Deduction of Some Relations Connecting Bicomplex Analysis and Fluid Dynamics

By
Sanjib Kumar Datta ${ }^{1}$ and Pulakesh Sen ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Kalyani, P.O- Kalyani, Dist- Nadia, PIN-741213, West Bengal, India
${ }^{2}$ Department of Mathematics, Dukhulal Nibaran Chandra College, P.O- Aurangabad, DistMurshidabad, PIN-742201,West Bengal, India.

Abstract

Bicomplex analysis is the most recent mathematical tool to develop the theory of complex analysis and its applications. In this paper we wish to establish some results connecting Bicomplex analysis with Fluid dynamics as a continuation of our earlier approach [15].

AMS Subject Classification (2010): 30D30, 30D35, 76A02
Keywords and phrases: Potential fluid flow, order (lower order), hyper order (hyper lower order), generalized order (generalized lower order), zero order (zero lower order), complex potential, composition, growth indicators, bicomplex number, bicomplex space, idempotent representation, factorization.

Corresponding Author: Sanjib Kumar Datta ${ }^{1}$

1 INTRODUCTION .

In 1892, Corrado Segre [9] published a pioneer paper in which he introduced a generalization in the concept of Complex numbers, called Bicomplex numbers, Tricomplex numbers, etc. Thereafter, a numbers of renowned Mathematicians, namely, Michiji Futagawa [2], E. Hille [3], D. Riley [4], G. Baley Price [1] worked on the development of the subject.

Growth properties of complex functions regarding the value distribution theory of complex analysis are a broad area of research nowadays. Several properties of potential fluid flow have also been established regarding the application of complex analysis [11]. In this paper we establish some results connecting bicomplex analysis and fluid dynamics by introducing some new results.

2 DEFINITIONS AND NOTATIONS.

We denote $\mathbf{C}_{\mathbf{2}}$ as a set of bicomplex numbers and $\mathbf{C}_{\mathbf{1}}$ or usual \mathbf{C} as a set of complex numbers. We have used some useful definitions and notations as mentioned below :

Definition 1. Bicomplex numbers. The bicomplex numbers are defined as
$T=\left\{z_{1}+i_{2} z_{2} / z_{1}, z_{2} \in C\left(i_{1}\right)\right\}$, where the imaginary units i_{1}, i_{2} follow the rules
$i_{1}^{2}=i_{2}^{2}=-1, i_{1} i_{2}=i_{2} i_{1}=j$, say and $j^{2}=1$ etc.
Another representation is: $T=\left\{w_{0}+w_{1} i_{1}+w_{2} i_{2}+w_{3} j / w_{i} \in R, i=0,1,2,3\right\}$
Definition 2. Conjugate of a bicomplex number. Three types of conjugates can be defined of a bicomplex number $w=\left\{z_{1}+i_{2} z_{2} / z_{1}, z_{2} \in C\left(i_{1}\right)\right\}$ mentioned as follows:
a) $w_{1}^{\prime}=\left(z_{1}+i_{2} z_{2}\right)^{\prime}=\bar{z}_{1}+i_{2} \bar{z}_{2}$
b) $w_{2}^{\prime}=\left(z_{1}+i_{2} z_{2}\right)^{\prime}=z_{1}-i_{2} z_{2}$
c) $w_{3}^{\prime}=\left(z_{1}+i_{2} z_{2}\right)^{\prime}=\bar{z}_{1}-i_{2} \bar{z}_{2}$, where $\bar{z}_{k}=z_{k}^{\prime}\left(C_{1}\right)$.

If $w=\left\{w_{0}+w_{1} i_{1}+w_{2} i_{2}+w_{3} j\right.$ has the signature $(++++)$, then the conjugates have the signatures $(+-+-),(++--)$ and $(+--+)$ respectively.

Therefore, the composition of conjugates i.e, $\left\{w_{0}^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right\}$ forms a Klein - Group.
Definition 3. Idempotent representation of a bicomplex number. Every bicomplex number $\left(z_{1}+i_{2} z_{2}\right)$ has the following idempotent representation: $z_{1}+i_{2} z_{2}=\left(z_{1}-i_{1} z_{2}\right) e_{1}+\left(z_{1}+i_{1} z_{2}\right) e_{2}$, where $e_{1}=\frac{1+i_{1} i_{2}}{2}, e_{2}=\frac{1-i_{1} i_{2}}{2}$.

Definition 4. Bicomplex holomorphic functions. Let U be an open set of T and $w_{0} \in U$. Then $f: U \subseteq T \rightarrow T$ is said to be T-differentiable at w 0 with derivative equal to $f^{\prime}\left(w_{0}\right) \in T$ if $\lim _{w \rightarrow w_{0}} \frac{f(w)-f\left(w_{0}\right)}{w-w_{0}}=f^{\prime}\left(w_{0}\right)$.

