3, 

we have proved that every topological space is rps-T0. Therefore, it is worth to define rps-T1 

spaces. 

Definition 4.1: A topological space (X,) is said to be rps-T1 if for any two distinct points x 

and y of X, there exist rps-open sets G and H such that xG but yG and yH but xH. 

Proposition 4.2: (i) Every pgpr-T1 space is rps-T1. 

(ii) Every pre-T1 space is rps-T1. 

Proof: Suppose (X,) is pgpr-T1. Let x≠yX. Then by Definition 2.4, there exist pgpr-open 

sets G and H such that xG but yG and yH but xH. Since every pgpr-open set is rps-open, 

G and H are rps-open sets such that xG but yG and yH but xH. This shows that (X,) is 

rps-T1.This proves (i). 

The proof of (ii) follows from (i) and Proposition 4.2 of [4]. 

 However, the converse of Proposition 4.2 is not true as shown in the following example. 

Example 4.3: Let X={a,b,c} with ={ ,{a},{b},{a,b}, X}. It can be verified that (X,) is 

 rps-T1 but neither pre-T1 nor pgpr-T1. 

The converse of Proposition 4.2 holds in rps-T3/4 spaces as shown below.  

Proposition 4.4: (i) If a space (X,) is rps-T3/4 and rps-T1, then it is pre-T1. 

(ii)  If a space (X,) is rps-T3/4 and rps-T1, then it is pgpr-T1. 

Proof: Suppose (X,) is rps-T3/4 and rps-T1. Let x≠yX. Since (X,) is rps-T1, there exist  

rps-open sets G and H such that xG but yG and yH but xH. Then X\G and X\H are 

rps-closed in X. Since (X,) is rps-T3/4, by Definition 2.8, X\G and X\H are pre-closed. This 

implies that G and H are pre-open sets such that xG but yG and yH but xH. This shows 

that (X,) is pre-T1. This proves (i). 

The proof of (ii) follows from Proposition 4.2 of [4] and (i).   

Proposition 4.5:  (i) Every gpr-T1/2 space is rps-T1. 

(iii)  Every preregular-T1/2 space is rps-T1. 

Proof: The proof of (i) follows from Lemma 4.5 of [4] and Proposition 4.2(ii).  

The proof of (ii) follows from Corollary 4.6 of [4] and Proposition 4.2(ii).  
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The next examples show that rps-T1 space need not be gpr-T1/2 and preregular-T1/2.  

Example 4.6: Let X be a countably infinite set. We define the topology  of finite complements 

on X by declaring open those sets with finite complements together with  (and X). Then the 

only closed sets are , X and finite sets. In particular {x} is closed for every xX. It follows 

that (X,) is T1 and hence it is rps-T1. The only regular open sets are  and X. This implies that 

every subset of X is gpr-closed. Consider any infinite set A≠X. Then A is open and gpr-closed 

but not closed. Therefore cl(int(A))=cl(A)=XA. That is A is not pre-closed. This shows that 

(X,) is not gpr-T1/2. 

Example 4.7: Let X={a,b,c,d} with ={ ,{a,b},{a,b,c},X}. It can be verified that (X,) is rps-

T1 but not preregular-T1/2, since the set {a,b,c} is gpr-closed but not  rps-closed. 

The following examples show that the concepts rps-T1 and rps-T1/2, rps-T1 and rps-T1/3, rps-T1 

and rps-Tb, rps-T1 and rps-T3/4 are independent. 

Example 4.8: Let X={a,b,c} endowed with topology ={ ,{a},X}. Clearly (X,) is rps-T1/2, 

rps-T1/3, rps-Tb and rps-T3/4 but it is not rps-T1. 

Example 4.9: Let X={a,b,c,d} with topology ={ ,{a},{b},{a,b},{b,c},{a,b,c},X}. It can be 

verified that (X,) is rps-T1 but neither rps-T1/2 nor rps-T1/3. 

