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ABSTRACT
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analysis and its applications. In this paper we wish to establish some results connecting
Bicomplex analysis with Fluid dynamics as a continuation of our earlier approach [15].
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1 INTRODUCTION.

In 1892, Corrado Segre [9] published a pioneer paper in which he introduced a generalization in
the concept of Complex numbers, called Bicomplex numbers, Tricomplex numbers, etc.
Thereafter, a numbers of renowned Mathematicians, namely, Michiji Futagawa [2], E. Hille [3],
D. Riley [4], G. Baley Price [1] worked on the development of the subject.

Growth properties of complex functions regarding the value distribution theory of complex
analysis are a broad area of research nowadays. Several properties of potential fluid flow have
also been established regarding the application of complex analysis [11]. In this paper we
establish some results connecting bicomplex analysis and fluid dynamics by introducing some
new results.
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2 DEFINITIONS AND NOTATIONS.

We denote C, as a set of bicomplex numbers and C; or usual C as a set of complex numbers. We have
used some useful definitions and notations as mentioned below :

Definition 1.  Bicomplex numbers. The bicomplex numbers are defined as
T ={z,+i,2,/2,,z, € C(i,)}, where the imaginary units i,i, follow the rules

ii =iZ =—1,iji, =i,i, = j, say and j°=letc.
Another representation is: T ={w, + Wi, +W,i, +W, j/w, € R,i=012,3}

Definition 2. Conjugate of a bicomplex number. Three types of conjugates can be defined of a
bicomplex number w={z, +1i,2,/2,,z, € C(i;)} mentioned as follows:

a) W =(z,+i,2,)' =27, +1i,Z,
b) Wé :(21+i222),221_i222
o w;=(z,+i,2,)' =2, —-i,Z, , where Z, =2, (C,).

If w={w, +w,i, +W,i, +W, ] has the signature (+ + + +), then the conjugates have the signatures

(+—+-), (++——)and (+ — — +) respectively.
Therefore, the composition of conjugates i.e, {w;,w;, w,, w;} forms a Klein — Group.

Definition 3.  Idempotent representation of a bicomplex number. Every bicomplex number
(z, +1,2,) has the following idempotent representation: z, +i,z, =(z, —i,2,)e, +(z, +1,z,)e, ,
1+iqi 1-iqi
where e == 12 e, == 12
2 2

Definition 4. Bicomplex holomorphic functions. Let U be an opensetof T and w, €U. Then
f:UcT —>T issaid to be T-differentiable at w0 with derivative equalto f'(w,) T if

lim W)~ f(wo) _ £ (wp).
W—Wo W—Wq

So, f is T-holomorphicin U if f is T-differentiable in U.

Definition 5. Bicomplex meromorphic functions. In complex plane, a function f is meromorphic
inan openset U ifandonly if f isaquotient g/h of two functions g and h, holomorphicin U andh
is not zero in U.

In bicomplex number, a function f is said to be bicomplex meromorphic inanopenset X T if f isa
quotient g/h; g, h are holomorphic in X and h is not zero in X.

RSPUBLICATION, rspublicationhouse@gmail.com Page 61



International journal of advanced scientific and technical research Issue 3 volume 3, May-June 2013
Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

Definition 6. Idempotent representation of a bicomplex function. Let X, X; be open sets in C(iy)
and T < C(i,). Then any bicomplex function f(w)= f(z, +i,z,): X, %, X, =T can be uniquely
represented as follows:

f(z, +i,2,) = f, (z, —i,2,)e, + £, (z, +i,2,)e, forall z, +i,z, € X, x X,

where  f, : X, —>C(iy) and f, X, — C(i,) are two different complex functions.

Definition 7. Idempotent representation of a bicomplex holomorphic function. Let X, X, be open
sets in C(iy) and T < C(i,). Then a bicomplex function

f(z, +iy2,) = f, (z, —i,2,)e, + £, (z, +i,2,)e, forall z; +i,z, € X, x, X,, is said to be T-
holomorphic if and only if f, : X, —C(i;) and f, : X, — C(i,) are holomorphic complex

functionsand f'(z, +i,2,) = f, (z, —i,z,)e, + . (z, +1,2,)e,.

