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1 INTRODUCTION . 

In 1892, Corrado Segre [9] published a pioneer paper in which he introduced a generalization in 

the concept of Complex numbers, called Bicomplex numbers, Tricomplex numbers, etc. 

Thereafter, a numbers of renowned Mathematicians, namely, Michiji Futagawa [2], E. Hille [3], 

D. Riley [4], G. Baley Price [1] worked on the development of the subject. 

Growth properties of complex functions regarding the value distribution theory of complex 

analysis are a broad area of research nowadays. Several properties of potential fluid flow have 

also been established regarding the application of complex analysis [11]. In this paper we 

establish some results connecting bicomplex analysis and fluid dynamics by introducing some 

new results. 
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2  DEFINITIONS AND NOTATIONS.  

We denote C2 as a set of  bicomplex numbers and C1 or usual C as a set of complex numbers. We have 

used some useful definitions and notations as mentioned below : 

Definition 1. Bicomplex numbers.  The bicomplex numbers are defined as  

)}(,/{ 121221 iCzzzizT  , where the imaginary units  21 , ii  follow the rules 

jiiiiii  1221

2

2

2

1 ,1 , say  and  j
2
=1etc. 

Another representation is: }3,2,1,0,/{ 322110  iRwjwiwiwwT i  

Definition 2.    Conjugate of a bicomplex number.  Three types of conjugates can be defined of a 

bicomplex number )}(,/{ 121221 iCzzzizw   mentioned as follows: 

a) 2212211 )( zizzizw   

b) 2212212 )( zizzizw   

c) 2212213 )( zizzizw   ,  where )( 1Czz kk
 . 

If jwiwiwww 322110{   has the signature (+ + + +), then the conjugates have  the  signatures     

(+ − + −), (+ + − −) and (+ − − +) respectively.  

Therefore, the composition of conjugates i.e, },,,{ 3210 wwww   forms a Klein – Group. 

Definition 3.     Idempotent representation of a bicomplex number.  Every bicomplex number 

)( 221 ziz   has the following idempotent representation: 22111211221 )()( ezizezizziz   , 

where  .
2

1
,

2

1 21
2

21
1

ii
e

ii
e







 

Definition 4.    Bicomplex holomorphic functions.  Let U be an open set of  T  and  .0 Uw   Then 

TTUf :  is said to be  T-differentiable at  w0  with derivative equal to  Twf  )( 0  if  

).(
)()(

lim 0
0

0

0

wf
ww

wfwf

ww







 

So,  f  is T-holomorphic in  U  if   f   is T-differentiable in  U. 

Definition 5.    Bicomplex  meromorphic  functions.   In  complex plane, a function  f  is meromorphic 

in an open set  U  if and only if  f  is a quotient  g/h  of two functions  g  and  h, holomorphic in  U  and h  

is not zero in  U. 

In bicomplex number, a function  f  is said to be bicomplex meromorphic in an open set  TX   if  f  is a 

quotient  g/h ; g, h  are holomorphic in  X and  h  is not zero in  X. 
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Definition 6.    Idempotent representation of a bicomplex function.   Let  X1, X2 be open sets in C(i1) 

and )( 2iCT  . Then any bicomplex function TXXzizfwf e  21221 :)()(  can be uniquely 

represented as follows: 

22111211221 )()()(
21

ezizfezizfzizf ee   for all  21221 XXziz  , 

where  )(: 111
iCXfe   and  )(: 122

iCXfe   are two different complex functions. 

Definition 7.    Idempotent representation of a bicomplex holomorphic function.   Let  X1, X2 be open 

sets in C(i1) and )( 2iCT  . Then a bicomplex function

22111211221 )()()(
21

ezizfezizfzizf ee   for all  21221 XXziz e , is said to be T-

holomorphic if  and only if  )(: 111
iCXfe   and  )(: 122

iCXfe   are holomorphic complex 

functions and  22111211221 )()()(
21

ezizfezizfzizf ee  . 

Definition 8.    Idempotent representation of a bicomplex  meromorphic function.   Let  X1, X2 be 

open sets in C(i1) and )( 2iCT  . Then a bicomplex function

22111211221 )()()(
21

ezizfezizfzizf ee   for all  21221 XXziz e , is said to be 

meromorphic  if and only if  )(: 111
iCXfe   and  )(: 122

iCXfe   are meromorphic complex 

functions. 

