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Abstract: In this paper we find bounds for the zeros of a certain class of polynomials
whose coefficients or their real and imaginary parts are restricted to certain conditions.
Our results improve and generalize many known results in this direction.
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1. Introduction and Statement of Results
The following result, known as the Enestrom-Kakeya Theorem [4,5] , is well-known in
the theory of distribution of zeros of polynomials:

Theorem A: Let P(z) = Zaj z! be a polynomial of degree n such that
j=0
a,>a, ; =....2a, a,>0.
Then P(z) has all its zeros in the closed unit disk |z| <1.

In the literature, there exist several generalizations and extensions of this result. Joyal,
Labelle and Rahman [3] extended it to polynomials with general monotonic coefficients
by proving the following result:

Theorem B: Let P(z) = Zn:aj z! be a polynomial of degree n such that
j=0
a,2a,;,=..2a, 24a,.
Then P(z) has all its zeros in the disk
a, —a, +|ay|
a
Aziz and Zargar [1] relaxed the hypothesis of Theorem A and proved

7| <

Theorem C: Let P(z) = Zajzj be a polynomial of degree n such that

j=0
ka,>a,,>....2a >a,.
Then P(z) has all its zeros in the disk
ka, —a, +|a,|
2| |
On the other hand, Y. Choo [2] proved the following results:

lz+k-1<
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Theorem D: Let P(z) = Zajzj be a polynomial of degree n such that for some A =1,
j=0
1<k<n ,a,, #0,

a,=a, ; =....=24a 2, 28, .2 28,

n—-k+l = n-k —
If a, ., >a,, then all the zeros of P(z) lie in the disk |z| <k,, where k, is the positive
root of the equation

Kk+1 —51Kk _|7/1| :O,

with
-1 a,+(A-Da,_, —a,+a
7/1:(1 )a, and 5, = (A-Da, , —a, +[a] .
a, a,|
If a,, >a,.,, thenall the zeros of P(2) lie in the disk |z| <k,, where k, is the positive

root of the equation
K -6,KX—|p,|=0,
with
_(1-Aa,, Ca,+(1-A)a,, —a, +[a

=A% and S =
72 a an 2 |an|

In this paper, we prove some more general results, which include many generalizations
and extensions of Enestrom-Kakeya Theorem as special cases. We first prove

Theorem 1: Let P(z) = Zajzj be a polynomial of degree n with such that for some
j=0

P,oc#1 0<7r<1,1<k<n ,a,, #0,
p+a, >a, =28, ,,, 208, , 28 ,;2..28 21@,.
If a,, >a,, then all the zeros of P(z) lie in the disk |z| <k,, where k, is the positive
root of the equation
K K+ _53Kk _|73| -0,
with
_(c-Da,,

— d o
73 a an 3 |an|

n

_lAl+pra,+(o-Da,., +2a,| (| +a,)

If a,, >a,.,, thenall the zeros of P(2) lie in the disk |z| <k,, where k, is the positive
root of the equation
K-6,K"=|r,|]=0,
with
_(Q-o)a,,
4 = an

and

_ o+ p+a, +(1—o0)a,, +2a,|—z(a,|+a,)

5
' 2|
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Remark 1: If we take P =0 and 7z =1 in Theorem 1, we get Theorem D. Many other
interesting results can be obtained from Theorem 1 by taking different values of the
parameters p, o,z and k. For instance, if P =0, we have the following result

Corollary 1: Let P(2) = Zn:ajzj be a polynomial of degree n  such that for some,
j=0
oc#1 0<7<1,1<k<n ,a,, #0,
a,>a,,>...28, ,,208, , 2, 4 >.....28 >18,.
If a,, >a,, then all the zeros of P(z) lie in the disk |z| <k, where k; is the positive
root of the equation
K K+ _55Kk _|7/5| -0,
with
_(oc-Da,,
5 an
and
a, +(c—Da,_ +2a,|—7(a,|+a,)
2| |