So, f is T-holomorphic in U if f is T-differentiable in U .
Definition 5. Bicomplex meromorphic functions. In complex plane, a function f is meromorphic in an open set U if and only if f is a quotient g / h of two functions g and h, holomorphic in U and h is not zero in U .

In bicomplex number, a function f is said to be bicomplex meromorphic in an open set $X \subset T$ if f is a quotient $\mathrm{g} / \mathrm{h} ; \mathrm{g}, \mathrm{h}$ are holomorphic in X and h is not zero in X .

Definition 6. Idempotent representation of a bicomplex function. Let $\mathrm{X}_{1}, \mathrm{X}_{2}$ be open sets in $\mathrm{C}\left(\mathrm{i}_{1}\right)$ and $T \subset C\left(i_{2}\right)$. Then any bicomplex function $f(w)=f\left(z_{1}+i_{2} z_{2}\right): X_{1} \times_{e} X_{2} \rightarrow T$ can be uniquely represented as follows:

$$
f\left(z_{1}+i_{2} z_{2}\right)=f_{e_{1}}\left(z_{1}-i_{1} z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i_{1} z_{2}\right) e_{2} \text { for all } z_{1}+i_{2} z_{2} \in X_{1} \times X_{2},
$$

where $\quad f_{e_{1}}: X_{1} \rightarrow C\left(i_{1}\right)$ and $f_{e_{2}}: X_{2} \rightarrow C\left(i_{1}\right)$ are two different complex functions.
Definition 7. Idempotent representation of a bicomplex holomorphic function. Let X_{1}, X_{2} be open sets in $\mathrm{C}\left(\mathrm{i}_{1}\right)$ and $T \subset C\left(i_{2}\right)$. Then a bicomplex function
$f\left(z_{1}+i_{2} z_{2}\right)=f_{e_{1}}\left(z_{1}-i_{1} z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i_{1} z_{2}\right) e_{2}$ for all $z_{1}+i_{2} z_{2} \in X_{1} \times X_{2}$, is said to be T-
holomorphic if and only if $f_{e_{1}}: X_{1} \rightarrow C\left(i_{1}\right)$ and $f_{e_{2}}: X_{2} \rightarrow C\left(i_{1}\right)$ are holomorphic complex functions and $f^{\prime}\left(z_{1}+i_{2} z_{2}\right)=f_{e_{1}}^{\prime}\left(z_{1}-i_{1} z_{2}\right) e_{1}+f_{e_{2}}^{\prime}\left(z_{1}+i_{1} z_{2}\right) e_{2}$.

Definition 8. Idempotent representation of a bicomplex meromorphic function. Let X_{1}, X_{2} be open sets in $\mathrm{C}\left(\mathrm{i}_{1}\right)$ and $T \subset C\left(i_{2}\right)$. Then a bicomplex function
$f\left(z_{1}+i_{2} z_{2}\right)=f_{e_{1}}\left(z_{1}-i_{1} z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i_{1} z_{2}\right) e_{2}$ for all $z_{1}+i_{2} z_{2} \in X_{1} \times X_{2}$, is said to be meromorphic if and only if $f_{e_{1}}: X_{1} \rightarrow C\left(i_{1}\right)$ and $f_{e_{2}}: X_{2} \rightarrow C\left(i_{1}\right)$ are meromorphic complex functions.

Definition 9. Bicomplex transcendental meromorphic function. A function $\mathrm{f}: \mathrm{T} \rightarrow \mathrm{T}$ is said to be a transcendental meromorphic function on T if and only if $f_{e_{i}}: C\left(i_{1}\right) \rightarrow C\left(i_{1}\right)$ are transcendental meromorphic functions for $\mathrm{i}=1,2$.

Definition 10. Factorization of a bicomplex meromorphic function. Let F be a bicomplex meromorphic function on T. Then f is said to have f and g as left and right factors respectively if $F_{e i}$ has $f_{e i}$ and $g_{e i}$ as left and right factors for $i=1,2$. Then we can write it as $F(w)=f(g(w))$.

