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Abstract—    In this paper we are consuming the total power required to display the image.  For 

this we use the histogram of that image.  The histogram is modified as log based histograms that 

reduce overstretching articrafts of the conventional histogram equalization technique.  Then we 

develp a model called power constrained contrast enhancement for consuming the power. The 

objective function in PCCE consists of power term and histogram equalization term. Moreover, 

we extend the proposed algorithm to enhance video sequences, as well as still images. Simulation 

results demonstrate that the proposed algorithm can reduce  power  consumption  significantly  

while improving image contrast and perceptual quality. 

Index  Terms—Contrast  enhancement,  emissive  displays,  histogram equalization  (HE), 

histogram modification  (HM), image enhancement, low-power image processing. 

______________________________________________________________________________ 

 

Introduction  

Due to the rapid development of imaging technology has made it easier to take and process 

digital photographs. However, we often acquire low-quality photographs since lighting 

conditions and imaging systems are not ideal. High contrast is an important quality factor for 

providing better experience of image perception to viewers. Histogram equalization (HE) is 

widely used to enhance low-contrast images. Notice that, in addition to contrast enhancement, 

power saving is also an important issue in various multimedia devices, such as mobile phones 

and televisions. A large portion of power is consumed by display panels in these devices [2], [3], 

and this trend is expected to continue as display sizes are getting larger. 

  To design such a power-constrained contrast-enhancement (PCCE) algorithm, different 

characteristics of display panels should be taken into account. Display panels can be divided 

into emissive displays and non emissive displays  [4]. Cathode-ray  tubes,  plasma  display  

panels (PDPs),  organic light-emitting  diode (OLED),  and  field  emissive  displays(FED) are 

emissive displays that do not require external light sources, whereas the thin-film transistor liquid 

crystal display (TFT-LCD) is a non emissive one. . Emissive displays have several advantages 



International journal of advanced scientific and technical research                          Issue 3 volume 3, May-June 2013                  

Available online on   http://www.rspublication.com/ijst/index.html                                                    ISSN 2249-9954 
 

RSPUBLICATION, rspublicationhouse@gmail.com Page 291 
 

over non emissive ones, including high contrast and low-power consumption. In an emissive 

display, each pixel can be independently driven, and the power consumption of a pixel is 

proportional to its intensity level. Thus, an emissive display generally consumes less power than 

a nonemissive one. Due to these advantages, the OLED and the FED are considered as promising 

candidates for the next-generation display. Although the OLED is now used mainly for small 

panels in mobile devices, its mass-production technology is being rapidly developed, and larger 

OLED panels will be soon adopted in a wider range of devices. We propose a PCCE algorithm 

for emissive displays based on  HE.  First,  we  develop  a  histogram  modification (HM) scheme,  

which  reduces  large  histogram  values  to  alleviate the contrast overstretching of the 

conventional HE technique. 

Then, we make a power-consumption model  for  emissive displays and formulate an objective 

function, consisting of the histogram-equalizing term and the power term. To minimize the 

objective function, we employ convex optimization techniques. Furthermore, we extend the 

proposed PCCE algorithm to enhance video sequences. Simulation results shows the required 

output i.e image with high image contrast and good perceptual quality and reduced  power 

consumption.  

  HE TECHNIQUE 

Many contrast-enhancement techniques have  been  developed. HE is one of the most widely 

adopted approaches to enhance low-contrast images, which makes the histogram of light 

intensities of pixels within an image as uniform as possible. The main objective of  this paper is to 

develop a power-constrained image enhancement framework, rather than to propose a 

sophisticated contrast-enhancement scheme. Thus, the proposed PCCE algorithm adopts the HE 

approach for its simplicity and effectiveness. Here, we first review conventional HE and HM 

techniques and then develop an LHM scheme, on which the proposed PCCE algorithm  

is based. 