Example 4.10: Let X={a,b,c} with topology ={ ,{a,b},X}. It can be verified that (X,) is 

rps-T1 but not rps-Tb. 

Example 4.11: Let X={a,b,c} with topology ={ ,{a},{b},{a,b},X}. It can be verified that 

(X,) is rps-T1 but not rps-T3/4. 

Theorem 4.12: Let Y be a g-closed, open subspace of a topological space (X,). Then GY is 

rps-open in Y whenever G is rps-open in X. 

Proof: Let G be rps-open in X. Let FY be rg-closed in Y such that FGY. Since FYX 

and Y is g-closed and open, by using Theorem 3.4 of [9], F is rg-closed in X.  Again since 

FGYG and G is rps-open in X, by using Theorem 2.6, Fspint(G) and so FYspint(G).   

Now spint(G)=Gcl(int(cl(G))) implies that  

   Yspint (G)=Y(Gcl(int(cl(G))))=(YG)(Ycl(int(cl(G)))) 

                     =(GY)clY(intY(cl Y(GY)) 
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                     =spintY(GY), where intY, clY and spint Y denote the corresponding interior, 

closure and semi-pre-interior in the subspace Y of X. This shows that FspintY (GY). By 

using Theorem 2.6, GY is rps-open in Y.                              

The next theorem shows that, the g-closed open subspace of a rps-T1 space is again a rps-T1 

space. 

Theorem 4.13: Let YX be g-closed and open in (X,). If (X,) is rps-T1 then (Y,Y) is also 

rps-T1.  

Proof: Let Y be g-closed and open in (X,). Let x and y be any two distinct points of Y. 

Suppose (X,) is a rps-T1 space. Then there exist rps-open sets G and H such that xG but y

G and yH but xH. By using Theorem 4.12, YG and YH are rps-open in Y. Clearly 

xYG but yYG   and yYH and xYH. This proves that (Y,Y) is also a rps-T1 

space.                       

Theorem 4.14: A topological space (X,) is rps-T1/2 if and only if every subset B of X is the 

intersection of subsets A of X containing B such that A is semi-pre-closed or rg-open. 

Proof: Let BX. Let us first show that B=∩{X\{x}: xB}.  For,  if xB then BX\{x}. That 

is BX\{x} for every xB. So we get B∩{X\{x}: xB}. On the other hand, let yX\{x} for 

every xB. Suppose yB. Then by our choice of y, we have yX\{y} that is impossible. This 

shows that yB and ∩{X\{x}: xB}B. That is B=∩{X\{x}: xB}. Suppose (X,) is rps-T1/2. 

By using Theorem 3.10 of [13], {x} is semi-pre-open or rg-closed for every xX. That is 

X\{x} is rg-open or semi-pre-closed for every xX. Therefore, B is the intersection of semi-

pre-closed sets or rg-open sets containing B. Conversely, suppose every subset B of X is the 

intersection of subsets A of X containing B such that A is semi-pre-closed or rg-open. Fix xX. 

Take B=X\{x}. Then B is the intersection of semi-pre-closed sets or rg-open sets containing B. 

The only sets that contain B are B and X. Now B=BX and B≠X. This implies that B=X\{x} is 

semi-pre-closed or rg-open. That is {x} is semi-pre-open or rg-closed. By using Theorem 3.10 

of [13], (X,) is rps-T1/2.        

Theorem 4.15: A topological space (X,) is rps-T1 if and only if for every xX, 

rps-cl({x})={x}. 
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Proof:  Let (X,) be rps-T1 and xX. Then for each y≠x, there exist rps-open sets G and H 

such that xG but yG and yH but xH. Since H is rps-open, X\H is rps-closed and xX\H 

but yX\H. This implies that yrps-cl({x}), for every yX and y≠x. Thus {x}=rps-cl({x}). 

Conversely, suppose rps-cl({x})={x} for every xX. Let x, y be any two distinct points in X. 