Definition 11 [1]. Pole (Strong Pole) of a bicomplex function. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{T}$ be a bicomplex meromorphic function on the open set $X \subset T$. We can say that $w=\left(z_{1}-i_{1} z_{2}\right) e_{1}+\left(z_{1}+i_{1} z_{2}\right) e_{2} \in X$ is a (strong) pole for the bicomplex meromorphic function
$f(w)=f\left(z_{1}+i_{2} z_{2}\right)=f_{e_{1}}\left(z_{1}-i_{1} z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i_{1} z_{2}\right) e_{2}$ if $z_{1}-i_{1} z_{2} \in P_{1}(X)$ and $z_{1}+i_{1} z_{2} \in P_{2}(X)$ are poles for $f_{e_{1}}: P_{1}(X) \rightarrow C\left(i_{1}\right)$ and $f_{e_{2}}: P_{2}(X) \rightarrow C\left(i_{1}\right)$ respectively.

Remark 1. Poles of bicomplex meromorphic functions are not isolated singularities.
Proposition 1. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{T}$ be a bicomplex meromorphic function on the open set $X \subset T$. If $w_{0} \in X$ then w_{0} is a pole of f , if and only if $\lim _{w \rightarrow w_{0}}|f(w)|=\infty$.

Definition 12. Order of a bicomplex function. The order $\rho(\mathrm{F})$ of a bicomplex meromorphic function
$F(w)=F_{e_{1}}\left(z_{1}-i_{1} z_{2}\right) e_{1}+\left(z_{1}+i_{1} z_{2}\right) e_{2}$ is defined as $\quad \rho(F)=\operatorname{Max}\left\{\rho_{F_{e_{1}}}, \rho_{F_{c_{2}}}\right\}$
where $\rho_{F_{e_{i}}}=\limsup _{r_{i} \rightarrow \infty} \frac{\log \log M_{i}\left(r_{i}, F_{e_{i}}\right)}{\log r_{i}} \quad$ for $\mathrm{i}=1,2$.
Remark 2. The lower order $\lambda(\mathrm{F})$ of a bicomplex meromorphic function is defined as
$\lambda(F)=\operatorname{Min}\left\{\lambda\left(F_{e_{1}}\right), \lambda\left(F_{e_{2}}\right)\right\}$. where $\quad \lambda_{F_{e_{i}}}=\liminf _{r_{i} \rightarrow \infty} \frac{\log \log M_{i}\left(r_{i}, F_{e_{i}}\right)}{\log r_{i}}$ for $\mathrm{i}=1,2$.
Remark 3. The hyper order $\bar{\rho}(F)$ (Hyper lower order $\bar{\lambda}(F)$) and the generalized order $\rho^{(k)}(F)$ (generalized lower order $\lambda^{(k)}(F)$) can also be defined in a similar way.

Definition 13. The type of \mathbf{F}. The type $\sigma(\mathrm{F})$ of a bicomplex meromorphic function is defined as $\sigma(F)=\operatorname{Max}\left\{\sigma\left(F_{e_{1}}\right), \sigma\left(F_{e_{2}}\right)\right\}$ where $\sigma\left(F_{e_{i}}\right)=\limsup _{r_{i} \rightarrow \infty} \frac{\log M_{i}\left(r_{i}, F_{e_{i}}\right)}{r_{i} \rho_{e i}}$ and $0<\rho_{F_{e_{i}}}<\infty$ for $\mathrm{i}=1,2$.

Definition 14. Quantities $\rho^{*}(F) a n d \lambda^{*}(F)$: Let $F(w)$ be an entire function order zero. Then $\rho^{*}(F) \operatorname{and} d \lambda^{*}(F)$ can be defined as $\rho^{*}(F)=\operatorname{Max}\left\{\rho_{F_{e_{1}}}^{*}, \rho_{F_{c 2}}^{*}\right\}$ and $\lambda^{*}(F)=\operatorname{Min}\left\{\lambda_{F_{c 1}}^{*}, \lambda_{F_{c_{2}}}^{*}\right\}$ where $\rho_{F_{e_{i}}}^{*}=\underset{r_{i} \rightarrow \infty}{\lim \sup } \frac{\log \log M_{i}\left(r_{i}, F_{e_{i}}\right)}{\log \log r_{i}}$ and $\lambda_{F_{e_{i}}}^{*}=\liminf _{r_{i} \rightarrow \infty} \frac{\log \log M_{i}\left(r_{i}, F_{e_{i}}\right)}{\log \log r_{i}}$ for $\mathrm{i}=1,2$.
Definition 15. Quantities $\rho^{* *}(F)$ and $\lambda^{* *}(F)$. Let $\mathrm{F}(\mathrm{w})$ be an entire function order zero. Then $\rho^{* *}(F)$ and $\lambda^{* *}(F)$.can be defined as $\rho^{* *}(F)=\operatorname{Max}\left\{\rho_{F_{c_{1}}}^{* *}, \rho_{F_{c_{2}}}^{* *}\right\}$ and $\lambda^{* *}(F)=\operatorname{Min}\left\{\lambda_{F_{c_{1}}}^{* *}, \lambda_{F_{c_{2}}}^{* *}\right\}$ where $\rho_{F_{e_{i}}}^{* *}=\limsup _{r_{i} \rightarrow \infty}^{*} \frac{\log M_{i}\left(r_{i}, F_{e_{i}}\right)}{\log r_{i}}$ and $\lambda_{F_{e_{i}}}^{* *}=\liminf _{r_{i} \rightarrow \infty} \frac{\log M_{i}\left(r_{i}, F_{e_{i}}\right)}{\log r_{i}} \quad$ for $\mathrm{i}=1,2$.