Definition 8. ldempotent representation of a bicomplex meromorphic function. Let X, X; be
open sets in C(iy) and T < C(i,). Then a bicomplex function

f(z, +i,2,) = f, (z, —i,2,)e, + £, (z, +i,2,)e, forall z, +i,z, € X, x, X,, is said to be
meromorphic if and only if f, : X; — C(i,) and f, : X, — C(i,) are meromorphic complex

functions.

Definition 9. Bicomplex transcendental meromorphic function. A function f: T > T is said to be
a transcendental meromorphic function on T ifand only if f, :C(i,) — C(i,) are transcendental

meromorphic functions for i=1,2.
Definition 10. Factorization of a bicomplex meromorphic function. Let F be a bicomplex

meromorphic functionon T. Then f is said to have f and g as left and right factors respectively if F;
has fi and g. as left and right factors for i = 1,2. Then we can write it as F(w) =f (g (w) ).

Definition 11 [1]. Pole (Strong Pole) of a bicomplex function. Letf: X - T be a bicomplex
meromorphic function on the openset X — T. We can say that w=(z, —i,2,)e, +(z, +1,2,)e, € X
is a (strong) pole for the bicomplex meromorphic function

f(w)=f(z, +i,z,)=f, (z, —1,z,)e, + T, (z, +1,2,)e, if 2, —i,z, e R(X)and z, +i,z, e R, (X)

are poles for f, 1P (X)—>C(i,) and f, :P,(X)— C(i,) respectively.

Remark 1. Poles of bicomplex meromorphic functions are not isolated singularities.

Proposition 1. Let f: X > T be a bicomplex meromorphic function onthe openset X < T. If
W, € X then wy is a pole of f, if and only if lim | f (W)| = o0,

Definition 12. Order of a bicomplex function. The order p (F) of a bicomplex meromorphic function
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F(w)=F, (z, —1,2,)e, +(z, +i,2,)e, isdefinedas p(F)=Max{po: ,p¢ }

) loglogM, (r;,F,)
where pp = limsup '

for i=1,2.
[ logr,

Remark 2. The lower order A(F) of a bicomplex meromorphic function is defined as

. .. loglogM,(r;,F,)
A(F) = Min{A(F, ), A(F,, )} where 4. = liminf !

for i=1,2
fj > logr;

Remark 3. The hyper order p(F) (Hyper lower order A (F)) and the generalized order p™ (F)

(generalized lower order A (F) ) can also be defined in a similar way.

Definition 13. The type of F. The type o(F) of a bicomplex meromorphic function is defined as
. logM; (r;, Fg;) _
o(F) =Max{o(F, ),o(F. )} where o(Fg)=limsup————— and 0<p. <o for i=12.
! z Ij >0 rip el i

Definition 14. Quantities p (F)andA (F): Let F(w) be an entire function order zero. Then

p (F)andA (F) canbedefinedas p (F)= Max{p;el , p;ez }and A (F)= Min{/’t’;e1 ,A*Fez} where
. loglog M, (r;, F, ) . .. loglogM;(r,F,)

pr = limsup — and A; =liminf :
i - loglogr, K o loglogr,

Definition 15. Quantities p*k(F) and ﬂ,**(F). Let F(w) be an entire function order zero. Then

p (F) and A" (F).can be definedas p™ (F) = Max{p;:1 ,p;;} and 1 (F)= Min{ﬂf;:1 ,l:;}

o lo Mi I‘i,Fe_ o .. lo Mi ri,Fe_
where p. =lim supM and A =Iliminf M
R logr; "o logr,

for i=1,2.

for 1=1,2.

Definition 16 [13]. Factorization of F(w). Let F(w) be a bicomplex meromorphic function on
T cC,.Then F issaidtohave f and g as left and right factors respectively if Fe has fe and g as
left and right factors respectively for i=1,2, i.e., fs is meromorphic and g is entire for i=1,2.

Definition 17. Complex potential fluid flow. If f(z) =u(X,y)+iv(x,Yy) € C, be a complex

function where u(x,y) € R? and Vv(X,y) € R? satisfy the Cauchy-Riemann equations, i.e, 8_u = %
X
2 2 2 2
o = _v and Laplace’s equation, i.e, 0 l: + 0 l: =0, 0 \2/ + 0 \2/ =0, then f(z) can be termed as a
oy OX ox® oy OX

complex potential fluid flow.