Then x{y}=rps-cl({y})  implies there exists a rps-closed set B1 such that yB1, xB1. This 

implies that X\B1 is a rps-open set such that xX\B1 but yX\B1. Since y{x}=rps-cl({x}), 

there exists a rps-closed set B2 such that xB2, yB2. That is X\B2 is a rps-open set such that 

yX\B2 but xX\B2. By Definition 4.1, (X,) is rps-T1.                           

Theorem 4.16: Let f : (X,1)  (Y,2) be bijective. 

(i) If  f  is rps-continuous and (Y,2) is T1, then (X,1) is rps-T1 . 

(ii) If  f  is rps-irresolute and (Y,2) is rps-T1, then (X,1) is rps-T1 . 

(iii) If  f  is rps-open and (X,1) is rps-T1, then (Y,2) is rps-T1 . 

Proof: Let  f : (X,1)(Y,2) be bijective. 

Suppose f : (X,1) (Y,2) is rps-continuous and (Y,2) is T1. Let x1, x2X with x1≠x2. Since 

  f  is bijective, y1=f(x1)≠f(x2)=y2 for some y1, y2Y. Since (Y,2) is T1 , choose  open sets G 

and H such that y1G but y2G and y2H but y1H. Since  f  is bijective, x1=f 
-1

(y1)f 
-1

(G) 

but x2=f 
-1

(y2)f 
-1

(G) and x2=f 
-1

(y2)f 
-1

(H) but  x1=f 
-1

(y1)f 
-1

(H). Since  f  is rps- continuous,  

f 
-1

(G) and  f 
-1

(H) are rps-open sets in (X,1). This shows that, (X,1) is a rps-T1 space. This 

proves (i). Suppose f : (X,1) (Y,2) is rps-irresolute and (Y,2) is a rps-T1 space. Let x1, 

x2X with x1≠x2. Since f  is bijective, y1=f(x1)≠f(x2)=y2 for some y1, y2Y. Since (Y,2) is a 

rps-T1 space,  choose rps-open sets G and H such that y1G but y2G and y2H but y1H. 

Again since f  is bijective, x1=f 
-1

(y1)f 
-1

(G) but x2=f 
-1

(y2)f 
-1

(G) and x2=f 
-1

(y2)f 
-1

(H) but 

x1=f 
-1

(y1)f 
-1

(H). Since f is rps-irresolute, f 
-1

(G) and  f 
-1

(H) are rps-open sets in (X,1). It 

follows that (X,1) is rps-T1. This proves (ii). Suppose f is rps-open and (X,1) is rps-T1. Let 

y1≠y2Y. Since f  is bijective, there exist x1, x2 in X such that f(x1)=y1 and f(x2)=y2 with x1≠x2. 

Since (X,1) is rps-T1, there exist rps-open sets G and H in X such that x1G but x2G and 

x2H but x1H. Since f is rps-open, f(G) and f(H) are rps-open in Y such that y1=f(x1)f(G) 
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and y2=f(x2)f(H). Since f is bijective, we have y2=f(x2)f(G) and y1=f(x1)f(H). Thus (Y,2)  

is rps-T1. This proves (iii). 

5. rps-T2 spaces 

In this section, we introduce rps-T2 spaces and investigate their basic properties. 

Definition 5.1: A topological space (X,) is rps-T2 if for any two distinct points x and y of X, 

there exist disjoint rps-open sets G and H such that xG and yH. 

Proposition 5.2: (i)       Every pgpr-T2 space is rps-T2. 

(ii) Every pre-T2 space is rps-T2. 

Proof: Suppose (X,) is pgpr-T2. Let x≠yX. Since (X,) is pgpr-T2, by using Definition 2.5, 

there exist disjoint pgpr-open sets G and H such that xG and yH. Since every pgpr-open set 

is rps-open, G and H are disjoint rps-open sets such that xG and yH. This shows that (X,) 

is rps-T2. This proves (i). The proof of (ii) follows from the fact that every pre-T2 space is pgpr-

T2 and (i).            