5

If a, >a,.,. thenall the zeros of P(z) lie in the disk |z| <k,, where k; is the positive
root of the equation
K" —8,K* —|re| =0,
with
_(-o0)a,,
6= T
and
a, +(1—o0)a,, +2a,|—7(a,|+a,)
2| |
If the coefficients of the polynomial P(z) are complex, then we have the following
result of independent interest:

6

Theorem 2: Let P(z)zzlajzj be a polynomial of degree n with
j=0

Re(a;)=«a;,Im(z) =B;,]=01.....,n such that for some pP,oc#1 ,0<r<l1,
1<k<n , «,, #0,
PHa, 20, 12 20 SO 20 g 2. 20 2 TA,.
If a, ., >a,, then all the zeros of P(z) lie in the disk |z| <k, where k; is the positive
root of the equation
K K+ _57Kk _|77| -0,
with
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— (0 _1)an—k
7 an
and

n-1
P+ p+a, +(—Da, , +2ao|-7(ao|+a0) +|8,|+2) | )|
j=0

o, =
7 an

If ., >a,.,,thenall the zeros of P(z) lie in the disk |z| < kg, where k, is the positive

root of the equation
KX —8,K" —|y| =0,

with
_(d=0)an
8 a,
and
n-1
oI+ 4ty + (U-0)aty  + 2]~ et + o) + 16, |+ 23|
Og = -

an
Remark 2: If the coefficients a; in Theorem 2 are real i.e. B, =0for all j, then it reduces

to Theorem 1.
For different values of the parameters p,o,z and k, we get many other interesting

results. For example, if we take p =0, we get the following result:
Corollary 2: Let P(z)zzzajzj be a polynomial of degree n with
j=0

Re(a;) =a;,Im(z) = B;,j=01.....,n such that for someo #1 0<z<1, 1<k<n ,
a,, =0,
Ay 20 1 2 20 2O 20 g Z e 20 2T .
If «, ., >a,, then all the zeros of P(z) lie in the disk |z| <ky, where k, is the positive
root of the equation
Kk+1 _59Kk _|7/9| -0,
with
(o —Da,,
a

n

9
and

n-1
oty + (0= D)aty , +2atg|— ety | + o) + |5 + 22 | 3]
5, = =

an
If o, >a,,.,, then all the zeros of P(z) lie in the disk |z|<k,,, where k,, is the
positive root of the equation
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K* _510Kk _|710| =0,
with
_ (1_0-)an—k

7
10 a

n

and

n-1
a, +(1-o)a, +2|a0|—2'(|050|+a0)+|ﬂn|+22‘,3]‘
=0

S =
10 a

n

2. Proofs of Theorems

Proof of Theorem 1: Consider the polynomial
F(2)=01-2)P(2)

=(1-2)(a,z2"+a, 2" +....+az+a,)
=-az"+(a,-a,,)2"+(,,—-a ,)2"" +...
+(a, —a,)z° +(a, —a,)z+a,
Ifa,, ,>a,,,thena, ,,>a,, andwe have
F(z)=-a,z2"" —pz" +(p+a,-a,,)z"+(a,_, —a ,)z"" +...
+ (@1 — 8y )2 H (0, — 8,4 1)2" (0 -Da, 2"
Fot (@, —a)2% +(a, —@,)z+(r -1)a, +a,
Therefore, for |z|>1,

IF(z)|>|a,z"" +(a—1)an7kz”"“—‘— "+ (p+a, —a,,)2"+(@,, —a,,)2" " +...

+(@, 1~ )2+ (0a, -8, )" —(c-Da, 2" +......

+(8, —8))2" +(a, —@y)z+(r ~D)a, +a, |
>|7""[a, 2" + (O‘—l)an_k‘—|Z|n[|p|+(p+an ~a_,) +%+ ......