HISTOGRAM EQUALIZATION 

In HE, we first obtain the histogram of pixel intensities in an input image. We represent the 

histogram with a column vector h , whose  kth  element  hk denotes the number of pixels with 

intensity k . Then, the probability mass function pk of intensity is calculated by dividing by the 

total number of pixels in the image. In other words  

                                                          𝑝𝑘 =
𝑕𝑘

1𝑡𝑕
                         (1) 

 where  1 denotes the column vector, all elements of which are 1.The cumulative distribution 

function (CDF)   ck    of intensity   k   is then given by 

                                                   𝑐𝑘 =  𝑝𝑖
𝑘
𝑖=0             (2) 
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Let xk denote the transformation function, which maps intensity in the input image to intensity.   

xk in the output image. In HE, the transformation function is obtained by multiplying the CDF by 

ck the maximum intensity of the output image. For a b-bit image, there are 2
b
=L different  

intensity  levels, and the transformation function is given by 

                                           Xk = [(L-1)ck+0.5]            (3) 

where[a] is the floor operator, which returns the largest integer smaller   than or equal to . Thus, in 

(3), is rounded off to the nearest integer since output intensities should be integers. Note that b=8 

andL-1=255, 

when an 8-bit image is considered. If we ignore the rounding-off operation in (3), we can com- 

bine (2) and (3) into a recurrence equation, i.e., 

   Xk-xk-1 = (L-1)pk for 1 ≤ k ≤ L-1.                  (4) 

With the initial condition x0=(L-1)рα. This can be rewritten in vector notations as 

            Dx= .                      (5) 

Where D  R
LXL 

 is the differential matrix, i.e., 

 

 

and   is the normalized column vector of , given by 

                                                                  𝑕 =
𝐿−1

1𝑡𝑕
        (7) 

Histogram Modification 

    The conventional HE algorithm has several drawbacks. First, when a histogram bin has a very 

large value, the transformation function gets an extreme slope. This can cause contrast 

overstretching, mood alteration, or contour artifacts in the output image. Second, particularly for 

dark images, HE transforms very low intensities to brighter intensities, which may boost noise 

components as well, degrading the resulting image quality. Third, the level of contrast enhancement 

cannot be controlled since the conventional HE is a fully automatic algorithm without any 
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parameter. To overcome these drawbacks, many techniques have been proposed. One of those is 

HM  

 In this recent approach to HM, the first step can be expressed  by  a  vector-converting  

operation  m=f(h) where m = [m0,m1,…,mL-1]
t
 denotes  the modified  histogram .Then,  the  

desired transformation  function X= [x0, x1,…… xL-1]
t
 can be obtained by solving Dx=𝑚      (8) 

which is the same HE procedure as in (5), except that 𝑚    is used instead of where is the 

normalized column vector of m i.e., 

                      𝑚 =
𝐿−1

1𝑡𝑚
𝑚                                                            (9) 

 C.  LHM 

We develop an HM scheme using a logarithm function, which is monotonically increasing and can 

reduce large values effectively. In [20], Drago et al. demonstrated that a logarithm function can 

successfully reduce the dynamic ranges of high-dynamic-range images while preserving the 

details. We exploit this property and apply a logarithm function to our HM scheme, which is called 

LHM.  We use the following logarithm function to convert the input histogram value  to a modified 

histogram value  𝑚𝑘  

 

   𝑚𝑘 =
log (𝑕𝑘 .𝑕𝑚𝑎𝑥 .10−𝜇 +1)

log (𝑕𝑚𝑎𝑥
2 .10−𝜇 +1)

                         (10)  

 Where mk  denotes the maximum element within the input histogram h and µ is the parameter 

that controls the level of HM. As µ gets larger, hk.hmax.10
-µ 

 in (10) becomes a smaller number. 