Definition 16 [13]. Factorization of $\mathbf{F}(\mathbf{w})$. Let $\mathrm{F}(\mathrm{w})$ be a bicomplex meromorphic function on $T \subset C_{2}$. Then F is said to have f and g as left and right factors respectively if F_{ei} has f_{ei} and g_{ei} as left and right factors respectively for $\mathrm{i}=1,2$, i.e., f_{ei} is meromorphic and g_{ei} is entire for $\mathrm{i}=1,2$.

Definition 17. Complex potential fluid flow. If $f(z)=u(x, y)+i v(x, y) \in C_{1}$ be a complex function where $u(x, y) \in R^{2}$ and $v(x, y) \in R^{2}$ satisfy the Cauchy-Riemann equations, i.e, $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ and Laplace's equation, i.e, $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0$, then $f(z)$ can be termed as a complex potential fluid flow.

Definition 18. Bicomplex potential fluid flow. Similar to the complex potential fluid flow, if $f(w)=f\left(z_{1}+i_{2} z_{2}\right)=f_{e_{1}}\left(z_{1}-i_{1} z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i_{1} z_{2}\right) e_{2}$ be the idempotent composition of two
complex functions, with $f_{e_{1}}\left(z_{1}-i_{1} z_{2}\right)=u\left(z_{1}, z_{2}\right)-i_{1} v\left(z_{1}, z_{2}\right) \in C_{1}$ and
$f_{e_{2}}\left(z_{1}-i_{1} z_{2}\right)=u\left(z_{1}, z_{2}\right)+i_{1} v\left(z_{1}, z_{2}\right) \in C_{1}$ where $u\left(z_{1}, z_{2}\right)$ and $v\left(z_{1}, z_{2}\right)$ satisfy Cauchy-Riemann equations and Laplace's equation, i.e, $\frac{\partial u}{\partial z_{1}}=\frac{\partial v}{\partial z_{2}}, \frac{\partial u}{\partial z_{2}}=-\frac{\partial v}{\partial z_{1}}$ and $\frac{\partial^{2} u}{\partial z_{1}^{2}}+\frac{\partial^{2} u}{\partial z_{2}^{2}}=0$, $\frac{\partial^{2} v}{\partial z_{1}^{2}}+\frac{\partial^{2} v}{\partial z_{2}^{2}}=0$, therefore, $f_{e_{1}}\left(z_{1}-i_{1} z_{2}\right)$ and $f_{e_{2}}\left(z_{1}+i_{1} z_{2}\right)$ can be termed as complex potential fluid flows. So, $f(w)$ can be termed as a composition of two different potential fluid flows $f_{e_{1}}$ and $f_{e_{2}}$.

3 LEMMA.

In this section we present some lemmas which will be needed in the sequel.
Lemma 1 [8][15]. If $f(z)=u(x, y)+i v(x, y)$ be complex potential fluid flow defined in the region $\{y>0\}$ satisfying the following properties:
(i) $f(z)$ is continuously differentiable in the region $\{y \geq 0\}$,
(ii) $f^{\prime}(z)$ is parallel to the x-axis when $y=0$ and
(iii) $f^{\prime}(z)$ is uniformly bounded in $\{y>0\}$, then the order and lower order of $f(z)$ are zero.

Corollary 1. If $f(w)=f\left(z_{1}+i_{2} z_{2}\right)=f_{e_{1}}\left(z_{1}-i_{1} z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i_{1} z_{2}\right) e_{2}$ be an idempotent composition of two complex potential fluid flows satisfying the following properties:
(i) $\quad f_{e_{1}}$ and $f_{e_{2}}$ are continuously differentiable in the region $\{y \geq 0\}$
(ii) $\quad f_{e_{1}}^{\prime}$ and $f_{e_{2}}^{\prime}$ are parallel the x -axis when $\mathrm{y}=0$ and
(iii) $\quad f_{e_{1}}^{\prime}$ and $f_{e_{2}}^{\prime}$ are uniformly bounded in $\{y>0\}$, then the order and lower order of $f(w)$ are zero.