The converse of Proposition 4.2 holds in rps-T3/4 spaces as shown in the following proposition. 

Proposition 5.3: (i) If a space (X,) is rps-T3/4 and rps-T2, then it is pre-T2. 

 (ii) If a space (X,) is rps-T3/4 and rps-T2, then it is pgpr-T2. 

Proof: Suppose (X,) is rps-T3/4 and rps-T2. Let x≠yX. Since (X,) is rps-T2, by Definition 

5.1, there exist disjoint rps-open sets G and H such that xG and yH. Then X\G and X\H are 

rps-closed in X. Since (X,) is rps-T3/4, X\G and X\H are pre-closed. That is G and H are 

disjoint pre-open sets such that xG and yH. Thus (X,) is pre-T2. This proves (i). Since 

every pre-T2 space is pgpr-T2, (X,) is pgpr-T2. This proves (ii).      

Proposition 5.4: (i)     Every gpr-T1/2 space is rps-T2. 

(iii)  Every preregular-T1/2 space is rps-T2. 

Proof:  (i) Follows from the Proposition 5.2 and Lemma 5.2 of [4]. 

(ii) Follows from the Proposition 5.2 and Proposition 5.6 of [4]    

Theorem 5.5: Every rps-T2 space is rps-T1. 

Proof: Let (X,) be a rps-T2 space. Let x≠yX. By Definition 5.1, there exist rps-open sets G 

and H such that GH= , xG and yH. Since GH= , we have xH and yG. That is 

xG but yG and yH but xH. This proves that (X,) is rps-T1.                    
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However, a rps-T1 space is not rps-T2 as shown in the following example. 

Example 5.6: Let X=G{x1}{x2},where G denotes any infinite set and x1, x2 are two distinct 

points not in G. Let  be the family of subsets of X such that (i) A if AG and (ii)A if x1 

or x2A but X\A contains only a finite number of G. Then  is a topology for X. If x,yX with 

x≠y, then, both, any one or none of x, y may belong to G. Consequently, ({x}, {y}), ({x}, {y} 

[G\{x}] ) and ({x}G,{y}G) are respectively, then, the pairs of pre-open sets, one containing 

x but not y while the other containing y but not x. Hence (X,) is pre-T1. Since every pre-T1 

space is rps-T1, (X,) is rps-T1. Again let A and B be two rps-open sets such that x1A but 

x2A while x2B but x1B. To prove (X,) is not rps-T2, it suffices to show that AB≠. 

Suppose A is closed. Then A is rg-closed, X\A is open and AA. Since A is rps-open, by using 

Theorem 2.6, Aspint(A). Always spint(A)A. Hence A=pint(A) and A is semi-pre-open. 

Therefore  Acl(int(cl(A))). Since A is closed Acl(int(A))cl(A)A. That is A=cl(int(A)). If 

A is not open, then int(A)=A\{x1}. 

Now cl(int(A))=cl(A\{x1}) 
1

1 2
1 2

\{ }
,sin

{ , }

A x A if A is finite
ce x A and x A

A x x A otherwise


  

 
 

This is a contradiction to A=cl(int(A)). Therefore A is open. Now by the definition of , X\A 

containing x2 contains only a finite number of members of G. This contradicts the assertion that 

X\A is open. So, A is not closed, and hence X\A is not open. Since x2X\A, X\(X\A)=A cannot 

have only a finite number of G, by the definition of . That is A contains all points G except 

possibly finite number of points of G. Similarly, it can be shown that B contains all points of G 

except possibly a finite number of points of G. Hence AB≠. 

Theorem 5.7: A topological space (X,) is rps-T2 if and only if the intersection of all rps-

closed, rps-neighborhoods of each point of the space is reduced to that point. 