Definition 9.    Bicomplex transcendental meromorphic function.   A function  f : T  T  is said to be 

a transcendental meromorphic function on  T if and only if  )()(: 11 iCiCf
ie   are transcendental 

meromorphic functions for  i = 1,2. 

Definition 10.    Factorization of a bicomplex meromorphic function.   Let  F  be a bicomplex 

meromorphic function on T.  Then  f  is said to have  f  and  g  as left and right factors respectively if  Fei  

has  fei  and  gei  as left and right factors for  i = 1,2. Then we can write it as  F(w) = f (g (w) ). 

Definition 11 [1].    Pole (Strong Pole) of a bicomplex function.   Let f : X  T  be a bicomplex 

meromorphic function  on the open set  .TX   
We can say that Xezizezizw  22111211 )()(  

is a (strong) pole for the bicomplex meromorphic function  

22111211221 )()()()(
21

ezizfezizfzizfwf ee 
 
if )(1211 XPziz  and  )(2211 XPziz   

are poles for )()(: 111
iCXPfe    and  )()(: 122

iCXPfe   respectively. 

Remark 1.  Poles of  bicomplex  meromorphic functions  are not isolated singularities. 

Proposition 1. Let  f : X  T  be a bicomplex meromorphic function  on the open set .TX    If 

Xw 0  
then w0 is a pole of  f,  if and only if  .)(lim

0




wf
ww

 

Definition 12.    Order of a bicomplex function.  The order ρ (F)  of a bicomplex meromorphic function   
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22111211 )()()(
1

ezizezizFwF e     is defined as     },{)(
21

ee
FFMaxF        

 where  

i

eii

r
F

r

FrM
i

i
ie log

),(loglog
suplim


     for  i = 1,2.         

 

Remark 2.  The  lower order  λ(F)  of a bicomplex meromorphic function is defined as 

)}.(),({)(
21 ee FFMinF  

 
where   

i

eii

r
F

r

FrM
i

i
ie log

),(loglog
inflim


    for   i = 1,2. 

 

Remark 3. The  hyper order   )(F  (Hyper lower order )(F ) and the generalized order )()( Fk  

(generalized lower order )()( Fk  ) can also be defined in a similar way. 

Definition 13. The type of  F.  The type σ(F)  of a bicomplex meromorphic function is defined as      

)}(),({)(
21 ee FFMaxF    where   

eiF
i

ieii

ir
ie

r

FrM
F




),(log
suplim)(


   and  
ieF0   for  i =1,2. 

 

Definition  14.    Quantities  :)()( ** FandF   Let  F(w) be an entire function order zero. Then 

)()( ** FandF    can be defined as  },{)( ***

21 ee FFMaxF    and   },{)( ***

21 ee FFMinF     where  

i

eii

r
F

r

FrM
i

i
ie loglog

),(loglog
suplim*



   and   
i

eii

r
F

r

FrM
i

i
ie loglog

),(loglog
inflim*


   for  i = 1,2. 

Definition  15.    Quantities  )(** F   and  ).(** F   
Let  F(w) be an entire function order zero. Then  

)(** F   and  ).(** F can be defined as },{)( ******

21 ee FFMaxF    and   },{)( ******

21 ee FFMinF    

where 
i

eii

r
F

r

FrM
i

i
ie log

),(log
suplim**



   and  
i

eii

r
F

r

FrM
i

i
ie log

),(log
inflim**


     for  i =1,2.

 

Definition  16 [13].   Factorization of  F(w).   Let  F(w)  be a bicomplex  meromorphic function on  

2CT  . Then  F  is said to have  f  and  g  as left and right factors respectively if  Fei  has   fei  and  gei  as 

left and right factors respectively for   i = 1,2, i.e., fei  is meromorphic and  gei   is entire  for  i =1,2.  

 

 

Definition  17.  Complex potential fluid flow.  If  1),(),()( Cyxivyxuzf   be a complex 

function where  
2),( Ryxu   and  

2),( Ryxv   satisfy the Cauchy-Riemann equations, i.e, 
y

v

x

u









,  

x

v

y

u









 and Laplace’s equation, i.e, 0

2

2

2

2











y

u

x

u
,  0

2

2

2

2











y

v

x

v
,  then  f(z) can be termed as a 

complex potential fluid flow. 