+ Ay k__lan—k o, _kan—k—l - |a2 :_2a1|
2 2 2
a -, @-7)a +@]
I A
>|7" 2, 2" + (o -Da, |- o]+ (p+a, —a,,) + (@, — 8, ) + ..o

+ (an—k+1 - an—k) + (oan—k - an—k—l) to + (a2 - al)
+(a, —78,) + (L 7)[ag| + a, ]

-t

anZk+l +(O__1)an_k‘_|z|n[|p| +p+an +(O-_l)an—k

+2Ja,| — (| +ay)] >0
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if
k+1 k
‘z * +}/3‘ > 82,
where
— (O_ _1)an—k
3 an
and

_ o+ p+a, +(oc-Da,, +2a,|—z(a,|+a,)
2| |

93

This inequality holds if [z —|,| > &,|z|".
Thus all the zeros of P(z) whose modulus is greater than 1 lie in the disk |z| <k,, where
k, is the positive root of the equation
Kt —5,K* —|y| =0.
But the zeros of P(z) whose modulus is less than or equal to 1 are already
contained in the disk |z| <k;, since k,can be easily shown to be greater than 1. That
proves the first part of the theorem.
To prove the second part, if a,, >a, ,.,,then a,_, >a, ,, and we have
F(z)=-a,z2"" —pz" +(p+a,-a, ;)" +(a,_,—a ,)z"" +...

n—-k+1 + (O' _1)an7k 7 n—k+1

+ (an—k+1 - Gan—k )Z + (anfk - a‘n—kfl)znik
Fot(a,-a)z° +(a, —@,)z+(r —1)a, +a,
Therefore, for |z| >1,

IF(z)| =

1 —k+1
a,z"m+@1-o)a, 2"

—‘—pz” +(p+a,—-a )z"+(@,,—a ,)z"" +..

n—-k+1

+ (an—k+1 —0a, )Z + (an—k - an—k—1)Z " +o

+(a, —8))2" +(a, @)z +(r—Da, +a, |

>|7"a, 2" + (1—a)an_k‘—|z|"[|,o|+(,o+an ~a_,) +%+ ......
T o N e ] + |a2 B a1|
k-1 ko n-2
2 2 2
8- 1-17)|ay| +M]
4™ 7
>|7" a2 + @-o)a, |-+ (p+a, —a,,) + (@, — 8, ) + oo
+ (an—k+l - O-a'n—k) + (an—k - an—k—l) to + (az - al)
+(a —7,) + (1_T)|ao| + |ao|]
=|4""a, 2" + (1—a)an_k‘—|z|”[|p| +p+a, +(1-0)a,,

+2)ag| - 7(a,|+a,)] >0
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if
Kk k-1
‘z +)/4‘ >8,l7" 7,
where
— (1_ o_)an—k
4 an
and
5 - o+ p+a, +(1—o0)a,, +2a,|—7(a,]+a,)
4 — .

2|
This inequality holds if [z —|y,| > &,[2| "
Thus all the zeros of P(z) whose modulus is greater than 1 lie in the disk |z| <k,, where
k, is the positive root of the equation
K -6,K" = |y,|=0.
But the zeros of P(z) whose modulus is less than or equal to 1 are already
contained in the disk|z| <k,, since k,can be easily shown to be greater than 1. That
proves the second part of the theorem and hence Theorem 1 is proved completely .

Proof of Theorem 2: Consider the polynomial
F(z2)=01-2)P(2)

=(1-2)@,z"+a,,2"" +....+a,2+3,)
=-az"+(a,-a,,)z"+(,,—-a ,)2"" +...