Definition 18. Bicomplex potential fluid flow. Similar to the complex potential fluid flow, if
f(w)=f(z, +i,z,) = f, (z, —i,z,)e, + T, (z, +1,Z,)e, be the idempotent composition of two
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complex functions, with f, (z, —i,z,) =u(z,,2,) -iv(z,,2,) € C, and

f, (z,—1,2,) =u(z,,2,) +i,v(z,,2,) € C; where u(z1,22) and v(z1,2;) satisfy Cauchy-Riemann
o au ov o*u  d°u

— and =

equations and Laplace’s equation, i.e, M _ v =

' T —*t =0,
oz, o0z, Ot 0z, oz, 0z,

2 2
% + % =0, therefore, f, (z, —i,z,) and f, (z, +i,z,) can be termed as complex

1 2
potential fluid flows. So, f(w) can be termed as a composition of two different potential fluid
flows fe and fe,.

3 LEMMA.

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 [8][15]. If f(2) =u(X,y) + iv(x, y) be complex potential fluid flow defined in the
region {y > 0} satisfying the following properties:

(i) f (z) is continuously differentiable in the region {y > 0},

(ii) T '(2) is parallel to the x - axis wheny =0 and

(iii) T '(2) i1s uniformly bounded in {y > 0}, then the order and lower order of f (z) are
zero.

Corollary 1. If f(w) = f(z, +i,2,) = f, (z, —i,2,)e, + f, (z, +1i,2,)e, be an idempotent

composition of two complex potential fluid flows satisfying the following properties:
Q) fe, and fe, are continuously differentiable in the region {y > 0}

(i) fe, and fg, are parallel the x-axis when'y = 0 and
(iii) fe, and fg, are uniformly bounded in {y > 0}, then the order and lower order of
f(w) are zero.

Lemma 2 [14]. If f(z) and g(z) are any two entire functions, then for all sufficiently large
values of r,

M(%M(g,g)—w(ox f|]swl<r, f00) <M(M(r,9), 1).

Lemma 3 [14]. If f be entire and g be a transcendental entire function of finite lower order, then
for any 6 >0,

M9, fog)>M(M(r,g), F). (r>r)

Lemma4 [13]. If F has f and g as left and right factors respectively, then we always have the
following factorization:

Fw) =f@W)).
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4 THEOREMS.
In this section we present our main results of the paper.

Theorem 1. If f(w)= f(z, +i,2,)=f, (z, —i,z,)e, + f, (z, +1,2,)e, be anidempotent
composition of two complex potential fluid flows fe, and fe, satisfying the following

properties:
() fe, and fe, are continuously differentiable in the region {y > 0}

(i) fe, and fg, are parallel the x-axis wheny = 0 and
(iii) fe, and fg, are uniformly bounded in {y >0},
Then p; =land 1, =1,

Proof. From the definition of o~ (f) and A~ (f) and using Definition 17, we have for arbitrary

positive &, &, and all sufficiently large values of rq, r;,

logM, (r,, f,) < (p;. +&)logr, and logM,(r,, f, )< (o} +¢&,)logr,
Therefore, loglogM; (ry, fe ) <loglogr +O(1) and loglogM;(ry, fe,) <loglogr, +O(1)

" loglogM, (1, f,) _loglogr, +O(1) and loglog M, (r,, f,,) _loglogr, +O(1)
- loglogr, ~ loglogr, loglogr, ~ loglogr,
loglogM, (r;, f, ) loglogM, (r,, f,
ie. limsup glogM,(r, 1)31 and limsup glogM, (r, 2)31
heoo loglogr, < loglogr,
ie. p; <1 and p; <1 and therefore using Definition 14, we have p; <1 . (1)
Similarly, proceeding as above and using Definition 14, we have A, <1. (2)

Again, for arbitrary positive &;,&, and all sufficiently large values of ry, r, we have
logM, (r,, f,) > (A7, —&)logr, and logMy(ry, fe)) > (At,, —£2)logr,.

Therefore, loglog M, (r, f, ) > (loglogr, +O() and loglogM(r,, fe,)>loglogr, +O(1)

o loglog M, (r;, f, ) . loglogr, +O(1)

- loglogr, ~ loglogr,

g loglog M, (r,, f.) S loglogr, + O(2)
loglogr, loglogr,
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loglog M, (r;, f,) 1

Le. limsup
heoo loglogr,
loglogM, (r,, f,
and  limsup glogM, (r, 2)21
<0 loglogr,
i.e. pi, 21 and p; >1 and therefore using Definition 14, we have p; >1 . (3)
Similarly, proceeding as above and using Definition 14, we have A, >1. 4)

From (1) and (3) we have p; =1 and from (2) and (4) we have 1, =1.