Therefore, a large µ makes mk almost linearly proportional to hk. Thus, the histogram is less 

strongly modified. On the other hand, as µ gets smaller hmax.10
-µ

, becomes dominant and 

 

log 𝑕𝑘 . 𝑕𝑚𝑎𝑥 . 10−𝜇 + 1 ⋍ log 𝑕𝑘 + log 𝑕𝑚𝑎𝑥 . 10−𝜇   

                  ⋍log⁡(𝑕𝑚𝑎𝑥 . 10−𝜇 )                    (11) 

 

     Consequently mk, becomes a constant regardless of hk, making the modified histogram 

uniform. In this way, a smaller results µ in stronger HM. Fig. 1(a) illustrates how the proposed 

LHM scheme modifies an input histogram according to parameter µ , and Fig. 1(b) plots the 

corresponding transformation functions, which are obtained by solving (8). In this test, the 

―Door‖ image in Fig. 1(c) is used as the input image. 
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In the above Fig. 1(d)-(g) compare the output images of the conventional HE algorithm and the 

proposed LHM scheme. On the other hand, the proposed algorithm with µ=5  yields less 

artifacts on the door knob while enhancing the details on the background region. . Therefore, by 

controlling the single parameter  µ , LHM can obtain the transformation function, which varies 

between the identity function and the conventional HE result. 

PCCE algorithm              

        Here, we propose the PCCE algorithm. Fig. 2 shows an overview of the proposed algorithm. 

We first gather the histogram information h from an input image and apply the LHM scheme h to 

obtain the modified histogram m. Without power constraint, we can solve equation       Dx=𝑚  in 

(8) to get the transformation function. However, we design an objective function, which consists 

of power-constraint and contrast-enhancement terms. We then express the objective function in 
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terms of variable y = Dx. Based on the convex optimization theory, we find the optimal y that 

minimizes the objective function. Finally, we construct the transformation function x from   y via 

x=D
-1

y and use x to transform the input image to the output image. 

 

 

We model the power consumption in an emissive display panel that is required to display an 

image. A pixel-level power model for an OLED module. According to their experimental results, 

power P to display a single-color pixel can be modeled by   

𝑃 = 𝑤0 + 𝑤𝑟𝑅
𝛾 + 𝑤𝑔𝐺

𝛾 + 𝑤𝑏𝐵
𝛾                                    (12) 

where, R,G and B are the red, green, and blue values of the pixel. Exponent γ is due to the 

gamma correction of the color values in the sRGB format. A typical is γ  2.2. , w0 accounts for 

static power consumption, which is independent of pixel values, and, wr,wg and wb are 

weighting coefficients that express the different characteristics of red, green, and blue sub-pixels. 

we ignore parameter for static power consumption. 

Then, we model the total dissipated power (TDP) for displaying a color image by 

TDP= (𝑤𝑟𝑅𝑖
𝛾

+ 𝑤𝑔𝐺𝑖
𝛾

+ 𝑤𝑏𝐵𝑖
𝛾

)𝑁−1
𝑖=0                       (13) 

where N denotes the number of pixels in the image and  (Ri,Gi,Bi) denotes the RGB color vector 

of the pixel. The weighting coefficients, wr ,wg and wb, and are inversely proportional to the 

sub-pixel efficiencies, For example, in a particular OLED panel in a mobile phone, the weighting 

ratios are about wr : wg : wb= 70 : 15 : 154 . However, we note that different display panels have 

different weighting coefficients. 

For a grayscale image, the TDP is similarly modeled by  

TDP= 𝑌𝑖
𝛾𝑁−1

𝑖=0                       (14) 
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Where Yi is the gray level of the ith pixel. . Therefore, the TDP in (14) can be compactly written 

in vector notations   

TDP= 𝑕𝑘𝑥𝑘
𝛾𝐿−1

𝑖=0 =𝑕𝑡∅𝛾(𝑥)                               (15)  

as where ∅𝛾 𝑥 = [𝑥0
𝛾

, 𝑥1
𝛾

, …… . , 𝑥𝐿−1
𝛾

]𝑡  and h is the histogram vector whose kth element is hk. 