Proof: Let (X,) be a rps-T2 space and xX. Then for each y≠x in X, there exist disjoint rps-

open sets U and V such that xU, yV. Now UV=  implies xUX\V. That is X\V is a 

rps-neighborhood of x. Since V is rps-open, X\V is rps-closed and rps-neighborhood of x to 

which y does not belong. That is there is a rps-closed, rps-neighborhood of x, which does not 

contain y. So we get the intersection of all rps-closed, rps-neighborhoods of x is {x}. 

Conversely, let x, yX such that x≠y in X. Then by our assumption, there exists a rps-closed, 
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rps-neighborhood V of x such that yV. Since V is a rps-neighborhood of x, there exists a rps-

open set U such that xUV. Thus, U and X\V are disjoint        rps-open sets containing x and 

y respectively. It follows that (X,) is rps-T2.                                      

The next theorem shows that, a g-closed open subspace of a rps-T2 space is again a rps-T2 

space. 

Theorem 5.8: Let Y be a g-closed and open subspace of X. If (X,) is rps-T2 then (Y,Y) is also 

rps-T2. 

Proof: Suppose (X,) is rps-T2. Let x and y be any two distinct points in Y. Then x,yX. Since 

(X,) is rps-T2, by using Definition 5.1, there exist disjoint rps-open sets G and H in X such that 

xG and yH. By using Theorem 4.12, YG and YH are disjoint rps-open sets in Y. Clearly 

xYG and yYH. This proves that (Y,Y) is also a rps-T2 space.     

Theorem 4.8: Let  f : (X,1)(Y,2) be bijective. 

(i) If  f  is rps-continuous and (Y,2) is T2, then (X,1) is rps-T2 . 

(ii) If  f  is rps-irresolute and (Y,2) is rps-T2, then (X,1) is rps-T2 . 

(iii) If  f  is rps-open and (X,1) is rps-T2, then (Y,2) is rps-T2 . 

Proof: Let  f : (X,1)(Y,2) be a bijective function. Suppose (Y,2) is T2  and  f  is                   

rps-continuous. Let x1, x2X with x1≠x2. Since f is bijective, y1=f(x1)≠f(x2)=y2 for some 

y1,y2Y. Since (Y,2) is T2, there exist disjoint open sets G and H such that y1G and y2H. 

Since f is bijective, x1=f 
-1

(y1)f 
-1

(G) and x2=f 
-1

(y2)f 
-1

(H). Since f is rps-continuous, f 
-1

(G) 

and f 
-1

(H) are rps-open sets in (X,1). Moreover, f 
-1

(G)f 
-1

(H)=f 
-1

(GH)=f 
-1

( )= . Thus 

(X,1) is rps-T2. This proves (i). Suppose f : (X,1) (Y,2) is rps-irresolute and (Y,2) is rps-

T2. Let x1, x2X with x1≠x2. Since f is bijective, y1=f(x1)≠f(x2)=y2 for some y1,y2Y. Since 

(Y,2) is rps-T2, by using Definition 5.1, there exist disjoint rps-open sets G and H such that 

y1G and y2H. Since f  is a bijective map, we have x1=f 
-1

(y1)f 
-1

(G) and x2=f 
-1

(y2)f 
-1

(H). 

Since f is rps-irresolute, f 
-1

(G) and f 
-1

(H) are rps-open sets in (X,1). Also f 
-1

(G)f 
-1

(H) 

=f 
-1

(GH)=f 
-1

( )= .This shows that, (X,1) is rps-T2. This proves (ii). Suppose f is rps-open 

and (X,1) is rps-T2. Let y1≠y2Y.  Now since f is bijective, there exist x1, x2 in X such that 

f(x1)=y1,  f(x2)=y2 and x1≠x2. Since (X,1) is rps-T2 , by Definition 5.1, there exist disjoint rps-
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open sets G and H in X such that x1G and x2H. Since f is rps-open, f(G) and f(H) are disjoint 

rps-open sets in Y such that  y1=f(x1)f(G) and y2=f(x2)f(H). Therefore, (Y,2) is rps-T2. This 

proves (iii).        
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