Lemma 2 [14]. If $f(z)$ and $g(z)$ are any two entire functions, then for all sufficiently large values of r,

$$
M\left(\frac{1}{8} M\left(\frac{r}{2}, g\right)-|g(0), f|\right) \leq M\left(r, f_{o} g\right) \leq M(M(r, g), f)
$$

Lemma 3 [14]. If f be entire and g be a transcendental entire function of finite lower order, then for any $\delta>0$,

$$
M\left(r^{1+\delta}, f_{o} g\right) \geq M(M(r, g), f) . \quad\left(r \geq r_{o}\right)
$$

Lemma 4 [13]. If F has f and g as left and right factors respectively, then we always have the following factorization:

$$
F(w)=f(g(w)) .
$$

4 THEOREMS.

In this section we present our main results of the paper.
Theorem 1. If $f(w)=f\left(z_{1}+i_{2} z_{2}\right)=f_{e_{1}}\left(z_{1}-i_{1} z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i_{1} z_{2}\right) e_{2}$ be an idempotent composition of two complex potential fluid flows $f_{e_{1}}$ and $f_{e_{2}}$ satisfying the following properties:
(i) $\quad f_{e_{1}}$ and $f_{e_{2}}$ are continuously differentiable in the region $\{y \geq 0\}$
(ii) $\quad f_{e_{1}}^{\prime}$ and $f_{e_{2}}^{\prime}$ are parallel the x-axis when $y=0$ and
(iii) $\quad f_{e_{1}}^{\prime}$ and $f_{e_{2}}^{\prime}$ are uniformly bounded in $\{y>0\}$,

Then $\rho_{f}^{*}=1$ and $\lambda_{f}^{*}=1$.
Proof. From the definition of $\rho^{* *}(f)$ and $\lambda^{* * *}(f)$ and using Definition 17, we have for arbitrary positive $\varepsilon_{1}, \varepsilon_{2}$ and all sufficiently large values of $\mathrm{r}_{1}, \mathrm{r}_{2}$,

$$
\log M_{1}\left(r_{1}, f_{e_{1}}\right) \leq\left(\rho_{f_{e_{1}}}^{*}+\varepsilon_{1}\right) \log r_{1} \quad \text { and } \quad \log M_{2}\left(r_{2}, f_{e_{2}}\right) \leq\left(\rho_{f_{c 2}}^{* *}+\varepsilon_{2}\right) \log r_{2}
$$

Therefore, $\log \log M_{1}\left(r_{1}, f_{e_{1}}\right) \leq \log \log r_{1}+O(1)$ and $\log \log M_{2}\left(r_{2}, f_{e_{2}}\right) \leq \log \log r_{2}+O(1)$
i.e. $\quad \frac{\log \log M_{1}\left(r_{1}, f_{e_{1}}\right)}{\log \log r_{1}} \leq \frac{\log \log r_{1}+O(1)}{\log \log r_{1}}$ and $\frac{\log \log M_{2}\left(r_{2}, f_{e_{2}}\right)}{\log \log r_{2}} \leq \frac{\log \log r_{2}+O(1)}{\log \log r_{2}}$
i.e. $\quad \limsup _{r_{1} \leftarrow \infty} \frac{\log \log M_{1}\left(r_{1}, f_{e_{1}}\right)}{\log \log r_{1}} \leq 1 \quad$ and $\quad \limsup \frac{\log \log M_{2}\left(r_{2}, f_{e_{2}}\right)}{\log \log r_{2}} \leq 1$
i.e. $\rho_{f_{e 1}}^{*} \leq 1$ and $\rho_{f_{e 2}}^{*} \leq 1$ and therefore using Definition 14 , we have $\rho_{f}^{*} \leq 1$.

Similarly, proceeding as above and using Definition 14, we have $\lambda_{f}^{*} \leq 1$.