B.  Constrained Optimization Problem 

We save the power in an emissive display by incorporating the power model in (15) into the HE 

procedure. We have two contradictory goals, i.e., we attempt to enhance the image con- 

trast by equalizing the histogram, but we also try to decrease the power consumption by reducing the 

histogram values for large intensities. These goals can be stated as a constrained optimization 

problem, i.e., 

Minimize   𝐷𝑥 − 𝑚  2+∝ 𝑕𝑡∅𝛾 𝑥  

Subject to  𝑥0 = 0 

        𝑥𝐿−1 = 𝐿 − 1, 

                   Dx≥0.                                                                               (16) 

The objective function has two terms 𝐷𝑥 − 𝑚  2+∝ 𝑕𝑡∅𝛾 𝑥 , i.e., is  𝐷𝑥 − 𝑚  2 the histogram-

equalizing term in (8) and h
t
Øᵞ(x) is the power term in (15). By minimizing the sum of these two 

terms, we attempt to improve the image contrast and reduce the power consumption 

simultaneously. There are three constraints in our optimization problem in (16). The two equality 

constraints X0 = 0 and XL-1 = L-1state that the minimum and maximum intensities should be 

maintained without changes. The inequality constraint Dx≥0 indicates that the transformation 

function should be monotonic, i.e, xk≥xk-1 for every k. Note that a≥0 denotes that all elements 

in vector a are greater than or equal to 0. 

Solution to the Optimization Problem: 

Exponent γ in the power term h
t
Øᵞ(x) is due to the gamma correction, and a typical γ  is 2.2. For 

generality, let us assume that γ is any number greater than or equal to 1. Then, the power term x= 

h
t
Øᵞ(x) is a convex function of x, and the problem in (16) becomes a convex optimization 

problem [21]. Based on the convex optimization theory, we develop the PCCE algorithm to yield 

the optimal solution to the problem. According to the minimum-value constraint in (16) x0, is 

fixed to 0 and is not treated as a variable. Thus, the transformation function can be rewritten as 

X= [x0, x1,…… xL-1]
t
 after removing x0 from the original x . Similarly, the dimensions of, , 

h and Øᵞ(x) are reduced to by removing the first elements,  
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By substituting variable and expressing the maximum- value constraint in terms of, (16) can be 

reformulated as respectively, D and has a reduced size (L-1)X(L-1) by removing the first row 

and the first column. Then, we reformulate the optimization problem by the change of variable 

y=Dx . Each element in the new variable is the difference between two output-pixel intensities, 

i.e. yk = xk-xk-1. Thus, y is called the differential vector. Then, x = D
-1

y 

, where 

 

By substituting variable and expressing the maximum-value constraint in terms of , (16) can be 

reformulated as x = D
-1

y  

Minimize   𝑦 − 𝑚  2+∝ 𝑕𝑡∅𝛾 𝐷−1𝑦  

Subject to   1𝑡𝑦 = 𝐿 − 1, 

                    y≥0.                                                                                               (18) 

J(y,v,λ)=  𝑦 − 𝑚  2+∝ 𝑕𝑡∅𝛾  𝐷−1𝑦 + 𝑣 1𝑡𝑦 −  𝐿 − 1  − 𝜆𝑡𝑦                     (19) 

To solve the optimization problem, we define the Lagrangian cost function, i.e., 

                             v𝜖𝑅 𝑎𝑛𝑑 λ= [λ0, λ1,…… λL-1]   ϵ 𝑅𝐿−1 

Are Lagrangian multipliers for the constraints. Then, the optimal can be obtained by solving the 

Karsh–Kuhn–Tucker conditions 

1𝑡𝑦 = 𝐿 − 1                                                           20  

                                         y≥0                                                                (21) 

                                         λ≥0                                                                (22) 

                                         ۸y=0                                                              (23) 

2(y-𝑚 ) + αγ𝐷−𝑡HØ
𝛾−1

(𝐷−1y)+v1-λ=0                                                (24)     

 



International journal of advanced scientific and technical research                          Issue 3 volume 3, May-June 2013                  

Available online on   http://www.rspublication.com/ijst/index.html                                                    ISSN 2249-9954 
 

RSPUBLICATION, rspublicationhouse@gmail.com Page 298 
 

Where 

۸ = diag(λ) and H= diag(h) 