 
Definition  18.  Bicomplex potential fluid flow.   Similar to the complex potential fluid flow,  if

22111211221 )()()()(
21

ezizfezizfzizfwf ee    be the idempotent composition of two 
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complex functions,  with  121121211 ),(),()(
1

Czzvizzuzizfe 
 
and  

121121211 ),(),()(
2

Czzvizzuzizfe    where  u(z1,z2)  and  v(z1,z2)  satisfy Cauchy-Riemann 

equations and Laplace’s equation, i.e, 
21 z

v

z

u









,  

12 z

v

z

u









 and  0

2

2

2

2

1

2











z

u

z

u
,  

0
2

2

2

2

1

2











z

v

z

v
, therefore,  )( 2111

zizfe 
 
and  )( 2112

zizfe    can  be  termed as complex 

potential fluid flows. So,  f(w)  can be termed as a composition of two different potential fluid 

flows 
1e

f   and  
2ef . 

 

 

3 LEMMA. 

 

In this section we present some lemmas which will be needed in the sequel. 

Lemma 1 [8][15].  If  f (z) u(x, y) iv(x, y) be complex potential fluid flow defined in the 

region  {y 0}  satisfying the following properties: 

(i) f (z) is continuously differentiable in the region {y 0}, 

(ii) f (z) is parallel to the x - axis when y =0 and 

(iii) f (z) is uniformly bounded in {y 0},  then the order and lower order of f (z) are 

zero. 

 

Corollary 1. If  22111211221 )()()()(
21

ezizfezizfzizfwf ee    be an idempotent 

composition of two complex potential fluid flows satisfying the following properties: 

(i) 
1e

f   and  
2ef  are continuously differentiable in the region {y ≥0}   

(ii) 
1e

f    and 
2ef 

 
are parallel the x-axis when y = 0 and 

(iii) 
1e

f    and 
2ef   are uniformly bounded in {y 0}, then the order and lower order of   

f(w)  are zero. 

 

Lemma 2 [14].  If f(z)  and  g(z)  are any two entire functions,  then for all sufficiently large 

values of  r, 

 

      ).),,((),(),0(),
2

(
8

1
fgrMMgfrMfgg

r
MM o 








  

Lemma 3 [14].   If  f  be entire and  g  be a transcendental entire function of finite lower order,  then  

for  any  0 , 

       
  ).),,((,1 fgrMMgfrM o             )( orr 

 

Lemma 4 [13].  If  F  has  f  and  g  as left and right factors respectively, then we always have the 

following factorization:  

                   F(w) = f (g (w) ) .  
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4 THEOREMS.  

In this section we present our main results of the paper. 

Theorem 1.   If  22111211221 )()()()(
21

ezizfezizfzizfwf ee    be an idempotent 

composition of two complex potential fluid flows 
1e

f   and  
2ef   satisfying the following 

properties: 

(i) 
1e

f   and  
2ef  are continuously differentiable in the region {y ≥0}   

(ii) 
1e

f    and 
2ef   are parallel the x-axis when y = 0 and 

(iii) 
1e

f    and 
2ef   are uniformly bounded in {y 0},  

Then 1* f  and   1* f . 

Proof.  From the definition of  )(** f  and  )(** f  and using Definition 17, we have for  arbitrary 

positive  21 ,  and all sufficiently large values of  r1, r2, 

        11

**

11 log)(),(log
11

rfrM
efe      and   22

**

22 log)(),(log
22

rfrM
efe    

Therefore,  )1(loglog),(loglog 1111 OrfrM e   and  )1(loglog),(loglog 2222 OrfrM e   

i.e.          
1

1

1

11

loglog

)1(loglog

loglog

),(loglog
1

r

Or

r

frM e 
   and   

2

2

2

22

loglog

)1(loglog

loglog

),(loglog
2

r

Or

r

frM e 
  

i.e.         1
loglog

),(loglog
suplim

1

11 1

1


 r

frM e

r

    and    1
loglog

),(loglog
suplim

2

22 2

2


 r

frM e

r

 

i.e. 1*

1


ef
   and   1*

2


ef
   and therefore using Definition 14, we have  1* f  .               (1) 

Similarly, proceeding as above and using Definition 14, we have   1* f  .                     (2) 

Again, for arbitrary  positive  21 ,  and all sufficiently large values of  r1, r2   we have 

 