Again, for arbitrary positive $\varepsilon_{1}, \varepsilon_{2}$ and all sufficiently large values of $\mathrm{r}_{1}, \mathrm{r}_{2}$ we have
$\log M_{1}\left(r_{1}, f_{e_{1}}\right) \geq\left(\lambda_{f_{e 1}}^{* *}-\varepsilon_{1}\right) \log r_{1}$ and $\log M_{2}\left(r_{2}, f_{e_{2}}\right) \geq\left(\lambda_{f_{e 2}}^{* *}-\varepsilon_{2}\right) \log r_{2}$.
Therefore, $\log \log M_{1}\left(r_{1}, f_{e_{1}}\right) \geq\left(\log \log r_{1}+O(1)\right.$ and $\log \log M_{2}\left(r_{2}, f_{e_{2}}\right) \geq \log \log r_{2}+O(1)$
i.e. $\quad \frac{\log \log M_{1}\left(r_{1}, f_{e_{1}}\right)}{\log \log r_{1}} \geq \frac{\log \log r_{1}+O(1)}{\log \log r_{1}}$
and $\quad \frac{\log \log M_{2}\left(r_{2}, f_{e_{2}}\right)}{\log \log r_{2}} \geq \frac{\log \log r_{2}+O(1)}{\log \log r_{2}}$
i.e. $\quad \underset{\eta_{1} \leftarrow \infty}{\lim \sup } \frac{\log \log M_{1}\left(r_{1}, f_{e_{1}}\right)}{\log \log r_{1}} \geq 1$
and $\underset{r_{2} \rightarrow \infty}{\limsup } \frac{\log \log M_{2}\left(r_{2}, f_{e_{2}}\right)}{\log \log r_{2}} \geq 1$
i.e. $\quad \rho_{f_{e 1}}^{*} \geq 1$ and $\rho_{f_{e 2}}^{*} \geq 1$ and therefore using Definition 14 , we have $\rho_{f}^{*} \geq 1$.

Similarly, proceeding as above and using Definition 14 , we have $\lambda_{f}^{*} \geq 1$.
From (1) and (3) we have $\rho_{f}^{*}=1$ and from (2) and (4) we have $\lambda_{f}^{*}=1$.
Hence the theorem follows.
Example 1. Let $f(w)=w=z_{1}+i_{2} z_{2}=\left(z_{1}-i_{1} z_{2}\right) e_{1}+\left(z_{1}+i_{1} z_{2}\right) e_{2} \in C_{2}$ (bicomplex space) be a bicomplex potential fluid flow in \mathbf{C}_{2}.

Therefore, $f_{e_{1}}=z_{1}-i_{1} z_{2} \in C_{1}($ or,$C)$ and $f_{e_{2}}=z_{1}+i_{1} z_{2} \in C_{1}($ or,$C)$
Therefore, $\quad \rho_{f_{e 1}}=\limsup _{r_{1} \rightarrow \infty} \frac{\log \log M_{1}\left(r_{1}, f_{e_{1}}\right)}{\log r_{1}}=0$ as $M_{1}\left(r_{1}, f_{e_{1}}\right) \leq\left|z_{1}-i_{1} z_{2}\right| \leq r_{1}+r_{2}$
and $\quad \rho_{f_{e 2}}=\limsup _{r_{2} \rightarrow \infty} \frac{\log \log M_{2}\left(r_{2}, f_{e_{2}}\right)}{\log r_{2}}=0$ as $M_{2}\left(r_{2}, f_{e_{2}}\right) \leq\left|z_{1}+i_{1} z_{2}\right| \leq r_{1}+r_{2}$
Hence $\quad \rho_{f}^{*}=0$ and similarly $\lambda_{f}^{*}=0$.
Now $\quad \rho^{*} f_{f_{e 1}}=\limsup _{r_{1} \rightarrow \infty} \frac{\log \log M_{1}\left(r_{1}, f_{e_{1}}\right)}{\log \log r_{1}}=\limsup _{r_{1} \rightarrow \infty} \frac{\log \log \left(r_{1}+r_{2}\right)}{\log \log r_{1}}=1, r_{2}$ is fixed.
And $\quad \rho_{f_{c 2}}^{*}=\limsup _{r_{2} \rightarrow \infty} \frac{\log \log M_{2}\left(r_{2}, f_{e_{2}}\right)}{\log \log r_{2}}=\limsup _{r_{2} \rightarrow \infty} \frac{\log \log \left(r_{1}+r_{2}\right)}{\log \log r_{2}}=1, r_{1}$ is fixed.
Therefore, $\rho_{f}^{*}=1$ and similarly $\lambda_{f}^{*}=1$.
Similarly, we can also show that $\rho_{f}^{* *}=1$ and $\lambda_{f}^{* *}=1$.

Theorem 2. Let $f(w)$ and $g(w)$ be any two bicomplex potential fluid flows satisfying the following properties:
(i) $\quad f_{e_{1}}, f_{e_{2}}$ are continuously differentiable in the region $\{y \geq 0\}$
(ii) $\quad f_{e_{1}}^{\prime}, f_{e_{2}}^{\prime}$ are parallel the x-axis when $y=0$ and
(iii) $\quad f_{e_{1}}^{\prime}, f_{e_{2}}^{\prime}$ are uniformly bounded in $\{y>0\}$, such that $\rho_{f}=0$ and $\lambda_{g}<\infty$.