 

We first expand the vector notations in (24) to obtain a system of equations and subtract the the 

equation from the (i+1) one to eliminate v . Then, we have a recursive system, i.e., 

 

        yi+1 =yi+𝑚 i+1-𝑚 i+
αγ

2
hi( 𝑦𝑘𝑖

𝑘=1 )𝛾−1 

                                       +
𝜆𝑖+1−𝜆𝑖

2
 for 1≤i≤L-2                       (25)                                                                      

In the Appendix, we show that all values can be eliminated from the recursion in (25) using 

(21)–(23) and that all yi values can be expressed in terms of a single variable Z. More 

specifically, 

Each yi is a monotonically increasing function of Z, given by. Then, the remaining step is to 

determine that satisfies the maximum-value constraint in (20). To this end, we form a function, 

i.e., 

                           f(z) = 1𝑡y-(L-1)= 𝑔𝑖(𝑧)𝐿−1
𝑖=1 -(L-1)                                                 (26) 

And find a solution to f(Z)=0. Since f(Z) is monotonically increasing, there exists a unique 

solution to f(Z)=0 . In this paper, we employ the secant method to find the unique solution 

iteratively. Let𝑧(𝑛) denote the value of at the the iteration. By applying the secant formula, i.e., 

                    𝑧(𝑛) = 𝑧(𝑛−1)- 
𝑧 (𝑛−1)−𝑧 (𝑛−2)

𝑓(𝑧  𝑛−1 −𝑓(𝑧  𝑛−2 )
f(𝑧(𝑛−1)),    n=2,3,….                         (27) 

Iteratively until the convergence, we obtain solution. From, we can compute all elements in y 

since yi=gi(z). Finally, the transformation function x=D
-1

y is the optimal solution to the original 

problem in (16), which enhances the contrast and saves the power consumption simultaneously 

subject to the minimum-value, maximum-value, and monotonic constraints. Parameter in the 

objective function in (18) determines the relative contributions of the histogram-equalizing term 

 𝐷𝑥 − 𝑚  2 and the power term h
t
Øᵞ(D

-1
y). These two terms, however, have different orders of 

magnitude in general. Whereas y and 𝑚  are not affected by the resolution of an input image, 

histogram values in h depend on the image resolution. Moreover, the power term is generally 

proportional to the average luminance value of the input image. It is convenient to compensate 

the unbalance between the two terms by dividing the power term by the image resolution and the 

average luminance value. More specifically, we change the variable by 
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                                      β = α x  𝑌𝑖𝑛𝑝𝑢𝑡, 𝑖𝑁−1
𝑖=0                                        (28) 

where isYinput,i the gray level of the pixel in the input image. Then, we control β instead of α . 

For example, Fig. 3 shows the results of the proposed PCCE algorithm at various β values. In 

this test, the ―Door‖ image in Fig. 1(c) is also used as the input image; the LHM µ parameter is 

set to 5, and is set to γ 2.2. In Fig. 3(a), when β=0 , the power term is not considered in (18), and 

we obtain the differential vector y=𝑚  . As β gets larger, the elements yk for low pixel values k 

decrease, whereas yk values for high k values increase. 
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As shown in Fig. 3(b), these changes in y lower the transformation function, reducing the power 

consumption. A bigger β saves more power. Without the power constraint, the TDP is 9.28X10
9
. 

At β=5 and 3, the proposed algorithm reduces the TDP to 3.55X10
9
 and 1.11X10

9
 respectively. 

In this way, the proposed algorithm determines the transformation function that balances the 

requirements of power saving and contrast enhancement optimally. Furthermore, the amount of 

power saving can be controlled by the single parameter β. Specifically, instead of the minimum 

and maximum-value constraints in (16), we can use generalized constraints x0=lmin and xL-

1=lmax to derive the transformation function, which maps the input dynamic range [0,L-1] to the 

output dynamic range [lmin,lmax]. For instance, Fig. 3(b) also shows the transformation function 

with constraints x0=5 and x255=210. Parameter β is set to 2.84 to consume the same TDP as the 

red curve(x0=5, x255=210,β=5) in Fig. 3(b). Comparing the output images in Fig. 3(e) and (f), 

we see that the new constraints reduce the dynamic range and degrade the overall contrast. In the 

remainder of this paper, the original constraints are employed to exploit the full dynamic range. 