+(a, —a))z° +(a, —a,)z + 2,
=-a 7™ +(a, —a, )" +(a,, —a, )" +..+ (a0, — )2

+(a —ag)z+a, +if, +ii(ﬁj _ﬁj—l)zj :

If A1 >0 s then a, . >, and we have

F(z)=-a,2" —pt"+(p+a, =, 1)2" +(tyy — Ay 5) 2" (@1 — Xy )2

+ (o, —a, 41)Z k- (6 -Da,_ 2 th (A = Oy )2 S

+(a, —0)2% + (o, — 1) 2+ (r —Dexy 2 +
+iﬂo +ii(ﬁj _ﬂj—l)zj'

For |z| > 1,

IF(z)|> Gn1 “ %

a z"+ (a—l)an_kzn_k‘—|z|n[|p| +p+a,—a,, +
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Onyia " | OUn g —Un g 4 Dnksr — ok o, —a

7" 2 7 o

n
61+

e A LT o

n-1 + n-1 + n + n + n—j ]

2 2 2" 1] 2

>

anZnJrl + (0—1)an—kzn7k‘ _|Z|n[|p| TPTC, — Oy Ty Oyt

T T O Ry T X e ta, —a

n1
+a, -1, +(1—T)|ao|+|a0|+|ﬂ”|+22‘ﬂi‘]
=0

= |z|n7k a,z“" + (G—l)an_k‘—|z|n[|p| +p+a, +(o-Da,, + 2o
n-1
_T(|a0|+a0)+|ﬂn|+22‘ﬂj ‘]
=0
>0
if
‘z"” +7/7‘ > 8,|7",
where
_ (O-_l)an—k
7 an
and

n-1
P+ p+a, + (0 —Da,, +2ao|-7(ao|+a0) +|8,|+2) | )|
j=0

5, = -

n

it —|7/7| >57|Z|k.

This inequality holds if ||
Thus all the zeros of P(z) whose modulus is greater than 1 lie in the disk |z| <k, where
k, is the positive root of the equation

Kt —8,K  —|y,| =0.
It is easy to show that k,> 1, so that all those zeros of P(z) whose modulus is less than
or equal to 1 are already contained in the disk|z| <k, . Hence it follows that in this case
all the zeros of P(2) lie in the disk |z| <k, ,thereby proving the first part of the theorem.
For the second part, if a,, >a, ,,,,then a,, >a,, , and we have
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F(z) = —anzn+1 —p"+(pt+a, —a, )" +(a, , _an_z)zn—l ot (A e _mn_k)znfku

n—-k+1 n-k-1
+

-(1-0)a, 2 +(a, — an—k—l)znik (0 — Ay 5)2

+(a, —0))2% + (o, — 1) 2+ (r —Dexy 2 +

+iﬂo +ii(ﬁj _ﬂj—l)zj'

For |z| > 1,
IF(2)| 2 [a,2"" + - o), 2" =7 [+ p + ot — s +%+ ......
An ka1 _kfa nk Ak _f(n—k—l nka _kflln—k—Z . n a, ;_20‘1
2 2 2 2
n
(8] +|8,4)
oy -ray , 0= ] 1], 5P,

A i

> (2,2 + (- 0)a, 2" =7 ||+ o+ ey — ey + oty — ey e

T O T TRy T X e ta, —a

]

n-1
+a, —Tta, + (l—z')|050|+|050|+|,6’n|+221‘ﬂj
i—0

n—-k+1
2

a,2" + - o), || llo| + o+, + L— ), + 2y

el +0) 18+ 255

>0
if
‘zk +7/8‘ > 87",
where
_ (1_0-)an—k
8 an
and

n-1
oI+ o+, + (U-0)aty  + 2]~ et + o) + 16, |+ 23|
S, = -

a

This inequality holds if |z|k —|ys| > 58|2|H.
Thus all the zeros of P(z) whose modulus is greater than 1 lie in the disk |z| < kg, where
kg is the positive root of the equation

KX = 8,K ™ —[y| =0.
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Itis easy to show that k,> 1, so that all those zeros of P(z) whose modulus is less than or
equal to 1 are already contained in the disk |z| <k, . Hence it follows that in this case all

the zeros of P(z) lie in the disk |z| <k, thereby proving the second part of the theorem.
That proves the theorem completely.
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