Then $\rho_{f_{o} g}=\rho_{g}$.

Proof. Using Lemma 4 we can say that $F(w)$ can be factorized to $f(g(w))$. Now, using Lemma 2 and Theorem 1 we have

$$
\begin{aligned}
& \rho_{F_{e_{1}}}=\rho_{f_{e l} o g_{e 1}}=\limsup _{r_{1} \rightarrow \infty} \frac{\log \log M_{1}\left(r_{1}, f_{e_{1}} o g_{e_{1}}\right)}{\log r_{1}} \\
& \leq \limsup _{r_{1} \rightarrow \infty} \frac{\log \log M\left(M\left(r_{1}, g_{e_{1}}\right), f_{e_{1}}\right)}{\log \log M\left(r_{1}, g\right)} \cdot \lim \operatorname{ripp}_{r_{1} \rightarrow \infty} \frac{\log \log M\left(r_{1}, g_{e_{1}}\right)}{\log r_{1}} \\
& \leq \rho_{f_{e 1}}^{*} . \rho_{g_{e 1}}=1 . \rho_{g_{e 1}}=\rho_{g_{e 1}}
\end{aligned}
$$

$$
\begin{equation*}
\text { Similarly } \quad \rho_{F_{c 2}} \leq \rho_{g_{c 2}} \tag{5}
\end{equation*}
$$

Therefore $\rho_{F}=\rho_{f_{o g}} \leq \operatorname{Max}\left\{\rho_{g_{e 1}}, \rho_{g_{c 2}}\right\}=\rho_{g}$, i.e. $\rho_{F} \leq \rho_{g}$.
Now using Lemma 3 and Theorem 1, we have
$\rho_{F_{e_{1}}}=\rho_{f_{e l} o g_{e 1}}=\limsup _{r_{1} \rightarrow \infty} \frac{\log \log M_{1}\left(r_{1}^{1+\delta}, f_{e 1} o g_{e_{1}}\right)}{\log r_{1}^{1+\delta}}$
$\geq \liminf _{r_{1} \rightarrow \infty} \frac{\log \log M\left(M\left(r_{1}, g_{e_{1}}\right), f_{e_{1}}\right)}{\log \log M\left(r_{1}, g_{e_{1}}\right)} . \limsup _{r_{1} \rightarrow \infty} \frac{\log \log M\left(r_{1}, g_{e_{1}}\right)}{\log r_{1}}$
$\geq \lambda_{f_{e 1}}^{*} . \rho_{g_{e 1}}=1 . \rho_{g_{e 1}}=\rho_{g_{e 1}}$.
Similarly $\quad \rho_{F_{e 2}} \geq \rho_{g_{e 2}}$.
Therefore $\quad \rho_{F}=\rho_{f_{o} g} \geq \operatorname{Max}\left\{\rho_{g_{e 1}}, \rho_{g_{e 2}}\right\}=\rho_{g}$, i.e. $\rho_{F} \geq \rho_{g}$.
Therefore from (5) and (6), the result follows.

Theorem 3. Let $f(w)$ and $g(w)$ be any two bicomplex potential fluid flows satisfying the following properties:
(i) $\quad f(w)$ is entire and $g(w)$ is transcendental such that $\rho_{\text {fog }}=0$ and $\lambda_{g}<\infty$.

$$
\text { Then } \rho_{f}^{* * *} \lambda_{g}^{* *} \leq \rho_{f o g}^{* * *} \leq \rho_{f}^{* * *} \rho_{g}^{* * *} .
$$

Proof. Using Lemma 3 we have

$$
\begin{aligned}
& \rho_{F_{e_{1}}}^{* *}=\rho^{* * *} f_{f_{e l} o g_{e 1}}=\limsup _{r_{1} \rightarrow \infty} \frac{\log M_{1}\left(r_{1}^{1+\delta_{1}}, f_{e_{1}} o g_{e_{1}}\right)}{\log r_{1}^{1+\delta_{1}}} \\
& \geq \limsup _{r_{1} \rightarrow \infty}^{1} \frac{\log M_{1}\left(M_{1}\left(r_{1}, g_{e_{1}}\right), f_{e_{1}}\right)}{\log M_{1}\left(r_{1}, g\right)} \cdot \liminf _{r_{1} \rightarrow \infty} \frac{\log M_{1}\left(r_{1}, g_{e_{1}}\right)}{\log r_{1}} \\
& =\rho_{f_{e 1}}^{* *} \lambda_{g_{e 1}}^{* *} .
\end{aligned}
$$