PCCE FOR VIDEO SEQUENCE 

We extend the proposed PCCE algorithm to enhance video sequences. The proposed algorithm 

provides a power-reduced   output image using the power-control parameter β. We can apply the 

proposed algorithm with fixed to β   each frame in a video sequence. However, a typical video 

sequence is composed of frames with fluctuating brightness levels. Experiments in Section V-B 

will show that a bright frame can be enhanced with large β to save power aggressively, whereas a 

dark frame can be severely degraded if its overall brightness is reduced further with the same β 

.Therefore, we develop a scheme that determines β adaptively according to the brightness level  

of each frame. For each frame, we first set the target power consumption TDPout  

TDPin =  𝑕𝑘𝐿−1
𝑘=0 .𝑘𝛾  TDP based on the input power consumption TDP and then control 

parameter TDPout to Achieve   TDP. Specifically, we set 

                                           TDPout=k.TDPin      (32)   

Where is the power-reduction ratio Ῡ When k=1, the proposed algorithm saves no power during 

the contrast enhancement. On the other hand, when K is smaller, the proposed algorithm darkens 

the output frame and decreases the power consumption. The power model in indicates that a 

bright frame consumes more power than a dark frame. Therefore, more power saving can be 

achieved for a brighter frame, and the power-reduction ratio K in (32) can be set to a smaller 

value. On the other hand, the ratio for a dark frame should be close to 1 since even a small power 

reduction may yield poor image quality by reducing the contrast further and erasing details. 

Based on these observations, we set the power-reduction ratio K by 

K=(1 −
𝑦 

𝐿−1
)𝜌                             
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Where Ῡ denotes the average gray level of an input frame and ρ is a user-controllable parameter. 

For a bright input frame with high Ῡ, is set to a small value to achieve aggressive power saving. 

On the contrary, for a dark input frame with low   

Ῡ,k is set to be close to 1 to avoid the brightness reduction. To summarize, given an input frame, 

we determine the target power consumption TDPout using   (32) and (33). Then, we find 

parameter β to achieve TDPout. Since TDPout is inversely proportional to β, we can easily 

obtain the desired β using the bisection method, which iteratively halves a candidate range of the 

solution into two subdivisions and selects the subdivision containing the solution. Thus, in the 

video enhancement β, is automatically determined, and the only power-control parameter is in ρ 

(33). Note that, for the same Ῡ, larger ρ yields smaller k and saves more power. 
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  Contrast Enhancement without Power Constraint 

First, we compare the proposed PCCE algorithm without the power constraint (β=0) with the 

conventional HE and HM techniques. Fig. 4 shows the processed images obtained by the 

conventional HE algorithm, the weighted approximated HE (WAHE) algorithm, and the 

proposed PCCE algorithm (β=0) the proposed algorithm is tested in two ways. In Fig. 4(d), the 

user-controllable parameter µ for LHM in (10) is set to 2, 6.5, 5.5, 6.5, 5, 5.5, 5, and 5 for the 

eight test images, respectively, to achieve the best subjective qualities. On the Other hand, in Fig. 

4(e), µ is fixed to 5. For the WAHE results in Fig. 4(c), parameter g is adapted for each image to 

achieve the best subjective quality. Fig. 5 shows the transformation Functions which are used to 

obtain the images in Fig. 4. 1http://r0k.us/graphics/Kodak/ 2http://sipi.usc.edu/database/ We 

observe from Fig. 4(b) that the conventional HE algorithm causes excessive contrast stretching. 