11

**

11 log)(),(log
11

rfrM
efe     and   .log)(),(log 22

**
2222 rfrM

efe    

Therefore,  )1(log(log),(loglog 111 1
OrfrM e   and  )1(loglog),(loglog 2222 OrfrM e   

i.e.            
1

1

1

11

loglog

)1(loglog

loglog

),(loglog
1

r

Or

r

frM e 
    

and          
2

2

2

22

loglog

)1(loglog

loglog

),(loglog
2

r

Or

r

frM e 
  
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i.e.          1
loglog

),(loglog
suplim

1

11 1

1


 r

frM e

r

   

  and       1
loglog

),(loglog
suplim

2

22 2

2


 r

frM e

r

 

i.e.        1*

1


ef
   and   1*

2


ef
   and therefore using  Definition 14, we have  1* f  .              (3) 

Similarly, proceeding as above and using  Definition 14, we have   1* f  .          (4) 

From (1) and (3) we have 1* f  and from (2) and (4) we have 1* f . 

Hence the theorem follows. 

Example  1.  Let  222111211221 )()()( Cezizezizzizwwf  (bicomplex space)   be a 

bicomplex potential fluid flow in C2. 

Therefore,     ),(12111
CorCzizfe    and  ),(12112

CorCzizfe   

Therefore,   0
log

),(loglog
suplim

1

11 1

1

1


 r

frM e

r
fe

   as  2121111 ),(
1

rrzizfrM e   

and             0
log

),(loglog
suplim

2

22 2

2

2


 r

frM e

r
fe

   as  2121122 ),(
2

rrzizfrM e   

Hence        0* f  and  similarly  0* f . 

Now         ,1
loglog

)log(log
suplim

loglog

),(loglog
suplim

1

21

1

11*

1

1

1

1





 r

rr

r

frM

r

e

r

fe
   r2  is  fixed. 

And         ,1
loglog

)log(log
suplim

loglog

),(loglog
suplim

2

21

2

22*

2

2

2

2





 r

rr

r

frM

r

e

r

fe
   r1  is  fixed. 

Therefore,  1* f    and  similarly  1* f . 

Similarly,  we can also show that  1** f  and  1** f . 

 

 

Theorem  2.  Let  f(w)  and  g(w)  be any two bicomplex potential fluid flows satisfying the 

following properties: 

(i) 
21

, ee ff   are continuously differentiable in the region {y ≥0}   

(ii) 
21

, ee ff   are parallel the x-axis when y = 0 and 

(iii) 
21

, ee ff   are uniformly bounded in {y 0},    such that  0f  and  g . 

Then  ggfo
  . 
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Proof.  Using  Lemma 4  we can say that  F(w)  can be factorized to  f (g (w) ).  Now, using 

Lemma 2 and Theorem 1  we have 

            

1

1

1

1

1

11

log

),(loglog
suplim.

),(loglog

)),,((loglog
suplim

log

),(loglog
suplim

1

1

11

1

11

1

111

r

grM
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fgrMM
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ogfrM

e

r

ee

r

ee

r
ogfF eee
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

 

     

           
1111

.1.*

eeee gggf     

            Similarly       
22 ee gF   . 

Therefore   ggggfF eeo
Max   },{

21
   ,  i.e.   .gF              (5) 

Now using Lemma 3  and   Theorem 1, we have 
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1

1

1

1

1

1

1

11
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Similarly       
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Therefore      ggggfF eeo
Max   },{

21
   ,  i.e.   .gF              (6) 

Therefore  from  (5)  and  (6), the result follows. 

 

Theorem 3.   Let  f(w)  and  g(w)  be any two bicomplex potential fluid flows satisfying the 

following properties: 

 

(i)  f(w)  is entire and  g(w)  is  transcendental such that  0fog  and  g .    

 Then  
**********

gffoggf   . 

Proof.   Using Lemma 3  we have 
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Again, by using Lemma 2 we have  

  

 

.

log

),(log
suplim.

),(log

)),,((log
suplim

log

),(log
suplim

****

1

11

11

111

1

1

1

11****

11

1

1

11

1

1

11

1

1

11
1

ee

ee
e

gf

e

r

ee

r

ee

r

ogfF

r

grM

grM

fgrMM

r

ogfrM






















 

Similarly,  .. ********
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Therefore  .},{ **********
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Max                (8) 

Therefore, from (7)  and  (8)  the result follows. 
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