Similarly, $\quad \rho_{F_{c_{2}}}^{* *}=\rho_{f_{c_{2}} o_{e_{2}}}^{* *} \geq \rho_{f_{c_{2}}}^{* *} \cdot \lambda_{g_{e_{2}}}^{* *}$.
Therefore $\rho_{\text {fog }}^{* *}=\operatorname{Max}\left\{\rho_{f_{c_{1}} g_{c_{1} 1}}^{* *}, \rho_{f_{c_{2}} o g_{c_{2}}}^{* *}\right\} \geq \rho_{f}^{* *} \lambda_{g}^{* *}$.
Again, by using Lemma 2 we have

$$
\begin{aligned}
& \rho_{F_{e_{1}}}^{* *}=\rho^{* * *} f_{f_{e l} o g_{e 1}}=\limsup _{r_{1} \rightarrow \infty} \frac{\log M_{1}\left(r_{1}^{1+\delta_{1}}, f_{e_{1}} o g_{e_{1}}\right)}{\log r_{1}^{1+\delta_{1}}} \\
& \leq \limsup _{r_{1} \rightarrow \infty}^{\log M_{1}\left(M_{1}\left(r_{1}, g_{e_{1}}\right), f_{e_{1}}\right)} \underset{\log M_{1}\left(r_{1}, g\right)}{l i m \sup } \frac{\log M_{1}\left(r_{1}, g_{e_{1}}\right)}{\log r_{1}} \\
& =\rho_{f_{e_{1}} \rightarrow \infty}^{* * *} \rho_{g_{e 1}}^{* * *}
\end{aligned}
$$

Similarly, $\rho_{F_{c 2}}^{* *}=\rho_{f_{e_{2}} o g_{e_{2}}}^{* *} \leq \rho_{f_{e_{2}}}^{* *} . \rho_{g_{c_{2}}}^{* *}$.
Therefore $\rho_{f o g}^{* *}=\operatorname{Max}\left\{\rho_{f_{e_{1}} o g_{e_{1}}}^{* *}, \rho_{f_{e_{2}} o g_{e_{2}}}^{* *}\right\} \leq \rho_{f}^{* *} \rho_{g}^{* * *}$.
Therefore, from (7) and (8) the result follows.

REFERENCES

[1] G. B. Price: An introduction to multicomplex spaces and functions, Marcel Dekker Inc., New York, 1991.
[2] Michiji Futagawa: On the theory of functions of a quaternary variable, Tôhoku Math. J. 29 (1928)], 175-222; 35 (1932), 69-120.
[3] E. Hille: Analytic Function Theory, Chelsea Publishing, New York, Vol. I, 1982, xi +308 pp.; Vol. II, 1977, xii + 496 pp.
[4] James D. Riley: Contributions to the theory of functions of a bicomplex variable Tôhoku Math. J. $2^{\text {nd }}$ series 5(1953), 132-165.
[5] G. K. Batchelor: An introduction to fluid dynamics, Cambridge Mathematical Library (1967).
[6] J. Clunie: The composition of entire and meromorphic functions, Mathematical Essays dedicated to A. J. Macintyre, Ohio University Press (1970), pp. 75-92.
[7] L. Liao and C.C. Yang: On the growth of composite entire functions, Yokohama Math.J., Vol. 46 (1999), pp. 97-107.
[8] J. Rauch: Some fluid flows, Applied Complex Analysis (Ref. website: www.math.lsa.umich.edu).
[9] C. Segre: Le rappresentazioni reale delle forme complesse'e Gli Enti Iperalgebrici, Math. Ann.,Vol. 40 (1892), 413-467.
[10] G. Valiron: Lectures on the general theory of integral functions, Chelsea Publishing Company (1949).
[11] T. Yokoyama: Fluid Mechanics, Topology and Complex Analysis (Ref. website:www.stat.phys.titech.ac.jp/ yokoyama/note 4.pdf).
[12] G. D. Song and C. C. Yang: Further growth properties of composition of entire and meromorphic functions, Indian J. Pure Appl. Math, Vol. 15 (1984) No. 1, pp. 67-82.
[13] K. S. Charak and D. Rochon: On factorization of bicomplex meromorphic functions, Quarternionic and Clifford Analysis, Trends in Mathematics, pp. 55-68 © 2008 Birkhäuser Verlag Basel/Switzerland.
[14] S. K. Datta and T. Biswas: On some further results of growth properties of composite entire and meromorphic functions, Int. Journal of Math. Analysis, Vol. 3, No. 29 (2009), pp. 14131428.
[15] S. K. Datta and P. Sen: Some results connecting Complex Analysis and Fluid Dynamics, Int. J. of Adv. Sci. \& Tech. Research, Issue 2, Vol. 6, Dec 2012, pp. 380-391.