In the ―Moon‖ image, hidden noises become visible, degrading the image quality severely. This 

noise amplification is due to the steep slope of the transformation function near intensity 0, as 

shown in Fig. 5. The contrast overstretching suppresses the overall brightness of the ―Beach‖ 

image. The transformation function reduces the input-pixel range [0, 150] to the output-pixel 

range [0, 50] by extending the contrast around the input-pixel intensity 170, which corresponds 

to the background area. Also, contour artifacts are observed in ―Sunset.‖ In general, the 

conventional including amplified noises, contour artifacts, detail losses, and mood alteration. 

Compared with the conventional HE, both WAHE and the proposed algorithm reduce artifacts 

by alleviating abrupt changes in the transformation functions, as shown `in Fig. 4(c) and (d). 

WAHE exploits spatial variance information to reduce large histogram values, based on the 

observation that peaks in histograms usually come from background regions. Specifically, 

WAHE skips repeated pixel intensities during the construction of an input histogram to focus on 

the contrast enhancement of textured regions. Thus, it can enhance object details, whereas it may 

degrade background details. For example, on the ―Pagoda‖ image, WAHE improves the contrast 

of the tower but loses the details in the clouds. Similarly, since the wall in the ―Ivy‖ image has 

small intensity variations, its contrast is not enhanced by WAHE significantly. The proposed 

PCCE algorithm provides comparable or better results than WAHE on all test images, as shown 

in Fig. 4(d). On the ―Moon, ― ―Beach, ― ―Sunset, ― ―Baboon, ― ―Lena, ― and ―F-16‖ images, the 

proposed algorithm and WAHE produce similar results. However, on the ―Pagoda‖ and ―Ivy‖ 

images, the proposed algorithm yields better perceptual quality than WAHE. Notice that the 

proposed algorithm enhances the clouds in ―Pagoda‖ and the patterns on the wall in ―Ivy‖ more 

clearly. In Fig. 4(e), we fix the LHM parameter to 5. Except for slight differences in the 

―Pagoda‖ image, the output images with the fixed are almost indiscernible from those with the 

adapted values in Fig. 4(d). Experiments on various other images also confirm that  µ=5 is a 

reliable choice. Therefore, in the following experiments, is set to 5 unless otherwise specified. 
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 Contrast Enhancement with Power Constraint 

Next, we evaluate the performance of the proposed PCCE algorithm with the power constraint 

(β>0). Fig. 6 shows the output images obtained by the proposed algorithm at different values. 

The images in Fig. 6(a) are exactly the same as those in Fig. 4(e) β. As gets larger, the overall 

brightness of the output images decreases, but the image contrast is relatively well preserved. 

Note that the perceptual quality and the subjective contrast of the output images at     β = 0.5 are 

almost the same as those at β=0. In particular, when these images are displayed on OLED panels, 

it is hard to distinguish the case without the power constraint β=0 from the case with the power 

constraint β>0 unless β is set to be very high. Fig. 6(e) shows the output images when β has a 

very high value of 15. Even in this case, the originally bright images ―Ivy‖ and ―F-16‖ retain 

visual details partly, but the other relatively dark images are severely degraded. In general β, can 

be set to a higher number for a brighter image to save power more aggressively. On the other 

hand, for a dark input image, β should be less than 2 for the proposed algorithm to yield good 

image quality.  
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Conclusion 

We have proposed the PCCE algorithm for emissive displays, which can enhance image contrast 

and reduce power consumption. We have made a power-consumption model and have 

formulated an objective function, which consists of the histogram-equalizing term and the power 

term. Specifically, we have stated the power-constrained image enhancement as algorithm to find 

the optimal transformation function. Simulation results have demonstrated that the proposed 

algorithm can reduce power consumption significantly while yielding satisfactory image quality. 

In this paper, we have employed the simple LHM scheme, which uses the same transformation 

function for all pixels in an image, for the purpose of the contrast enhancement. One of the future 

research issues is to generalize the power-constrained image enhancement framework to 

accommodate more sophisticated contrast-enhancement techniques, such as and, which process 

an input image adaptively based on local characteristics. 
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