Hence the theorem follows.

Example 1. Let f(w)=w=12z; +iyz, =(21 —i1Z5)€; +(z1 +i1Z2)e, € C, (bicomplex space) be a
bicomplex potential fluid flow in C.,.

Therefore, f, =2z, —i,z, €C,(or,C) and f, =z, +i,z, €C,(or,C)

€

loglogM, (r;, f, )

Therefore, p, =limsup =0 as M(r, f,) <[z, —i,z,| <1 +T,

R logr,
: loglog M, (1, f.,) :
and p, =limsup 2228020 as M,(r, f, ) <|z, +iz,|<r +r,
# r—>o0 logr, ?

Hence  p; =0 and similarly A, =0.

. loglog M, (r,, f, ) o
Now ', =limsup glogM,(n, fe) _ Ilmsupwzl, r, is fixed.
R loglogr, [ loglogr,

. loglog M, (r,, f, . g
And P, =limsup glogM, 1z, fe,) _ lim supwzl ris fixed.
f -0 loglogr, -0 loglogr,

Therefore, p; =1 and similarly A, =1.

Similarly, we can also show that p; =1 and A; =1.

Theorem 2. Let f(w) and g(w) be any two bicomplex potential fluid flows satisfying the
following properties:

() f,, f., are continuously differentiable in the region {y >0}
(i) f., f. are parallel the x-axis when y = 0 and
(iii) f., f. are uniformly bounded in {y >0}, suchthat p, =0 and 2, <oo.

Then p;, =p,.
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Proof. Using Lemma 4 we can say that F(w) can be factorized to f (g (w) ). Now, using
Lemma 2 and Theorem 1 we have

loglog M, (r,, f, 0g, )

'OFe1 =pf910ge1 = Ilm Sup

n—o logr,
< limsup loglogM (M(r;, 9. ), f.) lim sup loglogM (r;, g,,)
T o loglogM(r,,9) o= logr,

S[):(el .pgel :1.pgel :pgel
Similarly Pk, < Pg,, -
Therefore pr =, <Ma{p, .0, .}=p, . 1€ pr<pg. (5)

Now using Lemma 3 and Theorem 1, we have

1+6

] loglog M, (r,"", f 09, )
'OFe1 = pfel()gel = Ilrp Sup |0g r1+5
1 —>0 1

. loglogM (M(r;,9,), f.) loglog M (r;, g,,)
> limin i

n—> loglog M (r;, g,,) foo logr,
2//f;el .pgel :1.pgel :pgell
Similarly Pr, Z Py, -
Therefore  pr = p;, 2 MaxX{p, .0, . }=p, . 18 pr2pg. (6)

Therefore from (5) and (6), the result follows.

Theorem 3. Let f(w) and g(w) be any two bicomplex potential fluid flows satisfying the
following properties:

() f(w) isentire and g(w) is transcendental suchthat p,, =0 and A, <.

Then P74y < Prg < P71 Py -

Proof. Using Lemma 3 we have
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log M, (r,"*, f, 0g, )

pFel =P fa0gy = lim sup 1+6,

o0 logr,

: logM, (M, (1. 9. ). f,) . . logM,(r,g,)
> limsup Jdiminf ———M——
- logM,(r;,9) n—ow logr,

=p,fr:1ﬂ:;1'

E )

Similarly, Pk, = Ps, o, 2 p; ./Igez.

€2

Therefore py, = Max{p}:ogel, p}‘;ogez}z Pr Ay - 7)
Again, by using Lemma 2 we have

log M, (r,"*, f, 0g, )

/OFel =P fa0gy = lim sup 1+6;

o0 logr,

- IOng(Ml(rligel)’ fel) - IOng(rl’gel)
<limsup dimsuyp—————
fo log M, (r,,9) o logr,

=p::1pf:1'

Similarly, Pr, = P, 00, Spfez Py,

Therefore o = Max{0y oq P o5, 3< 21 P - (8)

Therefore, from (7) and (8) the result follows.
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